
National Tsing Hua University

CS4101 嵌入式系統概論

Interrupts 

Prof. Chung-Ta King
Department of Computer Science

National Tsing Hua University, Taiwan

Materials from MSP430 Microcontroller Basics, John H. Davies, 
Newnes, 2008



National Tsing Hua University
1

Inside MSP430 (MSP430G2551)



National Tsing Hua University
2

Introduction

• When MSP430 processor executes the following 
code, it will loop forever

• Question: How can it do other things, e.g. handling 
external events or falling into low-power modes?

StopWDT  mov.w #WDTPW+WDTHOLD,&WDTCTL  

SetupP1  bis.b #001h,&P1DIR ; P1.0 output

Mainloop xor.b #001h,&P1OUT ; Toggle P1.0

Wait     mov.w #050000,R15  ; Delay to R15

L1       dec.w R15          ; Decrement R15

jnz   L1           ; Delay over?

jmp   Mainloop     ; Again



National Tsing Hua University
3

Option 1

• Put codes that handle external events in your main 
program  polling

StopWDT  mov.w #WDTPW+WDTHOLD,&WDTCTL  

SetupP1  bis.b #001h,&P1DIR ; P1.0 output

Mainloop xor.b #001h,&P1OUT ; Toggle P1.0

Wait     mov.w #050000,R15  ; Delay to R15

L1       dec.w R15          ; Decrement R15

jnz   L1           ; Delay over?

bit.b #B1,&P2IN    ; Test bit B1 

jnz ButtonUp       ; Jump if not zero

ButtonUp:bis.b #LED1,&P2OUT ; Turn LED1 off

jmp   Mainloop     ; Again



National Tsing Hua University

Sample Code 1 for Input from Lab 2

4

#include <msp430.h>

#define LED1 BIT0   //P1.0 to red LED

#define B1 BIT3     //P1.3 to button

void main(void){

WDTCTL = WDTPW + WDTHOLD; //Stop watchdog timer 

P1OUT |= LED1 + B1;

P1DIR = LED1; //Set pin with LED1 to output

P1REN = B1;   //Set pin to use pull-up resistor

for(;;){   //Loop forever

if((P1IN & B1) == 0){  //Is button down

P1OUT &= ~LED1; }    // Turn LED1 off  

else{                  //Is button up

P1OUT |= LED1;  }    // Turn LED1 on 

}

}



National Tsing Hua University
5

Option 2

• Keep your program unchanged and force the 
processor to jump to the code handling the external 
event when that event occurs

• Requirements:

 Must let the processor know when the event occurs

 Must let the processor know where to jump to execute 
the handling code

 Must not allow your program know!!

 you program must execute as if nothing happens

must store and restore your program state

This is called interrupt!



National Tsing Hua University
6

Outline

• Introduction to interrupt

• The shared-data problem

• Interrupts of MSP430



National Tsing Hua University
7

Interrupt: Processor’s Perspective

• How does the processor know when there is an 
interrupt?

 Usually when it receives a signal from one of the IRQ 
(interrupt request) pins



National Tsing Hua University
8

Interrupt: Processor’s Perspective

• What does the processor do in handling an 
interrupt?

 When receiving an interrupt signal, the processor stops at 
the next instruction and saves the address of the next 
instruction on the stack and jumps to a specific interrupt 
service routine (ISR)

 ISR is basically a subroutine to perform operations to 
handle the interrupt with a RETURN at the end

• How to be transparent to the running prog.?

 The processor has to save the “state” of the program onto 
the stack and restoring them at the end of ISR



National Tsing Hua University
9

Interrupt Service Routine

• The following shows an example of an ISR
Task Code ISR

...

MOVE R1, R7

MUL R1, 5 PUSH R1

ADD R1, R2 PUSH R2

DIV R1, 2 ...

JCOND ZERO, END ;ISR code comes here

SUBTRACT R1, R3 ...

... POP R2

... POP R1

END: MOVE R7, R1 RETURN

... ...



National Tsing Hua University
10

Interrupt: Program’s Perspective

• To a running program, an ISR is like a subroutine, but 
is invoked by the hardware at an unpredictable time

 Not by the control of the program’s logic

• Subroutine:

 Program has total control of when to call and jump to a 
subroutine



National Tsing Hua University
11

Disabling Interrupts

• Programs may disable interrupts

 In most cases the program can select which interrupts to 
disable during critical operations and which to keep 
enabled by writing corresponding values into a special 
register

 Nonmaskable interrupts cannot be disabled and are used 
to indicate critical events, e.g. power failures

• Certain processors assign priorities to interrupts, 
allowing programs to specify a threshold priority so 
that only interrupts having higher priorities than the 
threshold are enabled



National Tsing Hua University
12

Where to Put ISR Code?

