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Abstract

Most prior iris recognition techniques based on the ex-
isting pipeline have already reached their limits. Therefore,
this work explores the possibility of applying the deep learn-
ing technique to the field of iris recognition. We combine a
novel segmentation network with a modified resnet-18 as
the iris matching network. The segmentation network ar-
chitecture consists of an iterative altered FCN (fully convo-
lutional network) which contains a path of contracting lay-
ers to capture features and a symmetric upsampling path
that gives precise pixel-to-pixel localization. The network
not only generates visually implausible iris masks but also
makes good use of data augmentation. We show that com-
bining such networks outperforms the prior methods on sev-
eral iris image datasets, including CASIA V3-interval and
UBIRIS V2 datasets.

1. Introduction
Due to the complexity, uniqueness and stability of hu-

man iris, iris recognition has been recognized as one of the

most accurate approaches for automated biometric identifi-

cation. The very first complete and automated iris recog-

nition system was introduced by Daugman [1] in 1993,

who also devised the most classical algorithm, Integro-

differential operator [2], for iris segmentation under NIR

illumination. The accuracy of segmentation has a great im-

pact on the performance of the subsequent verification, thus

several researches focused on improving iris segmentation

and have reached state-of-the-art results in recent years [3]

[4] [5] [6]. In this paper, we propose both iris segmentation

and verification methods that exceed previous approaches.

Most of the previous works on iris segmentation used

traditional pipeline which mainly contains pre-processing,

localization and post-processing. Traditional localization

algorithms are based on integro-differential operators [2]

or Hough transforms [7]. Integro-differential operator

searches for the circular path where the maximal change

in pixel values occurs by varying the radius and center of

the circular contour to achieve precise location of eyelids.

Hough transforms find optimal curve parameters by a voting

procedure in edge maps which is generated by calculating

the first derivatives of intensity values in an eye image and

then thresholding the result. However, these two traditional

algorithms perform poorly in unconstrained iris images and

had been improved or replaced by many other algorithms

proposed recently [8] [4].

Different from traditional iris localization, pixel-to-pixel

iris segmentation extracts discriminative appearance fea-

tures in the neighborhood of pixels and builds classifiers for

pixel-wise classification [9] [10]. Nowadays, deep learning

has gained much attention and achieved great success in im-

age segmentation. Convolutional Neural Networks (CNNs)

[11] allow us to train end-to-end model which can learn op-

timal features and classifiers automatically and Fully Con-

volutional Networks (FCNs) [12] enable pixels-to-pixels

prediction. In this paper, we modify FCNs to accurately

generate pixel-wise iris segmentation prediction.

For iris verification or recognition tasks, most of the pre-

vious works are based on hand-crafted features [1][13][14],

which reached state-of-the-art performance. Recently, deep

learning was also utilized by many approaches and obtained

significant improvements [15] [16]. However, even with a

good segmentation result which directly gives the region of

iris, they still transformed the iris region to a rectangle im-

age. For example, [1] applied 2-D Gabor wavelet to a rect-

angle to obtain ”iris code”, and then compared them with

hamming distance. [15] used Convolutional Neural Net-

work (CNN) to compute a vector measuring the distance

between different images. In this paper, we explore the uti-

lization of iris region given by FCNs.

2. Iris Segmentation
In this section, a brief introduction of Fully convolutional

networks (FCNs) [12] is presented first. Afterwards, we

provide clear details of the proposed iris segmentation net-

work, including generic layout of our network architecture

and the training procedures. The experimental results and

the discussion will be presented along with the recognition
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Figure 1. The architecture of our proposed segmentation network. Each colored cube is a multi-channel feature map. There are totally 44

convolutional layers and 8 pooling layers.

results in section 4.

2.1. Network Architecture

The precise architecture of the proposed iris segmenta-

tion network is shown in Figure 1. Our segmentation archi-

tecture is built upon FCNs. We decompose the prediction

process into two steps: we modified and combined FCNs

with iterative process such that it generates more precise

image segmentation. The main idea of our work is to inte-

grate the benefits of some network architecture and utilize

them into the iris segmentation domain.

