CS4101 q'k A &
Interrupts

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University, Taiwan

Materials from MSP430 Microcontroller Basics, John H. Davies,
Newnes, 2008

National Tsing Hua University

Inside MSP430 (MSP430G2551)

oscillators selectors dividers docks S pov
VLO LFXT1Sx TASSEL gy Ter Olock ox R
i 15 0 T T
1/1 {2{4/8 ACLK 16_‘?:-2“'” ::::j': l€— EQUO
I:I-I- EXT DIVAx auxiliary - =
- L 1 clock 1 L samrc
______________________________________ R
CCR
CCR
l:l x—r2 Coisx CMx logic
== |(if present) master Ty
CIOC |'(v Ccl2a 0o Capture
o o CCI2B 01 Mode p
;/1 {2{4/8 MC LK % 5 E i 522 ::? Timer Clock —|>Sync
o2 a |
master o - i
SELMx VM ook 075 |
RSELx, DCOx, MODx cloc o Favz] o E
el A ' H
A
sl ¥ EN 0 Set TACCR2
incl. 16 | 1 CCIFG :
. ‘ :

REQI sters ' L’m 4|_)_‘

D Set g » OUT2 Signal

EQUO — Timer Clock —
! Reset
Emulation 5 Tl Por
2 B P OUTMODx

Brownout Universal H

JTAG Protection Serial :
Interface Interface 8
SPI, 12C H

]

L]

L X % ¢ ¢ & &0 B 4 &% ¢ B R B W § | L 2 R R B & 4 3 & § ¢ § § § §] ----------------J

.-

Introduction

e When MSP430 processor executes the following
code, it will loop forever

e Question: How can it do other things, e.g. handling
external events or falling into low-power modes?

StopWDT mov.w H#WDTPW+WDTHOLD, §WDTCTL
SetupPl bis.b #001h,&P1DIR ; P1.0 output
ainloop xor.b #001lh, &P10OUT ; Toggle P1.0
it mov.w #050000,R15 ; Delay to R15
dec.w R15 ; Decrement R15
jnz L1 ; Delay over?
Jmp Mainloop ; Again

ational Tsing Hua University

Option 1

e Put codes that handle external events in your main
program -2 polling

StopWDT mov.w #WDTPW+WDTHOLD, &WDTCTL

SetupPl bis.b #001h,&P1DIR ; P1.0 output

Mainloop xor.b #001h,&P1OUT ; Toggle P1.0

Wait mov.w #050000,R15 ; Delay to R15

L1 dec.w R15 ; Decrement R15
jnz L1 ; Delay over?
bit.b #B1l,&P2IN ; Test bit Bl
Jnz ButtonUp ; Jump 1f not zero

ButtonUp:bis.b #LED1,&P20UT ; Turn LED1 off
Jmp Mainloop ; Again

ational Tsing Hua University

Sample Code 1 for Input from Lab 2

#include <msp430.h>
#define LED1 BITO //P1.0 to red LED
#define Bl BIT3 //P1.3 to button
void main (void) {
WDTCTL = WDTPW + WDTHOLD; //Stop watchdog timer

P10OUT |= LED1 + Bl;
P1DIR = LED1l; //Set pin with LED1l to output
P1REN = Bl; //Set pin to use pull-up resistor
for(;;){ //Loop forever
if((P1IN & Bl) == 0){ //Is button down
P10OUT &= ~LED1; } // Turn LED1 off
else(//Is button up
P1OUT |= LED1l; } // Turn LED1 on

National Tsing Hua University

Option 2

T,
e Keep your program unchanged and force the
processor to jump to the code handling the external
event when that event occurs

e Requirements:
— Must let the processor know when the event occurs

— Must let the processor know where to jump to execute
the handling code

— Must not allow your program know!!
— you program must execute as if nothing happens

— must store and restore your program state
This is called interrupt!
Y

ational Tsing Hua University

Outline

T,
e [ntroduction to interrupt

e The shared-data problem
e |nterrupts of MSP430

ational Tsing Hua University

Interrupt: Processor’s Perspective
S

e How does the processor know when there is an

interrupt?
— Usually when it receives a signal from one of the IRQ
(i nte rru pt req u eSt) pi ns This signal tells the microprocessor
' that the serial port chip needs service.
L
: Serial : // E ’j_ |
| Port | o -
A 1 cru [
TTT . —
11 (4 F
| Newwork [\
_ | Interface Interrupt

_ _ | request pins.
HRERR /

This signal tells the microprocessor
~ that the network chip needs scrvice.

