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Introduction

e When MSP430 processor executes the following
code, it will loop forever

e Question: How can it do other things, e.g. handling
external events or falling into low-power modes?

StopWDT mov.w H#WDTPW+WDTHOLD, §WDTCTL
SetupPl bis.b #001h,&P1DIR ; P1.0 output
ainloop xor.b #001lh, &P10OUT ; Toggle P1.0
it mov.w #050000,R15 ; Delay to R15
dec.w R15 ; Decrement R15
jnz L1 ; Delay over?
Jmp Mainloop ; Again
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Option 1

e Put codes that handle external events in your main
program -2 polling

StopWDT mov.w #WDTPW+WDTHOLD, &WDTCTL

SetupPl bis.b #001h,&P1DIR ; P1.0 output

Mainloop xor.b #001h,&P1OUT ; Toggle P1.0

Wait mov.w #050000,R15 ; Delay to R15

L1 dec.w R15 ; Decrement R15
jnz L1 ; Delay over?
bit.b #B1l,&P2IN ; Test bit Bl
Jnz ButtonUp ; Jump 1f not zero

ButtonUp:bis.b #LED1,&P20UT ; Turn LED1 off
Jmp Mainloop ; Again
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Sample Code 1 for Input from Lab 2

#include <msp430.h>
#define LED1 BITO //P1.0 to red LED
#define Bl BIT3 //P1.3 to button
void main (void) {
WDTCTL = WDTPW + WDTHOLD; //Stop watchdog timer

P10OUT |= LED1 + Bl;
P1DIR = LED1l; //Set pin with LED1l to output
P1REN = Bl; //Set pin to use pull-up resistor
for(;;){ //Loop forever
if((P1IN & Bl) == 0){ //Is button down
P10OUT &= ~LED1; } // Turn LED1 off
else( //Is button up
P1OUT |= LED1l; } // Turn LED1 on
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Option 2

T,
e Keep your program unchanged and force the
processor to jump to the code handling the external
event when that event occurs

e Requirements:
— Must let the processor know when the event occurs

— Must let the processor know where to jump to execute
the handling code

— Must not allow your program know!!
— you program must execute as if nothing happens

— must store and restore your program state
This is called interrupt!
Y

ational Tsing Hua University



Outline

T,
e [ntroduction to interrupt

e The shared-data problem
e |nterrupts of MSP430
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Interrupt: Processor’s Perspective
S

e How does the processor know when there is an

interrupt?
— Usually when it receives a signal from one of the IRQ
(i nte rru pt req u eSt) pi ns This signal tells the microprocessor
' that the serial port chip needs service.
L
: Serial : // E ’j_ |
| Port | o -
A 1 cru [
TTT . —
11 (4 F
| Newwork [ \
_ | Interface Interrupt

_ _ | request pins.
HRERR /

This signal tells the microprocessor
~ that the network chip needs scrvice.
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Interrupt: Processor’s Perspective

e What does the processor do in handling an
interrupt?

— When receiving an interrupt signal, the processor stops at
the next instruction and saves the address of the next

instruction on the stack and jumps to a specific interrupt
service routine (ISR)

— ISR is basically a subroutine to perform operations to
handle the interrupt with a RETURN at the end

e How to be transparent to the running prog.?

— The processor has to save the “state” of the program onto
the stack and restoring them at the end of ISR

&) = [ # < 4
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Interrupt Service Routine

e The following shows an example of an ISR
Task Code ISR

MOVE R1, R7
MULRL, 5 — PUSH R1

ADD R1l, R2 PUSH R2
DIV R1, 2 )
JCOND ZERO, EN ;ISR code comes here
SUBTRACT R1, R3 ..
POP R2
POP R1
END: MOVE R7, Rl RETURN

&) = [ # < 4
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Interrupt: Program’s Perspective

e To arunning program, an ISR is like a subroutine, but
is invoked by the hardware at an unpredictable time

— Not by the control of the program’s logic

e Subroutine:

— Program has total control of when to call and jump to a
subroutine
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Disabling Interrupts
T,

e Programs may disable interrupts

— In most cases the program can select which interrupts to
disable during critical operations and which to keep
enabled by writing corresponding values into a special
register

— Nonmaskable interrupts cannot be disabled and are used
to indicate critical events, e.g. power failures
e Certain processors assign priorities to interrupts,
allowing programs to specify a threshold priority so
that only interrupts having higher priorities than the
threshold are enabled