Fully convolutional networks can be trained end-to-end

specifically for generating detection proposals. FCNs were

originally introduced for the task of semantic segmentation

which predicts dense outputs from arbitrary-sized inputs.

They modified deep classification architectures by using im-

age classification as supervised pre-training and fine-tune

fully convolutionally to learn segmentation map efficiently

from whole image inputs and ground truths [12]. The key

contributions in [12] are the extension of the pixel-to-pixel

convolutional networks to the whole network architecture

and replacing the pooling operators by upsampling opera-

tors. These layers increase the resolution of the output. One

advantage of FCNs is that it allows for input of arbitrary

sizes and outputs the segmentation map of the same size.

Therefore, we take advantage of the fully-convolutional ar-

chitecture, and our segmentation method allows for input

with arbitrary size and produces the iris map of the same

size.

Unlike the upsampling approach in [12], we also altered

the upsampling method by retaining the number of feature

maps in the corresponding downsampling layers. The orig-

inal network of FCNs combines coarse, high layer infor-

mation with fine, low layer information in the prediction

layers. They adopt 1x1 convolution with fixed channel di-

mension to predict classification scores for each class and

bilinearly upsample the coarse outputs to dense outputs by

deconvolution layer. However, our upsampling approach

which merges current feature channels with the correspond-

ing feature channels brings more information of the down-

sampling layers to the higher resolution layers. Moreover,

in order to predict the missing pixels around the border of

iris, we combine the input image with the last upsampling

layer in each iteration.

After adapting and amending the FCNs, we found that it

was still not enough to precisely predict the border region

of iris. To this end, we devise the method from the inspira-

tion of prior iterative approaches, such as iterative instance

segmentation [17] and iterative error feedback (IEF) [18].

Consequently, instead of learning to predict the result in one

single step, we developed an iterative version of FCNs. It

shows that the results were further improved by the iterative

refinement. With the iterative step, more accurate results

can be generated with border region refined.

The proposed segmentation network consists of an it-

erative two-step FCNs which has one downsampling path

that follows the architecture of a typical convolutional neu-

ral network (CNNs) [11] and one upsampling path modi-

fied from the original FCNs in each step. In the downsam-

pling path, a 2x2 max pooling operations with stride 2 is

applied after every two convolutional layers of 3x3 convo-

lutions that are followed by a Rectified Linear Unit (ReLU)

in each downsampling step. After each max pooling op-

eration, the feature channels doubles. On the other hand,

in the upsampling path, each step contains an upsampling

operation followed by a 2x2 convolution along with a con-

catenation of the symmetrically corresponding feature map

from the downsampling path, and two convolutional layers
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of 3x3 convolutions with a ReLU after that. Each 2x2 con-

volution in the upsampling step halves the feature channels.

On the last layer of the whole network, we use a 1x1 convo-

lution and sigmoid activation to output the final prediction.

Our network does not contain fully connected layers.

2.2. Training

The implementation of our segmentation network is

based on Keras. During training, optimization is performed

using adam algorithm [19]. The input to the network is first

resized to 256 x 256 x original feature channels, the output

segmentation image is equal to 256 x 256 x 1 before resiz-

ing the image back to the input image size. We set the batch

size into 16 patches with a learning rate of 1×10−5. Finally,

The loss at each pixel for training is defined using negative

of dice coefficient inspired by the evaluation formula of ul-

trasound nerve segmentation competition on kaggle [20]:

L(X,Y ) = −2× |X ∩ Y |
|X|+ |Y | (1)

where X, Y are the predicted set of pixels and the ground

truth, respectively. The dice coefficient is defined to be 1

when both X and Y are empty.

3. Iris Verification
3.1. Verification Architecture and Training

For most of the existing methods, iris images are nor-

malized to polar coordinates (i.e.,Daugman’s rubber sheet

model). In this paper, instead of normalizing the images,

we also directly segment the iris part. We treat the iris veri-

fication as a patch match task. Using a resnet-18 [21] based

2-channel siamese network, we receive a 90.85% intra-class

accuracy and a 99.59% inter-class accuracy. In the case of

using normalized image, we receive a 94.31% intra-class

accuracy and a 98.83% inter-class accuracy. We finally

combine them to get a a 95.26% intra-class accuracy and

a 99.33% inter-class accuracy.

