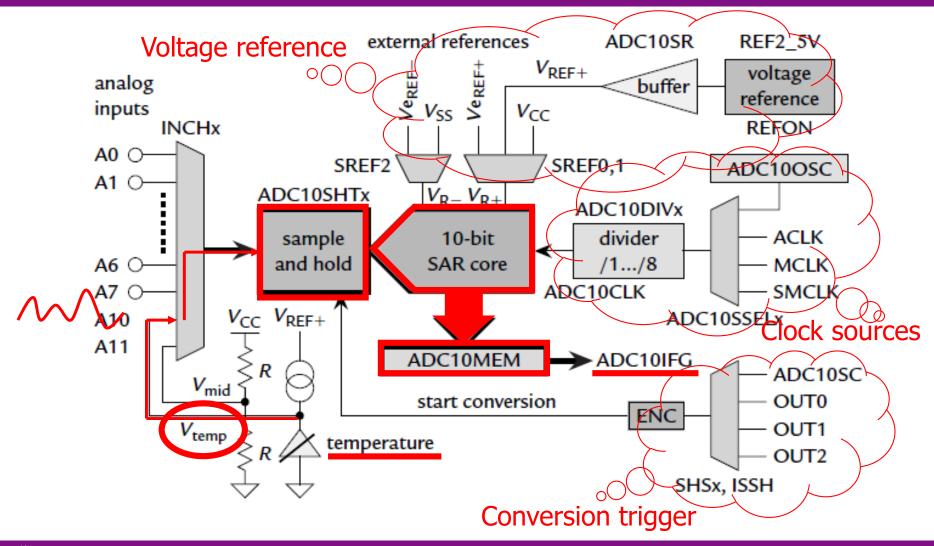


#### CS4101 Introduction to Embedded Systems

# Lab 5: Analog-to-Digital Converter

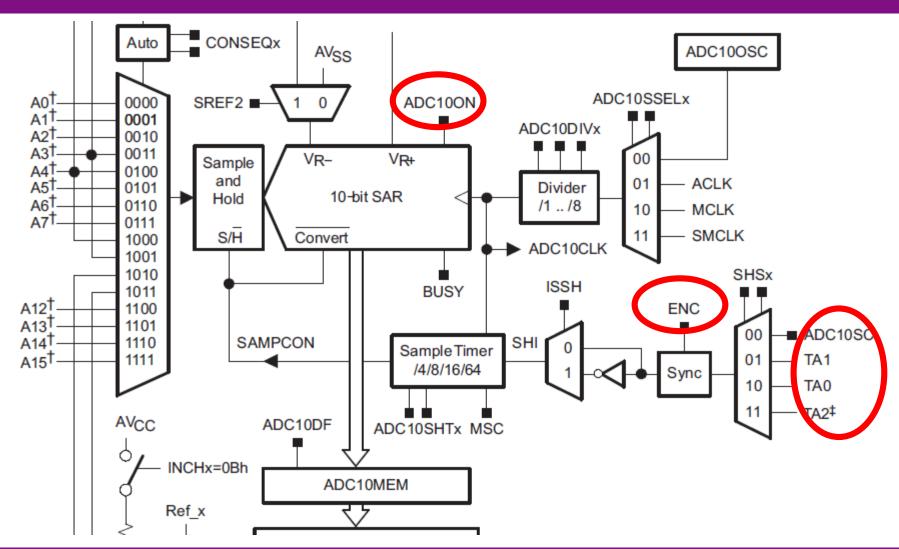
Prof. Chung-Ta King


Department of Computer Science

National Tsing Hua University, Taiwan

#### Introduction

- In this lab, we will learn ADC of MSP430
  - Configuration of ADC10
  - Use of ADC10 to measure the temperature of LauchPad