• Challenges:

 Locations of ISRs should be fixed so that the processor can 
easily find them

 But, different ISRs may have different lengths
 hard to track their starting addresses

 Worse yet, application programs may supply their own 
ISRs; thus ISR codes may change dynamically

• Possible solutions:

 ISR is at a fixed location, e.g., in 8051, the first interrupt 
pin always causes 8051 to jump to 0x0003

 A table in memory contains addresses of ISR
 the table is called interrupt vector table



National Tsing Hua University
13

How to Know Who Interrupts?

• Simple answer: according to interrupt signal

 One interrupt signal corresponds to one ISR

• Difficult problem: same interrupt signal shared by 
several devices/events

 Option 1: inside the corresponding ISR, poll and check 
these devices/events in turn
 devices are passive

 Option 2: devices/events provide the address of ISRs
 devices are proactive
 vectored interrupt



National Tsing Hua University
14

Some Common Questions

• Can a processor be interrupted in the middle of an 
instruction?

 Usually not

 Exceptions: critical hardware failure, long-running 
instructions (e.g. moving data in memory)

• If two interrupts occur at the same time, which ISR 
does the process do first?

 Prioritize the interrupt signals

• Can an interrupt signal interrupt another ISR?

 Interrupt nesting usually allowed according to priority

 Some processor may require re-enabling by your ISR



National Tsing Hua University
15

Some Common Questions

• What happens when an interrupt is signaled while 
the interrupt is disabled?

 Processors usually remember the interrupt signals and 
jump to the ISR when the interrupt is enabled

• What happens when we forget to re-enable disabled 
interrupts?

• What happens if we disable a disabled interrupt?

• Are interrupts enabled or disabled when the 
processor first starts up?



National Tsing Hua University
16

Interrupt Latency

• Interrupt latency is the amount of time taken to 
respond to an interrupt. It depends on:
 Longest period during which the interrupt is disabled

 Time to execute ISRs of higher priority interrupts

 Time for processor to stop current execution, do the 
necessary ‘bookkeeping’ and start executing the ISR

 Time taken for the ISR to save context and start executing 
instructions that count as a ‘response’

• Make ISRs short
 Factors 4 and 2 are controlled by writing efficient code 

that are not too long.

 Factor 3 depends on HW, not under software control



National Tsing Hua University
17

Sources of Interrupt Overhead

• Handler execution time

• Interrupt mechanism overhead

• Register save/restore

• Pipeline-related penalties

• Cache-related penalties



National Tsing Hua University
18

Outline

• Introduction to interrupt

• The shared-data problem

• Interrupts of MSP430



National Tsing Hua University
19

The Shared-Data Problem

• In many cases the ISRs need to communicate with 
the task codes through shared variables.

• Example:

 Task code 
monitors 2
temperatures 
and alarm 
if they differ

 An ISR reads  
temperatures, 
e.g. on time up



National Tsing Hua University
20

The Shared-Data Problem

• Now, consider the assembly code:

 When temperatures are 70 degrees and an interrupt 
occurs between the two MOVES to read temperatures

 The temperatures now become 75 degrees

 On returning from ISR, iTemp[1] will be assigned 75 and 
an alarm will be set off even though the temperatures 
were the same



National Tsing Hua University
21

The Shared-Data Problem

• Problem is due to shared array iTemperatures.

• These bugs are very difficult to find as they occur 
only when the interrupt occurs in between the first 
2 MOVE instructions, other than which code works 
perfectly.



National Tsing Hua University
22

Solving Shared-Data Problem

• Disable interrupts during instructions that use the 
shared variable and re-enabling them later

while (TRUE) 

{

disable();     // Disable interrupts

iTemp0 = iTemperatures[0];

iTemp1 = iTemperatures[1];

enable(); // Re-enable interrupts

...

