
National Tsing Hua University

CS4101 嵌入式系統概論

Interrupts

Prof. Chung-Ta King
Department of Computer Science

National Tsing Hua University, Taiwan

Materials from MSP430 Microcontroller Basics, John H. Davies,
Newnes, 2008

National Tsing Hua University
1

Inside MSP430 (MSP430G2551)

National Tsing Hua University
2

Introduction

• When MSP430 processor executes the following
code, it will loop forever

• Question: How can it do other things, e.g. handling
external events or falling into low-power modes?

StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL

SetupP1 bis.b #001h,&P1DIR ; P1.0 output

Mainloop xor.b #001h,&P1OUT ; Toggle P1.0

Wait mov.w #050000,R15 ; Delay to R15

L1 dec.w R15 ; Decrement R15

jnz L1 ; Delay over?

jmp Mainloop ; Again

National Tsing Hua University
3

Option 1

• Put codes that handle external events in your main
program  polling

StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL

SetupP1 bis.b #001h,&P1DIR ; P1.0 output

Mainloop xor.b #001h,&P1OUT ; Toggle P1.0

Wait mov.w #050000,R15 ; Delay to R15

L1 dec.w R15 ; Decrement R15

jnz L1 ; Delay over?

bit.b #B1,&P2IN ; Test bit B1

jnz ButtonUp ; Jump if not zero

ButtonUp:bis.b #LED1,&P2OUT ; Turn LED1 off

jmp Mainloop ; Again

National Tsing Hua University

Sample Code 1 for Input from Lab 2

4

#include <msp430.h>

#define LED1 BIT0 //P1.0 to red LED

#define B1 BIT3 //P1.3 to button

void main(void){

WDTCTL = WDTPW + WDTHOLD; //Stop watchdog timer

P1OUT |= LED1 + B1;

P1DIR = LED1; //Set pin with LED1 to output

P1REN = B1; //Set pin to use pull-up resistor

for(;;){ //Loop forever

if((P1IN & B1) == 0){ //Is button down

P1OUT &= ~LED1; } // Turn LED1 off

else{ //Is button up

P1OUT |= LED1; } // Turn LED1 on

}

}

National Tsing Hua University
5

Option 2

• Keep your program unchanged and force the
processor to jump to the code handling the external
event when that event occurs

• Requirements:

 Must let the processor know when the event occurs

 Must let the processor know where to jump to execute
the handling code

 Must not allow your program know!!

 you program must execute as if nothing happens

must store and restore your program state

This is called interrupt!

National Tsing Hua University
6

Outline

• Introduction to interrupt

• The shared-data problem

• Interrupts of MSP430

National Tsing Hua University
7

Interrupt: Processor’s Perspective

• How does the processor know when there is an
interrupt?

 Usually when it receives a signal from one of the IRQ
(interrupt request) pins

National Tsing Hua University
8

Interrupt: Processor’s Perspective

• What does the processor do in handling an
interrupt?

 When receiving an interrupt signal, the processor stops at
the next instruction and saves the address of the next
instruction on the stack and jumps to a specific interrupt
service routine (ISR)

 ISR is basically a subroutine to perform operations to
handle the interrupt with a RETURN at the end

• How to be transparent to the running prog.?

 The processor has to save the “state” of the program onto
the stack and restoring them at the end of ISR

National Tsing Hua University
9

Interrupt Service Routine

• The following shows an example of an ISR
Task Code ISR

...

MOVE R1, R7

MUL R1, 5 PUSH R1

ADD R1, R2 PUSH R2

DIV R1, 2 ...

JCOND ZERO, END ;ISR code comes here

SUBTRACT R1, R3 ...

... POP R2

... POP R1

END: MOVE R7, R1 RETURN

... ...

National Tsing Hua University
10

Interrupt: Program’s Perspective

• To a running program, an ISR is like a subroutine, but
is invoked by the hardware at an unpredictable time

 Not by the control of the program’s logic

• Subroutine:

 Program has total control of when to call and jump to a
subroutine

National Tsing Hua University
11

Disabling Interrupts

• Programs may disable interrupts

 In most cases the program can select which interrupts to
disable during critical operations and which to keep
enabled by writing corresponding values into a special
register

 Nonmaskable interrupts cannot be disabled and are used
to indicate critical events, e.g. power failures

• Certain processors assign priorities to interrupts,
allowing programs to specify a threshold priority so
that only interrupts having higher priorities than the
threshold are enabled

National Tsing Hua University
12

Where to Put ISR Code?