National Tsing Hua University

Interrupt: Processor’s Perspective

e What does the processor do in handling an
interrupt?

— When receiving an interrupt signal, the processor stops at
the next instruction and saves the address of the next

instruction on the stack and jumps to a specific interrupt
service routine (ISR)

— ISR is basically a subroutine to perform operations to
handle the interrupt with a RETURN at the end

e How to be transparent to the running prog.?

— The processor has to save the “state” of the program onto
the stack and restoring them at the end of ISR

&) = [# < 4

ational Tsing Hua University

Interrupt Service Routine

e The following shows an example of an ISR
Task Code ISR

MOVE R1, R7
MULRL, 5 — PUSH R1

ADD R1l, R2 PUSH R2
DIV R1, 2)
JCOND ZERO, EN ;ISR code comes here
SUBTRACT R1, R3 ..
POP R2
POP R1
END: MOVE R7, Rl RETURN

&) = [# < 4

National Tsing Hua University

Interrupt: Program’s Perspective

e To arunning program, an ISR is like a subroutine, but
is invoked by the hardware at an unpredictable time

— Not by the control of the program’s logic

e Subroutine:

— Program has total control of when to call and jump to a
subroutine

ational Tsing Hua University

Disabling Interrupts
T,

e Programs may disable interrupts

— In most cases the program can select which interrupts to
disable during critical operations and which to keep
enabled by writing corresponding values into a special
register

— Nonmaskable interrupts cannot be disabled and are used
to indicate critical events, e.g. power failures
e Certain processors assign priorities to interrupts,
allowing programs to specify a threshold priority so
that only interrupts having higher priorities than the
threshold are enabled

&) = [# < 4

ational Tsing Hua University

Where to Put ISR Code?

e Challenges:

— Locations of ISRs should be fixed so that the processor can
easily find them

— But, different ISRs may have different lengths
— hard to track their starting addresses

— Worse yet, application programs may supply their own
ISRs; thus ISR codes may change dynamically

e Possible solutions:

— ISR is at a fixed location, e.g., in 8051, the first interrupt
pin always causes 8051 to jump to 0x0003

— A table in memory contains addresses of ISR
— the table is called interrupt vector table

National Tsing Hua University

How to Know Who Interrupts?

e Simple answer: according to interrupt signal

— One interrupt signal corresponds to one ISR

e Difficult problem: same interrupt signal shared by
several devices/events

— Option 1: inside the corresponding ISR, poll and check
these devices/events in turn
— devices are passive

— Option 2: devices/events provide the address of ISRs
— devices are proactive
— vectored interrupt

ational Tsing Hua University

Some Common Questions

e Can a processor be interrupted in the middle of an
instruction?
— Usually not

— Exceptions: critical hardware failure, long-running
instructions (e.g. moving data in memory)

e |f two interrupts occur at the same time, which ISR
does the process do first?

— Prioritize the interrupt signals

e Can aninterrupt signal interrupt another ISR?
— Interrupt nesting usually allowed according to priority

— Some processor may require re-enabling by your ISR

&) = [# < 4

ational Tsing Hua University

Some Common Questions

e What happens when an interrupt is signaled while
the interrupt is disabled?

— Processors usually remember the interrupt signals and
jump to the ISR when the interrupt is enabled

e What happens when we forget to re-enable disabled
interrupts?

e What happens if we disable a disabled interrupt?

e Areinterrupts enabled or disabled when the
processor first starts up?

National Tsing Hua University

Interrupt Latency

e Interrupt latency is the amount of time taken to
respond to an interrupt. It depends on:
— Longest period during which the interrupt is disabled
— Time to execute ISRs of higher priority interrupts

— Time for processor to stop current execution, do the
necessary ‘bookkeeping’ and start executing the ISR

— Time taken for the ISR to save context and start executing
instructions that count as a ‘response’

e Make ISRs short

— Factors 4 and 2 are controlled by writing efficient code
that are not too long.

