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Outline

e MSP430 LaunchPad
e MISP430 Microcontroller

— Processor
— Memory
- 1/0
e First Program on LaunchPad
— C
— Assembly
e LaunchPad Development Environment
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MSP430 LaunchPad Development Kit

e LaunchPad development board

e Mini-USB cable, 10-pin PCB connectors

e 2 MSP430 MCUs: NISP430G2211, MSP430G2231
e Micro Crystal 32.768kHz Oscillaor
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MSP430 Microcontroller

e LaunchPad development kit uses microcontroller
such as MSP430G2231

e Microcontroller:

— A small computer on a single IC containing a processor
core, memory, programmable |I/O peripherals

e MSP430 microcontroller:

— Incorporates a 16-bit RISC CPU, peripherals, and a flexible
clock system that are interconnected using a von-
Neumann common memory address bus (MAB) and
memory data bus (MDB)
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MSP430 Microcontroller

e MSP430G2231 outside view (pin-out):

— Ve, Vss: supply voltage and ground

— P1.0~P1.7, P2.6 and P2.7 are for digital input and output,
grouped into ports P1 and P2

— TACLK, TAO, and TA1 are associated with Timer_A

(TOP VIEW)
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MSP430 Microcontroller

e MSP430G2231 outside view: (cont’d)

— AO-, A0+, and so on, up to A4+, are inputs to the analog-
to-digital converter

— VREF is the reference voltage for the converter

— ACLK and SMCLK are outputs for the microcontroller’s
clock signals

— SCLK, SDO, and SCL are used for the universal serial
interface

— XIN and XOUT are the connections for a crystal
— RST is an active low reset signal
— NMI is the nonmaskable interrupt input
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MSP430G2231 Inside View
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MSP430 CPU

e |nstruction set architecture:

RISC with 27 instructions and 7 addressing modes

16 16-bit registers with full register access including program counter,
status registers, and stack pointer

Constant generator provides six most used immediate values and
reduces code size

e Memory:

Word and byte addressing and instruction formats

16-bit address bus allows direct access and branching throughout
entire memory range

16-bit data bus allows direct manipulation of word-wide arguments

Direct memory-to-memory transfers without intermediate register
holding
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MSP430 CPU Registers

e Sixteen 16-bit registers
— RO, R1, R2, and R3 have dedicated functions
— R4 to R15 are working registers for general use

15 .. [} 0
RO/PC program counter 0
R1/SP stack pointer 0

R2/SR/CG1 status register

R3/CG2 constant generator

R4 general purpose
R15 general purpose
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Memory Organization

Word3 =

Word2 -

Word1 =

W

Low Byte

15

14

. « Bits. .

. « Bits . .

High Byte2

Low Byte2

High Byte1

Low Byte1

020Ah
0209h
0208h
0207h
0206h
0205h
0204h

16-bit addresses,
addressing to bytes

Aligned words:

The address of a word is
the address of the byte
with the lower address,
which must be even

Little-endian ordering:
The low-order byte is
stored at the lower
address and the high-
order byte at the higher
address.
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MSP430G2231 Memory Map

Information
memory: A 256B
block of flash
memory that is
intended for storage
of nonvolatile data,
including serial
numbers to identify
the equipment

OFFFFh| Interrupt Vector Table
OFFCOh
OFFBFh Code Memory
OF800h
O10FFh Information
01000h Memory
027Fh RAM
0200h
O1FFh 16-bit
0100h Peripherals
OFFh 8-bit
010h Peripherals
OFh 8-bit Special Function
_ Registers
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MSP430 Input/Output

e Simple digital input and output of MSP430 takes
place through sets of pins on the package of the IC
called ports

— MSP430G2231 has two ports: P1 (8 bits: P1.0~P1.7), P2 (2
bits: P2.6~P2.7)

— Typical pins can be configured for either input or output
and some inputs may generate interrupts when the
voltage on the pin changes

— The ports appear to the CPU as registers (memory-
mapped [/0 ), each bit corresponds to a pin and a port
may be associated to many registers for different purposes
(next page)
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Registers Associated with Port 1

