
National Tsing Hua University

CS4101 Introduction to Embedded Systems

Lab 4: Interrupt

Prof. Chung-Ta King
Department of Computer Science

National Tsing Hua University, Taiwan

National Tsing Hua University

Introduction

• In this lab, we will learn interrupts of MSP430
 Handling interrupts in MSP430

 Handling interrupts of Timer_A in MSP430

 Handling interrupts of port P1 in MSP430

 Writing an interrupt service routine

1

National Tsing Hua University

Three Types of Interrupts in MSP430

• System reset:
– Power-up, external reset, Watchdog Timer, flash key

violation, PC out-of-range, etc.

– Always take

• (Non)-maskable interrupt (NMI):
– RST/NMI pin, oscillator fault, flash access violation

– Cannot be masked by clearing the GIE bit; but still need
bits to be set in special peripheral registers

• Maskable interrupt

2

National Tsing Hua University
3

Know When an Interrupt Occurs

• On MSP430, an interrupt will be detected and
serviced if
 The global interrupt-enable (GIE) bit in Status Register (SR)

in CPU is set

 A peripheral device enables interrupt
 For Timer_A: TAIE bit in TACTL register, CCIE bit in
TACCTLx register

 The peripheral signals an
interrupt
 For Timer_A: TAIFG,
CCIFG

National Tsing Hua University
4

Ex: Timer_A Interrupt Enabling

TACTL

TACCTL

National Tsing Hua University
5

When an Interrupt Is Requested

• Any currently executing instruction is completed. MCLK is
started if the CPU was off.

• The PC, which points to the next instruction, is pushed onto
the stack.

• The SR is pushed onto the stack.

• The interrupt with the highest priority is selected.

• The interrupt request flag is cleared automatically for vectors
that have a single source.

• The SR is cleared, and maskable interrupts are disabled.

• The interrupt vector is loaded into the PC and the CPU starts
to execute the ISR at that address.

These operations take about 6 cycles

National Tsing Hua University
6

After an Interrupt Is Serviced

• An interrupt service routine must always finish with
the return from interrupt instruction reti:
 The SR pops from the stack. All previous settings of GIE

and the mode control bits are now in effect.
 enable maskable interrupts and restores the previous
low-power mode if there was one.

 The PC pops from the stack and execution resumes at the
point where it was interrupted. Alternatively, the CPU
stops and the device reverts to its low-power mode before
the interrupt.

National Tsing Hua University
7

Where to Find ISRs?

• The MSP430 uses vectored interrupts
 Each ISR has its own vector, which is stored at a

predefined address in a vector table at the end of the
program memory (addresses 0xFFC0 ~ 0xFFFF).

 The vector table is at a fixed location, but the ISRs
themselves can be located anywhere in memory.

National Tsing Hua University
8

Interrupt Source Interrupt Flag System
Interrupt

Word
Address Priority

Power-up/external
reset/Watchdog

Timer+/flash key viol./PC
out-of-range

PORIFG
RSTIFG

WDTIFG
KEYV

Reset 0FFFEh 31
(highest)

NMI/Oscillator Fault/
Flash access viol.

NMIIFG/OFIFG/
ACCVIFG Non-maskable 0FFFCh 30

Timer1_A3 TA1CCR0 CCFIG maskable 0FFFAh 29

Timer1_A3 TA1CCR1/2 CCFIG, TAIFG maskable 0FFF8h 28

Comparator_A+ CAIFG maskable 0FFF6h 27

Watchdog Timer+ WDTIFG maskable 0FFF4h 26

Timer0_A3 TA0CCR0 CCIFG maskable 0FFF2h 25

Timer0_A3 TA0CCR1/2 CCIFG, TAIFG maskable 0FFF0h 24

0FFEEh 23

0FFECh 22

ADC10 ADC10IFG maskable 0FFEAh 21

0FFE8h 20

I/O Port P2 (8) P2IFG.0 to P2IFG.7 maskable 0FFE6h 19

I/O Port P1 (8) P1IFG.0 to P1IFG.7 maskable 0FFE4h 18

0FFE2h 17

0FFE0h 16

Unused 0FFDEh
0FFCDh 15 - 0

National Tsing Hua University

Outline

• Handling interrupts in MSP430

• Handling interrupts of Timer_A in MSP430

• Handling interrupts of port P1 in MSP430

• Writing an interrupt service routine

9

National Tsing Hua University

Interrupts from Timer_A

• Interrupts can be
generated by the
timer itself (flag
TAIFG) and each
capture/compare
block (flag TACCRx
CCIFG)

10

TAIFG

CCIFG

TACTLTACCTL

National Tsing Hua University

Two Interrupt Vectors for Timer_A

• For TACCR0 CCIFG (high priority):
 CCIFG0 flag is cleared automatically when serviced

• For all other CCIFG flags and TAIFG
 In compare mode, any CCIFG flag is set if TAR counts to the

associated TACCRx value

 Flags are not cleared automatically, because need to
determine who made the interrupt request

• Can use software (ISR) to poll the flags slow

• Use hardware: Timer_A interrupt vector register (TAIV)