## **Simplified Block Diagram of ADC10**



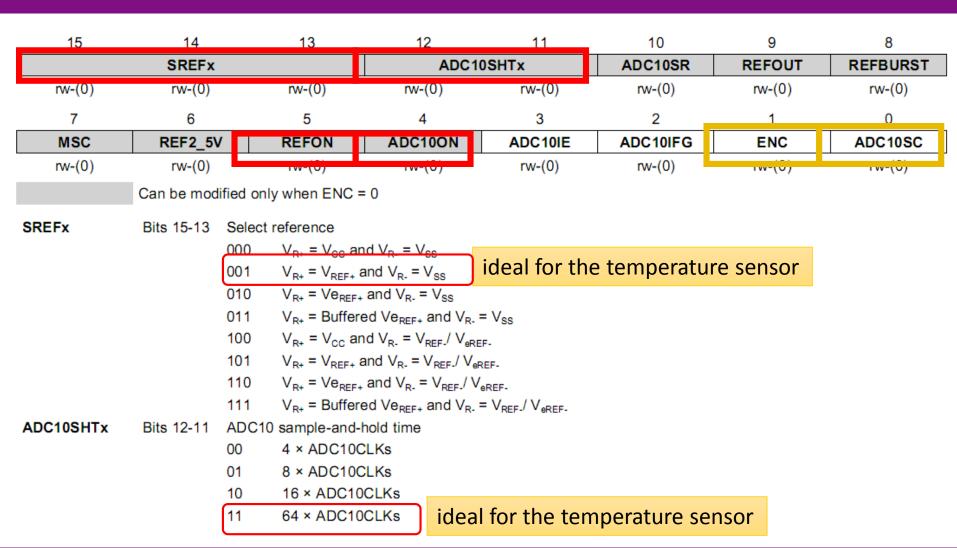
## **ADC10 Registers**

| Register                               | Short Form             | Register<br>Type | Addr. | Initial State  |
|----------------------------------------|------------------------|------------------|-------|----------------|
| ADC10 input enable register 0          | ADC10AE0               | Read/write 04Ah  |       | Reset with POR |
| ADC10 input enable register 1          | ADC10AE1               | Read/write       | 04Bh  | Reset with POR |
| ADC10 control register 0               | ADC10CTL0              | Read/write       | 01B0h | Reset with POR |
| ADC10 control register 1               | ADC10CTL1              | Read/write       | 01B2h | Reset with POR |
| ADC10 memory                           | ADC10MEM               | Read             | 01B4h | Unchanged      |
| register ()                            | Where the ata is saved | Read/write       | 048h  | Reset with POR |
| ADC10 data transfer control register 1 | ADC10DTC1              | Read/write       | 049h  | Reset with POR |
| ADC10 data transfer start address      | s ADC10SA              | Read/write       | 01BCh | 0200h with POR |

## **Enabling Sampling and Conversion**



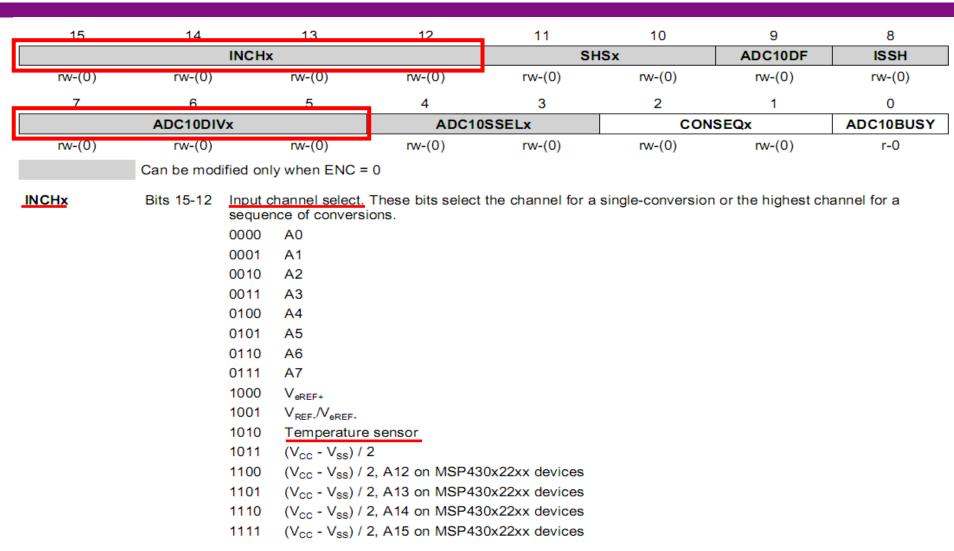
## **Steps for Single Conversion**


(1) Configure ADC10, including the ADC100N bit to enable the module.

The ENC bit must be clear so that most bits in ADC10CTL0 and ADC10CTL1 can be changed.

- (2) Set the ENC bit to enable a conversion.