— Factor 3 depends on HW, not under software control

&) = [# < 4

ational Tsing Hua University

Sources of Interrupt Overhead

T
e Handler execution time

e |nterrupt mechanism overhead
e Register save/restore

e Pipeline-related penalties

e Cache-related penalties

ational Tsing Hua University

Outline

T,
e |ntroduction to interrupt

e The shared-data problem
e |nterrupts of MSP430

ational Tsing Hua University

The Shared-Data Problem

T,
* |n many cases the ISRs need to communicate with
the task codes through shared variables.

static int iTemperatures[2];

e Example:
. void interrupt vReadTemperatures (void)
Task-code { |
monitors 2 iTemperatures{0] = /! read in value from hardware
temperatures iTemperatures[1] = /! read in value from hardware
}
and alarm
if they differ void main (void)
{
— An ISR reads while (TRUE)
{
temperatures' if (iTemperatures[0] != iTemperatures(l])
e.g. on time up /1 Set off howling alarm;

National Tsing Hua University

The Shared-Data Problem

e Now, consider the assembly code:

— When temperatures are 70 degrees and an interrupt
occurs between the two MOVES to read temperatures

— The temperatures now become 75 degrees

— On returning from ISR, iTemp[1] will be assigned 75 and
an alarm will be set off even though the temperatures

were the same MOVE R1, (iTemperatures[0])

MOVE RZ, (iTemperatures[1l])
SUBTRACT R1, RZ RIS
JCOND ZERQO, TEMPERATURES_OK

- Code goes here to set off the alarm

ational Tsing Hua University

The Shared-Data Problem

T,
e Problem is due to shared array iTemperatures.

e These bugs are very difficult to find as they occur
only when the interrupt occurs in between the first
2 MOVE instructions, other than which code works
perfectly.

National Tsing Hua University

Solving Shared-Data Problem

e Disable interrupts during instructions that use the
shared variable and re-enabling them later

while (TRUE)

{
disable () ; // Disable interrupts
iTemp0 = iTemperatures[0];
iTempl = iTemperatures|[l];

enable () ; // Re-enable interrupts

National Tsing Hua University

Solving Shared-Data Problem

e “Atomic” and “Critical Section”

— A part of a program that cannot be interrupted

e Example:

— An ISR that updates iHours, iMinutes and iSeconds every
second through a hardware timer interrupt:

long iSecondsSinceMidnight (void) {
long lReturnVal;
disable () ;
l1ReturnVvVal =

(((1Hours*60)+iMinutes) *60) +iSeconds;
enable() ;

return (lReturnVal) ;

ational Tsing Hua University

Outline

T,
e |ntroduction to interrupt

e The shared-data problem
e |nterrupts of MSP430

ational Tsing Hua University

Know When an Interrupt Occurs

e An interrupt will be detected and serviced if

— The global interrupt-enable (GIE) bit in Status Register (SR)
in CPU is set

— A peripheral device enables interrupt
— For Timer_A: TAIE bit in TACTL register, CCIE bit in
TACCTLx register

.) 15 axi DI v 0
— The peripheral signals an RO/PC T EohTIE .
interrupt R1/SP stack pointer 0
> For Timer_A: TAIFG R2/SR/CG1_ gtatus register)
- ! R3/CG2 constant generator
CCIFG R4 general purpose
R15 general +purpose

ational Tsing Hua University

Ex: Timer_A Interrupt Enabling

i TASSELX |ng MCx 15 10 9 8

; T T T T ‘ | TASSELx ‘

: TACLK —{ 00 Divider 16-bit Timer Count

E ACLK 01 112/4/8 TAR Mode 4 | rw—(0) rw—(0) rw-(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

: sMcLK —| 10 | 7 6 5 4 3 2 1)

1 _—

i INCLK — 11 IDx MCx TACLR | (TAIE) ‘ TAIFG ‘

E_ T
""" rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) w—(0) rw—(0) rT(O)

T TN eent

H "‘-‘“’—: 7\ 1

E CCISx CMx IEI_. cov E

T T scs E

E CCizA Capture E

| cciB Mode)) 5 |

E GND Timer Clock Sync 1 TAi(;Rz E

i vee E

§ ::)[Comparator 2 | 15 14 13 12 11 10 9 8

| FQU2| | Chix | CCISK | scs | sccl | Unused | CcAP |

i " w-(0) w-0) w-(0) w-{0) w-(0) r 0 w-(0)

i scc Y

P e 0] st 7 G 5 , 3 2 w 0

i 1 CFq OUTMODX [Lcce JT ca [our [cov [coFe |

L. out H)iD rw-'((]) e) r 0 o Tm

i Output !