}



National Tsing Hua University
23

Solving Shared-Data Problem

• “Atomic” and “Critical Section”

 A part of a program that cannot be interrupted

• Example:

 An ISR that updates iHours, iMinutes and iSeconds every 
second through a hardware timer interrupt:

long iSecondsSinceMidnight (void) {

long lReturnVal;

disable();

lReturnVal = 

(((iHours*60)+iMinutes)*60)+iSeconds;

enable();

return (lReturnVal);

}



National Tsing Hua University
24

Outline

• Introduction to interrupt

• The shared-data problem

• Interrupts of MSP430



National Tsing Hua University
25

Know When an Interrupt Occurs

• An interrupt will be detected and serviced if

 The global interrupt-enable (GIE) bit in Status Register (SR) 
in CPU is set

 A peripheral device enables interrupt
 For Timer_A: TAIE bit in TACTL register, CCIE bit in 
TACCTLx register

 The peripheral signals an
interrupt
 For Timer_A: TAIFG,
CCIFG



National Tsing Hua University
26

Ex: Timer_A Interrupt Enabling

TACTL

TACCTL



National Tsing Hua University
27

When an Interrupt Is Requested

• Any currently executing instruction is completed. MCLK is 
started if the CPU was off.

• The PC, which points to the next instruction, is pushed onto 
the stack.

• The SR is pushed onto the stack.

• The interrupt with the highest priority is selected.

• The interrupt request flag is cleared automatically for vectors 
that have a single source.

• The SR is cleared, and maskable interrupts are disabled.

• The interrupt vector is loaded into the PC and the CPU starts 
to execute the ISR at that address.

These operations take about 6 cycles



National Tsing Hua University
28

After an Interrupt Is Serviced

• An interrupt service routine must always finish with 
the return from interrupt instruction reti:

 The SR pops from the stack. All previous settings of GIE 
and the mode control bits are now in effect. 
 enable maskable interrupts and restores the previous 
low-power mode if there was one.

 The PC pops from the stack and execution resumes at the 
point where it was interrupted. Alternatively, the CPU 
stops and the device reverts to its low-power mode 
before the interrupt.



National Tsing Hua University
29

Where to Find ISRs?

• The MSP430 uses vectored interrupts. 

 Each ISR has its own vector, which is stored at a 
predefined address in a vector table at the end of the 
program memory (addresses 0xFFC0–0xFFFF). 

 The vector table is at a fixed location, but the ISRs 
themselves can be located anywhere in memory.



National Tsing Hua University
30

Interrupt Source Interrupt Flag
System 

Interrupt
Word 

Address
Priority

Power-up/external 
reset/Watchdog 
Timer+/flash key 

viol./PC out-of-range

PORIFG
RSTIFG
WDTIFG

KEYV

Reset 0FFFEh
31

(highest)

NMI/Oscillator Fault/
Flash access viol.

NMIIFG/OFIFG/
ACCVIFG

Non-maskable 0FFFCh 30

0FFFAh 29

0FFF8h 28

0FFF6h 27

Watchdog Timer+ WDTIFG maskable 0FFF4h 26

Timer_A2 TACCR0 CCIFG maskable 0FFF2h 25

Timer_A2 TACCR1 CCIFG, TAIFG maskable 0FFF0h 24

0FFEEh 23

0FFECh 22

ADC10 ADC10IFG maskable 0FFEAh 21

USI USIIFG USISTTIFG maskable 0FFE8h 20

I/O Port P2 (2) P2IFG.6, P2IFG.7 maskable 0FFE6h 19

I/O Port P1 (8) P1IFG.0 to P1IFG.7 maskable 0FFE4h 18

0FFE2h 17

0FFE0h 16

Unused
0FFDEh 
0FFCDh

15 - 0



National Tsing Hua University
31

Sample Code

#include <io430x11x1.h> // Specific device

#include <intrinsics.h> // Intrinsic functions

#define LED1 BIT0

#define LED2 BIT4

void main (void) {

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer

P1OUT = L̃ED1;   P1DIR = LED1;

TACCR0 = 49999; // Upper limit of count for TAR

TACCTL0 = CCIE; // Enable interrupts 

TACTL = MC_1|ID_3|TASSEL_2|TACLR; 

// Up mode, divide clock by 8, clock from SMCLK, clear

__enable _interrupt(); // Enable interrupts (intrinsic)

for (;;) { // Loop forever doing nothing }

}

// Interrupt service routine for Timer_A

#pragma vector = TIMERA0_VECTOR

__interrupt void TA0_ISR (void){

P2OUT ˆ= LED1|LED2; // Toggle LEDs

}

• Toggle LEDs using interrupts from Timer_A in up mode



National Tsing Hua University
32

Summary

• Interrupts: a subroutine generated by the hardware 
at an unpredictable time

• Issues to consider:

 How to set up and know there is an interrupt?

 How to know where is the interrupt service routine?

 Must not interfere the original program

 The shared-data problem

• MSP430 interrupt mechanism