11

National Tsing Hua University

TAIV

• On an interrupt, TAIV contains a number indicating
highest priority enabled interrupt
 Any access of TAIV resets the highest pending interrupt

flag. If another interrupt flag is set, another interrupt is
immediately generated

12

National Tsing Hua University

Sample Code for Timer_A Interrupt

• Toggle LEDs using interrupts from Timer_A in up mode

13

#include <io430x11x1.h> // Specific device

#include <intrinsics.h> // Intrinsic functions

#define LED1 BIT0

void main(void) {

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer

P1OUT = L̃ED1; P1DIR = LED1;

TACCR0 = 49999; // Upper limit of count for TAR

TACCTL0 = CCIE; // Enable interrupts

TACTL = MC_1|ID_3|TASSEL_2|TACLR;

// Up mode, divide clock by 8, clock from SMCLK, clear

__enable_interrupt(); // Enable interrupts (intrinsic)

for (;;) { } // Loop forever doing nothing

}

// Interrupt service routine for Timer_A

#pragma vector = TIMER0_A0_VECTOR

__interrupt void TA0_ISR (void){

P1OUT ˆ= LED1; // Toggle LED

}

National Tsing Hua University

Sample Code Explained

• #pragma line associates the function with a
particular interrupt vector

• __interrupt keyword names the function
– Compiler will generate code to store address of the

function in the vector and to use reti rather than ret at
the end of the function

• An intrinsic function, __enable_interrupt()
sets the GIE bit and turn on interrupts
– It is declared in intrinsics.h

14

National Tsing Hua University

Outline

• Handling interrupts in MSP430

• Handling interrupts of Timer_A in MSP430

• Handling interrupts of port P1 in MSP430

• Writing an interrupt service routine

15

National Tsing Hua University

Interrupts on Port 1

• Ports P1 and P2 can request an interrupt when the
value on an input pin changes

• Registers of P1 for interrupt:
 Port P1 interrupt enable, P1IE: enables interrupts when

the value on an input pin changes, by setting appropriate
bits of P1IE to 1; off (0) by default

 Port P1 interrupt edge select, P1IES: can generate
interrupts either on a positive edge (0), when the input
goes from low to high, or on a negative edge (1)

 Port P1 interrupt flag, P1IFG: a bit is set when the
selected transition has been detected on the input, and an
interrupt is requested if it has been enabled.

16

National Tsing Hua University

Interrupts on Port 1

• A single vector for the port
 The user must check P1IFG to determine the bit that

caused the interrupt.

 This bit must be cleared explicitly

17

National Tsing Hua University

Sample Code for P1

• A hi/low transition on P1.4 triggers P1_ISR to toggles P1.0

18

void main(void) {

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR = 0x01; // P1.0 output, else input

P1OUT = 0x10; // P1.4 set, else reset

P1REN |= 0x10; // P1.4 pullup

P1IE |= 0x10; // P1.4 interrupt enabled

P1IES |= 0x10; // P1.4 Hi/lo edge

P1IFG &= ~0x10; // P1.4 IFG cleared

_BIS_SR(GIE); // Enter interrupt

while(1); // Loop forever

}

#pragma vector=PORT1_VECTOR

__interrupt void Port_1(void) {

P1OUT ^= 0x01; // P1.0 = toggle

P1IFG &= ~0x10; // P1.4 IFG cleared

}

National Tsing Hua University

Lab 4: Basic 1

• Flash green LED at 1 Hz based on the interrupt from
Timer_A, which is driven by SMCLK sourced by VLO.
 Hint: For different devices, the "Interrupt Vectors name"

may be different; please check the header file for the
correct Interrupt Vectors name.

• Write an ISR for the button, and whenever the
button is pushed, make the blinking LED into red LED
and vice versa.
 Hint: PORT1_VECTOR as interrupt type, P1IFG as interrupt

flag.

• List the assembly code and observe the location of
ISR.

19

National Tsing Hua University

Lab 4: Basic 2

• Flash green LED at 0.2 Hz (e.g. turn on for 2.5 sec,
turn off 2.5 sec, and so on) based on the interrupt
from Timer_A, which is driven by SMCLK sourced by
VLO.

• Record TAR in ISR of Timer_A.

• In ISR of P1, record TAR second time and use
expression window to see the difference between
first and second records.

• Set a break point in the end of P1 ISR and see how
fast you can push the button after the LED is off!

20

National Tsing Hua University

Lab 4 Bonus

• Flash both red and green LEDs at 1 Hz. The green
LED should be on for 0.5 sec and off for 0.5 sec. The
red LED should be on for 0.2 sec and off for 0.8 sec.

• After button pushed, switch the behavior of two LED
(e.g. Red LED on for 0.5 sec and off for 0.5 sec and
green LED on for 0.2 sec and off for 0.8 sec) using
the interrupt.

21

National Tsing Hua University

Lab 4 Bonus hint

• The name of the interrupt vector for TACCR1,
TACCR2, and TAR is TIMER0_A1_VECTOR. All three
interrupts will cause the CPU to run the same ISR at
TIMER0_A1_VECTOR.

• To detect whether it is TACCR1, TACCR2, or TAR that
causes the interrupt, please check the register TA0IV.
Note that TA0IV will be reset automatically when you
read it. Thus, you need to read TA0IV into a local
variable first before you check its bits.

22