• Challenges:

 Locations of ISRs should be fixed so that the processor can
easily find them

 But, different ISRs may have different lengths
 hard to track their starting addresses

 Worse yet, application programs may supply their own
ISRs; thus ISR codes may change dynamically

• Possible solutions:

 ISR is at a fixed location, e.g., in 8051, the first interrupt
pin always causes 8051 to jump to 0x0003

 A table in memory contains addresses of ISR
 the table is called interrupt vector table

National Tsing Hua University
13

How to Know Who Interrupts?

• Simple answer: according to interrupt signal

 One interrupt signal corresponds to one ISR

• Difficult problem: same interrupt signal shared by
several devices/events

 Option 1: inside the corresponding ISR, poll and check
these devices/events in turn
 devices are passive

 Option 2: devices/events provide the address of ISRs
 devices are proactive
 vectored interrupt

National Tsing Hua University
14

Some Common Questions

• Can a processor be interrupted in the middle of an
instruction?

 Usually not

 Exceptions: critical hardware failure, long-running
instructions (e.g. moving data in memory)

• If two interrupts occur at the same time, which ISR
does the process do first?

 Prioritize the interrupt signals

• Can an interrupt signal interrupt another ISR?

 Interrupt nesting usually allowed according to priority

 Some processor may require re-enabling by your ISR

National Tsing Hua University
15

Some Common Questions

• What happens when an interrupt is signaled while
the interrupt is disabled?

 Processors usually remember the interrupt signals and
jump to the ISR when the interrupt is enabled

• What happens when we forget to re-enable disabled
interrupts?

• What happens if we disable a disabled interrupt?

• Are interrupts enabled or disabled when the
processor first starts up?

National Tsing Hua University
16

Interrupt Latency

• Interrupt latency is the amount of time taken to
respond to an interrupt. It depends on:
 Longest period during which the interrupt is disabled

 Time to execute ISRs of higher priority interrupts

 Time for processor to stop current execution, do the
necessary ‘bookkeeping’ and start executing the ISR

 Time taken for the ISR to save context and start executing
instructions that count as a ‘response’

• Make ISRs short
 Factors 4 and 2 are controlled by writing efficient code

that are not too long.

 Factor 3 depends on HW, not under software control

National Tsing Hua University
17

Sources of Interrupt Overhead

• Handler execution time

• Interrupt mechanism overhead

• Register save/restore

• Pipeline-related penalties

• Cache-related penalties

National Tsing Hua University
18

Outline

• Introduction to interrupt

• The shared-data problem

• Interrupts of MSP430

National Tsing Hua University
19

The Shared-Data Problem

• In many cases the ISRs need to communicate with
the task codes through shared variables.

• Example:

 Task code
monitors 2
temperatures
and alarm
if they differ

 An ISR reads
temperatures,
e.g. on time up

National Tsing Hua University
20

The Shared-Data Problem

• Now, consider the assembly code:

 When temperatures are 70 degrees and an interrupt
occurs between the two MOVES to read temperatures

 The temperatures now become 75 degrees

 On returning from ISR, iTemp[1] will be assigned 75 and
an alarm will be set off even though the temperatures
were the same

National Tsing Hua University
21

The Shared-Data Problem

• Problem is due to shared array iTemperatures.

• These bugs are very difficult to find as they occur
only when the interrupt occurs in between the first
2 MOVE instructions, other than which code works
perfectly.

National Tsing Hua University
22

Solving Shared-Data Problem

• Disable interrupts during instructions that use the
shared variable and re-enabling them later

while (TRUE)

{

disable(); // Disable interrupts

iTemp0 = iTemperatures[0];

iTemp1 = iTemperatures[1];

enable(); // Re-enable interrupts

...