Register | |

P1IN Input from  The 8 bits of data from port P1
port 1

P1OUT Output to Outputs 8 bits of data to port P1
port 1

P1DIR Direction of  Bits written as 1 (0) configure
port 1 data  corresponding pin for output (input)
transfer

P1SEL Select Bits written as 1 configure the
function for corresponding pin for use by the
port 1 specialized peripheral; 0 configure

general-purpose |/O
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Outline

e MSP430 LaunchPad
e MISP430 Microcontroller

— Processor
— Memory
— 1/0
e First Program on LaunchPad
— C
— Assembly
e LaunchPad Development Environment
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LaunchPad Development Board
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LaunchPad Pinouts

-
e On-board features of LaunchPad are pinned in the
following fashion:
— LED1 (red) = P1.0
— LED2 (green) = P1.6
— Switchl1=P1.3
— Switch2 = Reset
— Timer UART Transmit = P1.1
— Timer UART Receive = P1.2

e |In order to blink the Red and Green LEDs, we have to
set Ports 1.0 and 1.6 as outputs, and toggle them
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Sample Code (msp430g2xx1_1.c)

#include <msp430x2231.h>
void main (void) {
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0x41l; // set P1.0 & 6 to outputs
// (red & green LEDs)
for(;;) {
yolatile unsigned int_i>
P1OUT ~= 0x41l; // Toggle P1.0 & 6 using XOR
i = 50000; // Delay
do (1--);
while (i '= 0);
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Sample Code (cont’d)

e Configure the LED connected to the GPIO line

— The green and red LED are located on Port 1 Bit O and Bit 6

- make these pins to be output
— P1DIR set to 0x41 = 01000001

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= [0x41} // P1.0 & 6 outputs

0100 0001

e To turn on/off LED, set bit in register to 1/0
— Use XOR to toggle P1OUT

P1OUT “= 0x41; // toggle P1.0 & 6 on/off
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Characteristics of Sample Code

T,
e No printf(), no GUI operations

e Do not end
e Do I/O mainly

— More on control of peripherals through their special
registers = details of individual bits, bytes, words are
important = manipulations of bits, bytes, words

e Complete ownership of CPU
e No OS
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Notes of Sample Code

e volatile variable:
volatile unsigned int 1;

— The variable may appear to change “spontaneously,” with

no direct action by the user’s program
- may be due to memory-mapped |I/O devices

— Compiler must be careful in optimizing it

e Ex.: should not keep a copy of the variable in a register for
efficiency; should not assume the variable remains constant

when optimizing the structure of the program, e.g.,
rearranging loops
— The peripheral registers associated with the input ports
should be declared as volatile
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Notes of Sample Code

e Example from wikipedia:

static int foo;
void bar (void) {

foo = 0;

while (foo '= 255) ;
}

— Optimizing compiler will think that £o0 is never changed
and will optimize the code into

static int foo;

void bar (void) {
foo = 0; The volatile keyword in

while (true) ; declaration of foo
) prevents this optimization
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Notes of Sample Code

e Bit manipulation:
— Important ISA feature for embedded processors

— Bit mask:
set a bit PLOUT = P1OUT | BIT3
clear a bit P1OUT &= ~BIT3
toggle a bit P1OUT "= BIT3

— Bit field:
struct {

unsigned short TAIFG:1;
unsigned short TAIE:2;
unsigned short TACLR:5;
} TACTL bit;

& = # < Y-
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Other Aspects of Embedded C

T,
e Programs for small embedded systems tend not to
contain a lot of complicated manipulation of
complex data objects

— Much code is usually devoted to the control of peripherals
through their special registers

— Details of individual bits, bytes, words are important

e Important operations

— Shifting and rotating bits

— Bit-level Boolean logic (A && B) and bitwise operator (A
& B)