3.2. Verification Data Preparation

The original image, the result of segmentation and the

iris part image are illustrated in figure 2. By treating the

segmentation image as a mask, we can directly extract the

iris region from the original eye image. First, we remove

the useless black part to obtain a minimum square that con-

tains the iris and then resize the image to 224x224.

Initially, We have 2,639 images with 498 eyes and the

training of network needs intra-class pairs and inter-class

pairs, thus we remove all the eye classes with only 1 image

since they cannot construct intra-class pairs. Besides, con-

sidering the classes with the number of images less than 6,

they are selected as testing data.

We start with 2,252 images for training and 364 images

for testing. To generate the training data, we utilize all the

intra-class pairs, because the intra-class pairs are usually far

less than inter-class pairs. Then, we apply a random rota-

tion 10 times with angles between -20 and 20 degrees for

up-sampling, and we use the first three images of each class

to generate inter-class pairs. The number of inter-class pairs

is almost 2 times more than intra-class pairs. In our exper-

iment, this ratio leads to good result. The centers of pupil

are aligned to a fixed point in the pre-processing step. For

the testing data, we cut some additional part to reduce shape

difference, omiting the black part, to make the two images

in each pair have the same length. Finally, we have 213,510

images for training and 64,261 images for testing. An ex-

ample image pair is depicted in figure 3.

By using the same pre-processing step in [1], we obtain

the normalized iris images in the log-polar coordinate as the

input images to our second CNN model. The model archi-

tecture for the second model is the same as that of the first

one. It is easier to normalize the eye image after obtaining

the iris segmentation results 4.

Figure 2. Images from left to right are the original image, gener-

ated segmentation mask and the extracted iris region.

Figure 3. An example of image pair before and after the pre-

processing step.

3.3. Network

We apply a 2-channel network[22] with resnet-18[21] as

our verification network. The two eye images are stacked

as 2 channels in one image, i.e. every channel is one eye

image, because our iris image is gray scale. The architecture

is illustrated in figure 5. For images from the same eye,

the label is 1, otherwise it is -1. The loss function used for

training the iris verification network is the soft-margin Loss,
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Figure 4. An example of image normalization as the pre-

processing step for preparing training data.

given by

loss(x, y) = log(1 + exp(−y ∗ x)) (2)

Figure 5. The network architecture of the iris verification network

4. Experimental Results
4.1. Experimental Datasets

In our experiments, we used two datasets, i.e.,

UBIRIS.v2 [23] and CASIA-Iris-Interval[24]. UBIRIS.v2

is an iris dataset which is acquired with visible light il-

lumination. It consists of 11,102 images from 261 sub-

jects. The images are captured on non-constrained condi-

tions with subjects at-a-distance and on-the move. There-

fore, the images in UBIRIS.v2 often contain serious occlu-

sions, specular reflections, off-axis and blur. Iris images

in CASIA-Iris-Interval dataset were captured by Center for

Biometrics and Security Research’s self-developed close-

up iris camera. There are totally 2,639 images collected

from 249 people. The images of CASIA-Iris-Interval are

very clear iris images with detailed texture since they de-

signed a circular NIR LED array, with suitable luminous

flux for iris imaging.

4.2. Performance Evaluation

4.2.1 Iris Segmentation

The segmentation ground truth of 2,250 images collected

from 104 people in the UBIRIS.v2 dataset are manually la-

Table 1. Average iris segmentation error (%) for each of the state-

of-the-art approaches. The symbol‘-’ in the table indicates that

the accuracy of applying the method in the corresponding dataset

is not available.

Average iris segmentation error (%)

CASIA-Iris-
Approach UBIRIS.v2

Interval

Proposed method 0.81 1.60

MFCNs [3] 0.90 -

Z. Zhao and A. Kumar,
1.21 -

ICCV [4], 2015

T-IP 2013[5] 1.72 -

T-PAMI 2013[6] 1.92 -

beled and publicly provided by WaveLab, Salzburg Univer-

sity [25], and the hand-made ground truth for the total 2,639

images in the CASIA-Iris-Interval dataset are made publicly

available by Halmstad University [26].