&) = [ # < 4
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Where to Put ISR Code?

e Challenges:

— Locations of ISRs should be fixed so that the processor can
easily find them

— But, different ISRs may have different lengths
— hard to track their starting addresses

— Worse yet, application programs may supply their own
ISRs; thus ISR codes may change dynamically

e Possible solutions:

— ISR is at a fixed location, e.g., in 8051, the first interrupt
pin always causes 8051 to jump to 0x0003

— A table in memory contains addresses of ISR
— the table is called interrupt vector table
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How to Know Who Interrupts?

e Simple answer: according to interrupt signal

— One interrupt signal corresponds to one ISR

e Difficult problem: same interrupt signal shared by
several devices/events

— Option 1: inside the corresponding ISR, poll and check
these devices/events in turn
— devices are passive

— Option 2: devices/events provide the address of ISRs
— devices are proactive
— vectored interrupt
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Some Common Questions

e Can a processor be interrupted in the middle of an
instruction?
— Usually not

— Exceptions: critical hardware failure, long-running
instructions (e.g. moving data in memory)

e |f two interrupts occur at the same time, which ISR
does the process do first?

— Prioritize the interrupt signals

e Can aninterrupt signal interrupt another ISR?
— Interrupt nesting usually allowed according to priority

— Some processor may require re-enabling by your ISR

&) = [ # < 4
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Some Common Questions

e What happens when an interrupt is signaled while
the interrupt is disabled?

— Processors usually remember the interrupt signals and
jump to the ISR when the interrupt is enabled

e What happens when we forget to re-enable disabled
interrupts?

e What happens if we disable a disabled interrupt?

e Areinterrupts enabled or disabled when the
processor first starts up?
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Interrupt Latency

e Interrupt latency is the amount of time taken to
respond to an interrupt. It depends on:
— Longest period during which the interrupt is disabled
— Time to execute ISRs of higher priority interrupts

— Time for processor to stop current execution, do the
necessary ‘bookkeeping’ and start executing the ISR

— Time taken for the ISR to save context and start executing
instructions that count as a ‘response’

e Make ISRs short

— Factors 4 and 2 are controlled by writing efficient code
that are not too long.

— Factor 3 depends on HW, not under software control

&) = [ # < 4
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Sources of Interrupt Overhead

T
e Handler execution time

e |nterrupt mechanism overhead
e Register save/restore

e Pipeline-related penalties

e Cache-related penalties
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Outline

T,
e |ntroduction to interrupt

e The shared-data problem
e |nterrupts of MSP430
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The Shared-Data Problem

T,
* |n many cases the ISRs need to communicate with
the task codes through shared variables.

static int iTemperatures[2];

e Example:
. void interrupt vReadTemperatures (void)
Task-code { |
monitors 2 iTemperatures{0] = /! read in value from hardware
temperatures iTemperatures[1] = /! read in value from hardware
}
and alarm
if they differ void main (void)
{
— An ISR reads while (TRUE)
{
temperatures' if (iTemperatures[0] != iTemperatures(l])
e.g. on time up /1 Set off howling alarm;
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The Shared-Data Problem

e Now, consider the assembly code:

— When temperatures are 70 degrees and an interrupt
occurs between the two MOVES to read temperatures

— The temperatures now become 75 degrees

— On returning from ISR, iTemp[1] will be assigned 75 and
an alarm will be set off even though the temperatures

were the same MOVE R1, (iTemperatures[0])

MOVE RZ, (iTemperatures[1l])
SUBTRACT R1, RZ RIS
JCOND ZERQO, TEMPERATURES_OK

- Code goes here to set off the alarm
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The Shared-Data Problem

T,
e Problem is due to shared array iTemperatures.

e These bugs are very difficult to find as they occur
only when the interrupt occurs in between the first
2 MOVE instructions, other than which code works
perfectly.
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Solving Shared-Data Problem

e Disable interrupts during instructions that use the
shared variable and re-enabling them later

while (TRUE)

{
disable () ; // Disable interrupts
iTemp0 = iTemperatures[0];
iTempl = iTemperatures|[l];

enable () ; // Re-enable interrupts
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Solving Shared-Data Problem

e “Atomic” and “Critical Section”

— A part of a program that cannot be interrupted

e Example:

— An ISR that updates iHours, iMinutes and iSeconds every
second through a hardware timer interrupt:

long iSecondsSinceMidnight (void) {
long lReturnVal;
disable () ;
l1ReturnVvVal =