  This cannot be done if the module is being configured in (1).
- (3) Trigger the conversion.
  - This is done either by setting the ADC10SC bit or by an edge from Timer\_A.
- ADC10ON, ENC, ADC10SC are all in control register ADC10CTL0


#### ADC10CTL0



#### ADC10CTL0 cont'd

| REFON   | Bit 5 | Reference generator on                                                                                                                                       |  |  |  |
|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         |       | 0 Reference off                                                                                                                                              |  |  |  |
|         |       | 1 Reference on                                                                                                                                               |  |  |  |
| ADC10ON | Bit 4 | ADC10 on                                                                                                                                                     |  |  |  |
|         |       | 0 ADC10 off                                                                                                                                                  |  |  |  |
|         |       | 1 ADC10 on                                                                                                                                                   |  |  |  |
| ADC10IE | Bit 3 | ADC10 interrupt enable                                                                                                                                       |  |  |  |
|         |       | 0 Interrupt disabled                                                                                                                                         |  |  |  |
|         |       | 1 Interrupt enabled                                                                                                                                          |  |  |  |
| ENC     | Bit 1 | Enable conversion                                                                                                                                            |  |  |  |
|         |       | 0 ADC10 disabled                                                                                                                                             |  |  |  |
|         |       | 1 ADC10 enabled                                                                                                                                              |  |  |  |
| ADC10SC | Bit 0 | Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together with one instruction. ADC10SC is reset automatically. |  |  |  |
|         |       | 0 No sample-and-conversion start                                                                                                                             |  |  |  |
|         |       | 1 Start sample-and-conversion                                                                                                                                |  |  |  |

#### ADC10CTL1



#### ADC10CTL1 cont'd

| SHSx       | Bits 11-10 | Sample              | e-and-hold source select     |                  |                |    |                                  |  |  |  |
|------------|------------|---------------------|------------------------------|------------------|----------------|----|----------------------------------|--|--|--|
|            |            | 00                  | ADC10SC bit                  |                  |                |    |                                  |  |  |  |
|            |            | 01                  | Timer_A.OUT1                 |                  |                |    |                                  |  |  |  |
|            |            | 10                  | Timer_A.OUT0                 |                  |                |    |                                  |  |  |  |
|            |            | 11                  | Timer_A.OUT2 (Timer_/        | A.OUT1 on MSP430 | 0x20x2 devices | )  |                                  |  |  |  |
| ADC10DF    | Bit 9      |                     | C10 data format              |                  |                |    |                                  |  |  |  |
|            |            | 0                   | Straight binary              |                  |                |    |                                  |  |  |  |
|            |            | 1                   | 2s complement                |                  |                |    |                                  |  |  |  |
| ISSH       | Bit 8      | Invert s            | nvert signal sample-and-hold |                  |                |    |                                  |  |  |  |
|            |            | 0                   | The sample-input signal      | is not inverted. |                |    |                                  |  |  |  |
|            |            | 1                   | The sample-input signal      |                  |                |    |                                  |  |  |  |
| ADC10DIVx  | Bits 7-5   | ADC10 clock divider |                              |                  |                |    |                                  |  |  |  |
|            |            | 000                 | /1                           | 0011050          | D'1 0 4        |    |                                  |  |  |  |
|            |            | 001                 | /2                           | CONSEQx          | Bits 2-1       |    | sion sequence mode select        |  |  |  |
|            |            | 010                 | /3                           |                  |                | 00 | Single-channel-single-conversion |  |  |  |
|            |            | 011                 | /4                           |                  |                | 01 | Sequence-of-channels             |  |  |  |
|            |            | 100                 | /5                           |                  |                | 10 | Repeat-single-channel            |  |  |  |
|            |            | 101                 | /6                           |                  |                | 11 | Repeat-sequence-of-channels      |  |  |  |
|            |            | 110                 | /7                           |                  |                |    |                                  |  |  |  |
|            |            | 111                 | /8                           |                  |                |    |                                  |  |  |  |
| ADC10SSELx | Bits 4-3   | ADC10               | clock source select          |                  |                |    |                                  |  |  |  |
|            |            | 00                  | ADC10OSC                     |                  |                |    |                                  |  |  |  |
|            |            | 01                  | ACLK                         |                  |                |    |                                  |  |  |  |
|            |            | 10                  | MCLK                         |                  |                |    |                                  |  |  |  |
|            |            | 11                  | SMCLK                        |                  |                |    |                                  |  |  |  |
|            |            |                     |                              |                  |                |    |                                  |  |  |  |