: ; Set : | TACCCTI

i EQuo —p " Timer Clock —[)E-)R ’ tQ > o i ! =

' ese H

E ‘] 4 E

: EEE POR i

' OUTMODx ;

National Tsing Hua University

When an Interrupt Is Requested

e Any currently executing instruction is completed. MCLK is
started if the CPU was off.

e The PC, which points to the next instruction, is pushed onto
the stack.

e The SR is pushed onto the stack.
e The interrupt with the highest priority is selected.

e The interrupt request flag is cleared automatically for vectors
that have a single source.

e The SR is cleared, and maskable interrupts are disabled.

e The interrupt vector is loaded into the PC and the CPU starts
to execute the ISR at that address.

These operations take about 6 cycles

ational Tsing Hua University

After an Interrupt Is Serviced

e An interrupt service routine must always finish with
the return from interrupt instruction reti:

— The SR pops from the stack. All previous settings of GIE
and the mode control bits are now in effect.
— enable maskable interrupts and restores the previous
low-power mode if there was one.

— The PC pops from the stack and execution resumes at the
point where it was interrupted. Alternatively, the CPU
stops and the device reverts to its low-power mode
before the interrupt.

&) = [# < 4

ational Tsing Hua University

Where to Find ISRs?

e The MSP430 uses vectored interrupts.

— Each ISR has its own vector, which is stored at a
predefined address in a vector table at the end of the
program memory (addresses OxFFCO—OxFFFF).

— The vector table is at a fixed location, but the ISRs
themselves can be located anywhere in memory.

ational Tsing Hua University

Power-up/external PORIFG

reset/Watchdog RSTIFG 31

Timer+/flash key WDTIFG Reset OFFFEh | (highest)
viol./PC out-of-range KEYV
NMI/Oscillator Fault/ NMIIFG/OFIFG/

Flash access viol. ACCVIFG Non-maskable | OFFFCh 30

OFFFAh 29

OFFF8h 28

OFFF6h 27

Watchdog Timer+ WDTIFG maskable OFFF4h 26

Timer_A2 TACCRO CCIFG maskable OFFF2h 25

Timer_A2 TACCR1 CCIFG, TAIFG maskable OFFFOh 24

OFFEEh 23

OFFECh 22

ADC10 ADCI10IFG maskable OFFEAhQ 21

USI USIIFG USISTTIFG maskable OFFE8h 20

I/O Port P2 (2) P2IFG.6, P2IFG.7 maskable OFFEG6h 19

I/O Port P1 (8) P1IFG.0 to P1IFG.7 maskable OFFE4h 18

OFFE2h 17

OFFEOhN 16

Unused LDl 15-0

OFFCDh

Sample Code

e Toggle LEDs using interrupts from Timer A in up mode
#include <io430x1l1lxl.h> // Specific device
#include <intrinsics.h> // Intrinsic functions
#define LED1 BITO
#define LED2 BIT4
void main (void) {
WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer
P10OUT = LED1; P1DIR = LED1;
TACCRO = 49999; // Upper limit of count for TAR
TACCTLO = CCIE; // Enable interrupts
TACTL = MC 1|ID 3|TASSEL 2|TACLR;
// Up mode, divide clock by 8, clock from SMCLK, clear
___enable interrupt(); // Enable interrupts (intrinsic)
for (;;) { // Loop forever doing nothing }
}
// Interrupt service routine for Timer A
#pragma vector = TIMERAO VECTOR
__interrupt void TAO_ ISR (void) {
P20UT "= LED1|LED2; // Toggle LEDs

Summary

e |nterrupts: a subroutine generated by the hardware
at an unpredictable time

e |ssues to consider:
— How to set up and know there is an interrupt?
— How to know where is the interrupt service routine?

— Must not interfere the original program
— The shared-data problem

e MSP430 interrupt mechanism

ational Tsing Hua University