(((1Hours*60)+iMinutes) *60) +iSeconds;
enable() ;

return (lReturnVal) ;
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Outline

T,
e |ntroduction to interrupt

e The shared-data problem
e |nterrupts of MSP430
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Know When an Interrupt Occurs

e An interrupt will be detected and serviced if

— The global interrupt-enable (GIE) bit in Status Register (SR)
in CPU is set

— A peripheral device enables interrupt
— For Timer_A: TAIE bit in TACTL register, CCIE bit in
TACCTLx register

. ) 15 axi DI v 0
— The peripheral signals an RO/PC T EohTIE .
interrupt R1/SP stack pointer 0
> For Timer_A: TAIFG R2/SR/CG1_ gtatus register)
- ! R3/CG2 constant generator
CCIFG R4 general purpose
R15 general +purpose
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Ex: Timer_A Interrupt Enabling
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When an Interrupt Is Requested

e Any currently executing instruction is completed. MCLK is
started if the CPU was off.

e The PC, which points to the next instruction, is pushed onto
the stack.

e The SR is pushed onto the stack.
e The interrupt with the highest priority is selected.

e The interrupt request flag is cleared automatically for vectors
that have a single source.

e The SR is cleared, and maskable interrupts are disabled.

e The interrupt vector is loaded into the PC and the CPU starts
to execute the ISR at that address.

These operations take about 6 cycles
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After an Interrupt Is Serviced

e An interrupt service routine must always finish with
the return from interrupt instruction reti:

— The SR pops from the stack. All previous settings of GIE
and the mode control bits are now in effect.
— enable maskable interrupts and restores the previous
low-power mode if there was one.

— The PC pops from the stack and execution resumes at the
point where it was interrupted. Alternatively, the CPU
stops and the device reverts to its low-power mode
before the interrupt.

&) = [ # < 4

ational Tsing Hua University



Where to Find ISRs?

e The MSP430 uses vectored interrupts.

— Each ISR has its own vector, which is stored at a
predefined address in a vector table at the end of the
program memory (addresses OxFFCO—OxFFFF).

— The vector table is at a fixed location, but the ISRs
themselves can be located anywhere in memory.
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Power-up/external PORIFG

reset/Watchdog RSTIFG 31

Timer+/flash key WDTIFG Reset OFFFEh | (highest)
viol./PC out-of-range KEYV
NMI/Oscillator Fault/ NMIIFG/OFIFG/

Flash access viol. ACCVIFG Non-maskable | OFFFCh 30

OFFFAh 29

OFFF8h 28

OFFF6h 27

Watchdog Timer+ WDTIFG maskable OFFF4h 26

Timer_A2 TACCRO CCIFG maskable OFFF2h 25

Timer_A2 TACCR1 CCIFG, TAIFG maskable OFFFOh 24

OFFEEh 23

OFFECh 22

ADC10 ADCI10IFG maskable OFFEAhQ 21

USI USIIFG USISTTIFG maskable OFFE8h 20

I/O Port P2 (2) P2IFG.6, P2IFG.7 maskable OFFEG6h 19

I/O Port P1 (8) P1IFG.0 to P1IFG.7 maskable OFFE4h 18

OFFE2h 17

OFFEOhN 16

Unused LDl 15-0

OFFCDh




Sample Code

e Toggle LEDs using interrupts from Timer A in up mode
#include <io430x1l1lxl.h> // Specific device
#include <intrinsics.h> // Intrinsic functions
#define LED1 BITO
#define LED2 BIT4
void main (void) {
WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer
P10OUT = LED1; P1DIR = LED1;
TACCRO = 49999; // Upper limit of count for TAR
TACCTLO = CCIE; // Enable interrupts
TACTL = MC 1|ID 3|TASSEL 2|TACLR;
// Up mode, divide clock by 8, clock from SMCLK, clear
___enable interrupt(); // Enable interrupts (intrinsic)
for (;;) { // Loop forever doing nothing }
}
// Interrupt service routine for Timer A
#pragma vector = TIMERAO VECTOR
__interrupt void TAO_ ISR (void) {
P20UT "= LED1|LED2; // Toggle LEDs




Summary

e |nterrupts: a subroutine generated by the hardware
at an unpredictable time

e |ssues to consider:
— How to set up and know there is an interrupt?
— How to know where is the interrupt service routine?

— Must not interfere the original program
— The shared-data problem

e MSP430 interrupt mechanism
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