Since the evaluation protocol provided in NICE I compe-

tition [27] is widely used to measure the performance of iris

segmentation method, the accuracy of our iris segmentation

is computed using the same protocol as that in the NICE I

competition as follows:

ē =
1

N × w × h

∑

p∈w

∑

q∈h
G(p, q)⊕M(p, q) (3)

where w and h are width and height of an iris image, N is

the total number of images, and G and M are the ground

truth mask and the generated mask, respectively. The ⊕ in

the equation is the exclusive OR operation used to evaluate

the disagreeing pixels between G and M.

Figure 6. Column (a) shows the original images from CASIA-Iris-

Interval database, column (b) are the ground truths and (c) are our

segmentation results.
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Figure 7. Column (a), (b) and (c) show the original images from

UBIRIS.v2, the ground truths and our segmentation results, re-

spectively.

We compare the performance of the proposed iris seg-

mentation approach with some state-of-the-art methods, as

shown in Table 1. It is clear from the table that our iris seg-

mentation accuracy on UBIRIS.v2 outperforms all the other

recent methods.

Our experimental setting of CASIA-Iris-Interval in-

cludes 12,000 images for training and 635 for testing. Note

that we use data augmentation to increase the original 2,000

training images to 12,000 images by mirroring and adjust-

ing the brightness of the original images. Furthermore, due

to some obvious hand-made ground truth error, we removed

4 images and ground truth masks from the 639 testing im-

ages, thus the remaining 635 images are used for testing.

Several example images in our experiment are shown in

Figure 6. Column (a) are the original images from the

database, column (b) are the ground truths and (c) are our

segmentation results. It can be seen that the circle border

regions are well segmented.

On the other hand, the setting of UBIRIS.v2 experiment

contains 2,000 images for training and 250 images for test-

ing without any data augmentation. Although the results

cannot be directly compared to other methods because the

training and testing settings of other methods and ours are

different, it is still effective to show our improvement. Fig-

ure 7 shows some segmentation results by using our method

on UBIRIS.v2 dataset.

We also use IriShield-USB MK 2120U which is a iris

auto-capture camera to collect our own testing data. And we

convert all the training images in UBIRIS.v2 to grayscale as

training data. Since the images in UBIRIS.v2 are variant in

the scale of iris, it is suitable for cross-dataset experiment.

Figure 8 depicts some segmentation results on our own test-

ing data.

Figure 8. Column (a), (b) and (c) show the original images from

IriShield-USB MK 2120U, the ground truths and our segmentation

results, respectively.

4.2.2 Iris Verification

During the training, we used stochastic gradient descent

(SGD) with momentum set to 0.9 for optimization, the con-

stant learning rate was set to 1× 10−4, and the training was

performed in mini-batches of size 8. The data augmenta-

tion procedure was described in section 4. If the output of

an image pair to the proposed iris verification network is

larger than 0, we consider them as images of the same eye,

otherwise they are decided to be from different eyes. Fi-

nally, we obtain 90.85% intra-class accuracy and 99.59%

inter-class accuracy for the iris verification experiment on

CASIA-Iris-Interval dataset. If we use the normalized im-

ages as input, we can reach 94.31% intra-class accuracy and

98.83% inter-class accuracy. With appropriate combination

of these two networks, we can reach 95.26% intra-class ac-

curacy and 99.33% inter-class accuracy. The two network

models are combined as follows: if the output score of the

second model falls between -5 and 5, then we use the first

model to make the final decision.

5. Conclusion

In this paper, we propose a deep learning approach to

iris recognition. We combine a novel FCN model for iris

segmentation along with a modified resnet-18 model for the

iris matching. With the fully convolutional network, we are

able to generate accurate iris segmentation. Considering all

the state-of-art methods for iris recognition, the proposed

FCNs model performs better iris segmentation, especially

for some hard cases. In the future, we would like to refine

the iris verification network to improve the robustness of

iris matching, especially when the segmentation masks of

the two iris images for verification are quite different.
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