ADC10CTL1 = INCH\_10 + ADC10DIV\_0; // Temp Sensor ADC10CLK

- Repetitive single conversion:
  - A single sample is made on A1 with reference to Vcc
  - If A1 > 0.5\*Vcc, P1.0 set, else reset.
  - Software sets ADC10SC to start sample and conversion.
     ADC10SC automatically cleared at end of conversion.
  - Use ADC10 internal oscillator to time the sample and conversion.

```
#include "msp430.h"
void main(void) {
  WDTCTL = WDTPW + WDTHOLD; // Stop WDT
  // H&S time 16x, interrupt enabled
 ADC10CTL0 = ADC10SHT 2 + ADC10ON + ADC10IE;
 ADC10CTL1 = INCH 1; // Input from A1
 ADC10AE0 \mid = 0 \times 02; // Enable pin A1 for analog in
  P1DIR \mid = 0x01; // Set P1.0 to output
 ADC10CTL0 |= ENC + ADC10SC; // Start sampling
  for (;;) { }
#pragma vector=ADC10 VECTOR
  interrupt void ADC10 ISR(void) {
  if (ADC10MEM < 0x1FF) P1OUT &= \sim 0x01;
  else P1OUT \mid = 0 \times 01;
 ADC10CTL0 |= ENC + ADC10SC; // enable sampling
```

- Continuous sampling driven by Timer\_A
  - A1 is sampled 16/second (ACLK/2048) with reference to 1.5V, where ACLK runs at 32 KHz driven by an external crystal.
  - If A1 > 0.5Vcc, P1.0 is set, else reset.
  - Timer\_A is run in up mode and its CCR1 is used to automatically trigger ADC10 conversion, while CCR0 defines the sampling period
  - Use internal oscillator times sample (16x) and conversion (13x).

```
#include "msp430.h"
int i=1;
void main(void) {
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
  // TA1 trigger sample start
 ADC10CTL1 = SHS 1 + CONSEQ 2 + INCH 1;
 ADC10CTL0 = SREF 1 + ADC10SHT 2 + REFON +
             ADC100N + ADC10IE;
   enable interrupt(); // Enable interrupts
  TACCR0 = 30; // Delay for Volt Ref to settle
  TACCTL0 |= CCIE; // Compare-mode interrupt
  TACTL = TASSEL 2 + MC 1; // SMCLK, Up mode
                          // Wait for settle
 while(i);
  TACCTLO &= ~CCIE; // Disable timer Interrupt
   disable interrupt();
```

```
ADC10CTL0 |= ENC; // ADC10 Enable
ADC10AE0 \mid = 0 \times 02; // P1.1 ADC10 option select
P1DIR \mid = 0 \times 01;
                     // Set P1.0 output
TACCR0 = 2048-1; // Sampling period
TACCTL1 = OUTMOD 3; // TACCR1 set/reset
TACCR1 = 2046; // TACCR1 OUT1 on time
TACTL = TASSEL 1 + MC 1;
                           // ACLK, up mode
while (1);
```

Timer\_A CCR1 out mode 3: The output (OUT1) is set when the timer *counts* to the TACCR1 value. It is reset when the timer *counts* to the TACCR0 value.

```
// ADC10 interrupt service routine
#pragma vector=ADC10 VECTOR
  interrupt void ADC10 ISR(void) {
  if (ADC10MEM < 0x155) // ADC10MEM = A1 > 0.5V?
    P1OUT &= \sim 0 \times 01; // Clear P1.0 LED off
  else
    P1OUT \mid = 0 \times 01; // Set P1.0 LED on
#pragma vector=TIMERA0 VECTOR
  interrupt void ta0 isr(void) {
  TACTL = 0;
  i = 0
```

#### **Basic Lab**

- Measure the temperature of MSP430 every second using the temperature sensor inside ADC10. Flash both LEDs if the temperature remains unchanged between two consecutive measurements. Flash the red LED if the temperature rises and the green LED if it drops.
  - The sampling of ADC10 must be triggered continuously by Timer\_A.
  - You can use an infinite loop to flash the LEDs.

## **Suggested Operations**

- ① Disable watchdog timer
- ② Set DCO as the source of SMCLK, 1 MHz, and VLO as ACLK
- 3 Set up both LED lights and set them initially off
- 4 You can modify the sample code 2 to complete the basic lab. You can first set timer\_A source from SMCLK (DCO) to delay for 30 microsecond until the reference voltage is stable, and then set timer\_A source from ACLK (VLO).

## **Suggested Operations**

- © Configure ADC10 as follows:
  - Set sample-and-hold source from Timer\_A
  - Use temperature sensor channel
  - 3 Use ideal reference
  - 4 Set conversion sequence mode as repeat-single-channel
  - ⑤ Enable ADC10 interrupt
- 6 ADC10IFG is set every second when conversion results(temperature) are loaded into ADC10MEM, which in turn triggers ADC10 ISR.

#### **Bonus**

 Based on Basic 1, if the temperature is higher than 737, measure the temperature and flash the red LED at 5 Hz. When the temperature is below 737, then return to Basic 1.