}

National Tsing Hua University
23

Solving Shared-Data Problem

• “Atomic” and “Critical Section”

 A part of a program that cannot be interrupted

• Example:

 An ISR that updates iHours, iMinutes and iSeconds every
second through a hardware timer interrupt:

long iSecondsSinceMidnight (void) {

long lReturnVal;

disable();

lReturnVal =

(((iHours*60)+iMinutes)*60)+iSeconds;

enable();

return (lReturnVal);

}

National Tsing Hua University
24

Outline

• Introduction to interrupt

• The shared-data problem

• Interrupts of MSP430

National Tsing Hua University
25

Know When an Interrupt Occurs

• An interrupt will be detected and serviced if

 The global interrupt-enable (GIE) bit in Status Register (SR)
in CPU is set

 A peripheral device enables interrupt
 For Timer_A: TAIE bit in TACTL register, CCIE bit in
TACCTLx register

 The peripheral signals an
interrupt
 For Timer_A: TAIFG,
CCIFG

National Tsing Hua University
26

Ex: Timer_A Interrupt Enabling

TACTL

TACCTL

National Tsing Hua University
27

When an Interrupt Is Requested

• Any currently executing instruction is completed. MCLK is
started if the CPU was off.

• The PC, which points to the next instruction, is pushed onto
the stack.

• The SR is pushed onto the stack.

• The interrupt with the highest priority is selected.

• The interrupt request flag is cleared automatically for vectors
that have a single source.

• The SR is cleared, and maskable interrupts are disabled.

• The interrupt vector is loaded into the PC and the CPU starts
to execute the ISR at that address.

These operations take about 6 cycles

National Tsing Hua University
28

After an Interrupt Is Serviced

• An interrupt service routine must always finish with
the return from interrupt instruction reti:

 The SR pops from the stack. All previous settings of GIE
and the mode control bits are now in effect.
 enable maskable interrupts and restores the previous
low-power mode if there was one.

 The PC pops from the stack and execution resumes at the
point where it was interrupted. Alternatively, the CPU
stops and the device reverts to its low-power mode
before the interrupt.

National Tsing Hua University
29

Where to Find ISRs?

• The MSP430 uses vectored interrupts.

 Each ISR has its own vector, which is stored at a
predefined address in a vector table at the end of the
program memory (addresses 0xFFC0–0xFFFF).

 The vector table is at a fixed location, but the ISRs
themselves can be located anywhere in memory.

National Tsing Hua University
30

Interrupt Source Interrupt Flag
System

Interrupt
Word

Address
Priority

Power-up/external
reset/Watchdog
Timer+/flash key

viol./PC out-of-range

PORIFG
RSTIFG
WDTIFG

KEYV

Reset 0FFFEh
31

(highest)

NMI/Oscillator Fault/
Flash access viol.

NMIIFG/OFIFG/
ACCVIFG

Non-maskable 0FFFCh 30

0FFFAh 29

0FFF8h 28

0FFF6h 27

Watchdog Timer+ WDTIFG maskable 0FFF4h 26

Timer_A2 TACCR0 CCIFG maskable 0FFF2h 25

Timer_A2 TACCR1 CCIFG, TAIFG maskable 0FFF0h 24

0FFEEh 23

0FFECh 22

ADC10 ADC10IFG maskable 0FFEAh 21

USI USIIFG USISTTIFG maskable 0FFE8h 20

I/O Port P2 (2) P2IFG.6, P2IFG.7 maskable 0FFE6h 19

I/O Port P1 (8) P1IFG.0 to P1IFG.7 maskable 0FFE4h 18

0FFE2h 17

0FFE0h 16

Unused
0FFDEh
0FFCDh

15 - 0

National Tsing Hua University
31

Sample Code

#include <io430x11x1.h> // Specific device

#include <intrinsics.h> // Intrinsic functions

#define LED1 BIT0

#define LED2 BIT4

void main (void) {

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer

P1OUT = L̃ED1; P1DIR = LED1;

TACCR0 = 49999; // Upper limit of count for TAR

TACCTL0 = CCIE; // Enable interrupts

TACTL = MC_1|ID_3|TASSEL_2|TACLR;

// Up mode, divide clock by 8, clock from SMCLK, clear

__enable _interrupt(); // Enable interrupts (intrinsic)

for (;;) { // Loop forever doing nothing }

}

// Interrupt service routine for Timer_A

#pragma vector = TIMERA0_VECTOR

__interrupt void TA0_ISR (void){

P2OUT ˆ= LED1|LED2; // Toggle LEDs

}

• Toggle LEDs using interrupts from Timer_A in up mode

National Tsing Hua University
32

Summary

• Interrupts: a subroutine generated by the hardware
at an unpredictable time

• Issues to consider:

 How to set up and know there is an interrupt?

 How to know where is the interrupt service routine?

 Must not interfere the original program

 The shared-data problem

• MSP430 interrupt mechanism