— Bit mask for testing and modifying individual bits
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Other Aspects of Embedded C

e Union for manipulating individual bits or the whole
byte/word as a unit
union {
unsigned short TACTL; // Timer_ A Control
struct { bit O
unsigned short TAIFG : 1; //Wptﬂag
unsigned short TAIE : 1; // Timer_A counter interrupt enable
unsigned short TACLR : 1; // Timer_A counter clear
unsigned short : 1;
unsigned short TAMC : 2; // Timer_A mode control
unsigned short TAID : 2; // Timer_A clock input divider
unsigned short TASSEL : 2; // Timer_A clock source select
unsigned short : 6;
} TACTL_ bit;
} TimerA;
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Sample Code (Assembly)

ORG OF800h ; Program Toggle
Toggle mov.w #0280h,SP ; Initialize SP
StopWDT mov.w H#WDTPW+WDTHOLD, &§WDTCTL ; Stop WDT
SetupPl bis.b #001h,&P1DIR ; P1.0 output
Mainloop xor.b #001h,&P1OUT ; Toggle P1.0
Wait mov.w #050000,R15 ; Delay to R15
L1 dec.w R15 ; Decrement R15

jnz L1l ; Delay over?

Jmp Mainloop ; Again

; Interrupt Vectors
ORG OFFFEh ; MSP430 RESET Vector
DW Toggle
END
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Notes of Assembly Code

e Where to store the program in memory?

— The code should go into the flash ROM and variables should be
allocated in RAM

- code at start of flash: OF800h
- stack at end of RAM: 0280h

e Where should execution of the program start?

— Address of the first instruction to be executed is stored at a specific
location in flash, called reset vector, which occupies the 2 bytes at
OFFFEh:OFFFFh

— Use an ORG OxFFFE directive to tell the assembler where to store the
reset vector

— The DW directive (“define word”) tells the assembler to store the
following word (2 bytes) in memory
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Notes of Assembly Code

e The style of program shown above is known as
absolute assembly because the memory addresses
are given explicitly in the source using ORG
directives

e An alternative is to rely on the linker/loader to
determine the address, which is called relocatable
assembly

— The program must not contain absolute addresses, e.g.,

jump to a 16-bit address, only relative addresses, e.g.,
relative to current program counter
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Outline

e MSP430 LaunchPad
e MISP430 Microcontroller

— Processor
— Memory
—1/0
e First Program on LaunchPad
— C
— Assembly
e LaunchPad Development Environment
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Code Composer Studio (CCS)

T,
e An Integrated Development Environment (IDE) based
on Eclipse
e |ntegrated “Debugger” and “Editor” — IDE

— Edit and Debug have the own “perspectives” (menus,
windows)

e Contains all development tools — compilers, TI-RTOS
kernel and includes one target — the Simulator
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Code Composer Studio (CCS)
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CCS GUI — EDIT Perspective

'« CCS Edit - C28x_Hwi_Task Timer_1/task.c -
File Edit View MNavigate Project Run  Scripts  Window Help
F4 v R~ T~ &~ o - I 5 [ CCS Edit | %t CCS Debug :
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4 = C28x_Hwi_Task Timer 1 [Active - 34 /* - =l xdc/std.h
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+ = Debug . . PerSpectlveS 'knl/Task.h
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. || task.c - - - . - t : volatile Ulnt
. [ TMS320F28027.cmd #2 Log_info@("Hello worldin®); ® main(): void
@ makefile.defs j 4 @  myTickFen{UArg) : void
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. = Stellaris_Hwi_5wi_ledToggle_1 47
43 BIOS start(); /* does not return */
A9 }-
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. _i X 1_ .
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57 {
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CCS GUI — DEBUG Perspective
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Notes on Code Composer Studio

S,
e Download code to LaunchPad from CCS

— After application program is entered and all the changes
are made, we can download this code to the MSP430
MCU plugged into LaunchPad’s DIP target socket

— Make sure LaunchPad is plugged in to your PC

— Next, click the “Debug” button, which will check the code
and load it into the MSP430 device

— When the code successfully loads, we will enter the Debug
view of CCS. We can execute the code by clicking the
green “Run” arrow and start debugging
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Summary

-
e Basic structure of MSP430 LaunchPad:
— MSP430 CPU and memory
— MSP430 I/0O ports and LaunchPad I/O connections

e First MSP430 program

— Cand assembly
— Importance of bit/byte manipulation
— Management and allocation of memory
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