
National Tsing Hua University

CS4101 嵌入式系統概論

Introduction to LaunchPad

Prof. Chung-Ta King
Department of Computer Science

National Tsing Hua University, Taiwan

Materials from MSP430 Microcontroller Basics, John H. Davies,
Newnes, 2008

National Tsing Hua University
1

Outline

• MSP430 LaunchPad

• MSP430 Microcontroller

 Processor

 Memory

 I/O

• First Program on LaunchPad

 C

 Assembly

• LaunchPad Development Environment

National Tsing Hua University
2

MSP430 LaunchPad Development Kit

• LaunchPad development board

• Mini-USB cable, 10-pin PCB connectors

• 2 MSP430 MCUs: MSP430G2211, MSP430G2231

• Micro Crystal 32.768kHz Oscillator

National Tsing Hua University
3

MSP430 Microcontroller

• LaunchPad development kit uses microcontroller
such as MSP430G2231

• Microcontroller:

 A small computer on a single IC containing a processor
core, memory, programmable I/O peripherals

• MSP430 microcontroller:

 Incorporates a 16-bit RISC CPU, peripherals, and a flexible
clock system that are interconnected using a von-
Neumann common memory address bus (MAB) and
memory data bus (MDB)

National Tsing Hua University
4

MSP430 Microcontroller

• MSP430G2231 outside view (pin-out):

 VCC , VSS : supply voltage and ground

 P1.0~P1.7, P2.6 and P2.7 are for digital input and output,
grouped into ports P1 and P2

 TACLK, TA0, and TA1 are associated with Timer_A

National Tsing Hua University
5

MSP430 Microcontroller

• MSP430G2231 outside view: (cont’d)

 A0−, A0+, and so on, up to A4±, are inputs to the analog-
to-digital converter

 VREF is the reference voltage for the converter

 ACLK and SMCLK are outputs for the microcontroller’s
clock signals

 SCLK, SDO, and SCL are used for the universal serial
interface

 XIN and XOUT are the connections for a crystal

 RST is an active low reset signal

 NMI is the nonmaskable interrupt input

National Tsing Hua University
6

MSP430G2231 Inside View

National Tsing Hua University
7

MSP430 CPU

• Instruction set architecture:
 RISC with 27 instructions and 7 addressing modes

 16 16-bit registers with full register access including program counter,
status registers, and stack pointer

 Constant generator provides six most used immediate values and
reduces code size

• Memory:
 Word and byte addressing and instruction formats

 16-bit address bus allows direct access and branching throughout
entire memory range

 16-bit data bus allows direct manipulation of word-wide arguments

 Direct memory-to-memory transfers without intermediate register
holding

National Tsing Hua University
8

MSP430 CPU Registers

• Sixteen 16-bit registers

 R0, R1, R2, and R3 have dedicated functions

 R4 to R15 are working registers for general use

National Tsing Hua University
9

Memory Organization

Little-endian ordering:
The low-order byte is
stored at the lower
address and the high-
order byte at the higher
address.

Aligned words:

The address of a word is
the address of the byte
with the lower address,
which must be even

16-bit addresses,
addressing to bytes

National Tsing Hua University
10

MSP430G2231 Memory Map
Interrupt Vector Table

Code Memory

Information
Memory

RAM

16-bit
Peripherals

8-bit
Peripherals

8-bit Special Function
Registers

0Fh

0h

0FFh
010h

01FFh
0100h

027Fh
0200h

0FFBFh
0F800h

0FFFFh
0FFC0h

010FFh
01000h

Flash/ROM
(2kB)

RAM
(128 bytes)

Flash/ROM
(256 bytes)

?

Information
memory: A 256B
block of flash
memory that is
intended for storage
of nonvolatile data,
including serial
numbers to identify
the equipment

National Tsing Hua University
11

MSP430 Input/Output

• Simple digital input and output of MSP430 takes
place through sets of pins on the package of the IC
called ports

 MSP430G2231 has two ports: P1 (8 bits: P1.0~P1.7), P2 (2
bits: P2.6~P2.7)

 Typical pins can be configured for either input or output
and some inputs may generate interrupts when the
voltage on the pin changes

 The ports appear to the CPU as registers (memory-
mapped I/O), each bit corresponds to a pin and a port
may be associated to many registers for different purposes
(next page)

National Tsing Hua University
12

Registers Associated with Port 1

Register

P1IN Input from
port 1

The 8 bits of data from port P1

P1OUT Output to
port 1

Outputs 8 bits of data to port P1

P1DIR Direction of
port 1 data
transfer

Bits written as 1 (0) configure
corresponding pin for output (input)

P1SEL Select
function for
port 1

Bits written as 1 configure the
corresponding pin for use by the
specialized peripheral; 0 configure
general-purpose I/O

National Tsing Hua University
13

Outline

• MSP430 LaunchPad

• MSP430 Microcontroller

 Processor

 Memory

 I/O

• First Program on LaunchPad

 C

 Assembly

• LaunchPad Development Environment

National Tsing Hua University
14

LaunchPad Development Board

Embedded Emulation

6-pin eZ430 Connector

Part and Socket

Crystal Pads

Power Connector

Reset Button
LEDs and Jumpers

P1.0 & P1.6

P1.3 Button

Chip Pinouts

USB Emulator
Connection

National Tsing Hua University
15

LaunchPad Pinouts

• On-board features of LaunchPad are pinned in the
following fashion:

 LED1 (red) = P1.0

 LED2 (green) = P1.6

 Switch1 = P1.3

 Switch2 = Reset

 Timer UART Transmit = P1.1

 Timer UART Receive = P1.2

• In order to blink the Red and Green LEDs, we have to
set Ports 1.0 and 1.6 as outputs, and toggle them

National Tsing Hua University
16

Sample Code (msp430g2xx1_1.c)

#include <msp430x2231.h>

void main(void) {

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= 0x41; // set P1.0 & 6 to outputs

//(red & green LEDs)

for(;;) {

volatile unsigned int i;

P1OUT ^= 0x41; // Toggle P1.0 & 6 using XOR

i = 50000; // Delay

do (i--);

while (i != 0);

}

}

National Tsing Hua University
17

Sample Code (cont’d)

• Configure the LED connected to the GPIO line

 The green and red LED are located on Port 1 Bit 0 and Bit 6
make these pins to be output
 P1DIR set to 0x41 = 01000001

• To turn on/off LED, set bit in register to 1/0

 Use XOR to toggle P1OUT

P1OUT ^= 0x41; // toggle P1.0 & 6 on/off

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= 0x41; // P1.0 & 6 outputs

0100 0001

National Tsing Hua University
18

Characteristics of Sample Code

• No printf(), no GUI operations

• Do not end

• Do I/O mainly

 More on control of peripherals through their special
registers details of individual bits, bytes, words are
important manipulations of bits, bytes, words

• Complete ownership of CPU

• No OS

National Tsing Hua University
19

Notes of Sample Code

• volatile variable:
volatile unsigned int i;

 The variable may appear to change “spontaneously,” with
no direct action by the user’s program
may be due to memory-mapped I/O devices

 Compiler must be careful in optimizing it

• Ex.: should not keep a copy of the variable in a register for
efficiency; should not assume the variable remains constant
when optimizing the structure of the program, e.g.,
rearranging loops

 The peripheral registers associated with the input ports
should be declared as volatile

National Tsing Hua University
20

Notes of Sample Code

• Example from wikipedia:

 Optimizing compiler will think that foo is never changed
and will optimize the code into

static int foo;

void bar(void) {

foo = 0;

while (foo != 255) ;

}

static int foo;

void bar(void) {

foo = 0;

while (true) ;

}

The volatile keyword in
declaration of foo

prevents this optimization

National Tsing Hua University
21

Notes of Sample Code

• Bit manipulation:

 Important ISA feature for embedded processors

 Bit mask:
set a bit P1OUT = P1OUT | BIT3
clear a bit P1OUT &= ~BIT3

toggle a bit P1OUT ˆ= BIT3

 Bit field:
struct {

unsigned short TAIFG:1;

unsigned short TAIE:2;

unsigned short TACLR:5;

} TACTL_bit;
Set with TACTL_bit.TAIFG = 1

National Tsing Hua University
22

Other Aspects of Embedded C

• Programs for small embedded systems tend not to
contain a lot of complicated manipulation of
complex data objects

 Much code is usually devoted to the control of peripherals
through their special registers

 Details of individual bits, bytes, words are important

• Important operations

 Shifting and rotating bits

 Bit-level Boolean logic (A && B) and bitwise operator (A
& B)

 Bit mask for testing and modifying individual bits

National Tsing Hua University
23

Other Aspects of Embedded C

• Union for manipulating individual bits or the whole
byte/word as a unit
union {

unsigned short TACTL; // Timer_A Control
struct {

unsigned short TAIFG : 1; // Timer_A counter interrupt flag
unsigned short TAIE : 1; // Timer_A counter interrupt enable
unsigned short TACLR : 1; // Timer_A counter clear
unsigned short : 1;
unsigned short TAMC : 2; // Timer_A mode control
unsigned short TAID : 2; // Timer_A clock input divider
unsigned short TASSEL : 2; // Timer_A clock source select
unsigned short : 6;

} TACTL_bit;
} TimerA;

bit 0

National Tsing Hua University
24

Sample Code (Assembly)

ORG 0F800h ; Program Toggle

Toggle mov.w #0280h,SP ; Initialize SP

StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

SetupP1 bis.b #001h,&P1DIR ; P1.0 output

Mainloop xor.b #001h,&P1OUT ; Toggle P1.0

Wait mov.w #050000,R15 ; Delay to R15

L1 dec.w R15 ; Decrement R15

jnz L1 ; Delay over?

jmp Mainloop ; Again

; Interrupt Vectors

ORG 0FFFEh ; MSP430 RESET Vector

DW Toggle

END

National Tsing Hua University
25

Notes of Assembly Code

• Where to store the program in memory?
 The code should go into the flash ROM and variables should be

allocated in RAM

 code at start of flash: 0F800h

 stack at end of RAM: 0280h

• Where should execution of the program start?
 Address of the first instruction to be executed is stored at a specific

location in flash, called reset vector, which occupies the 2 bytes at
0FFFEh:0FFFFh

 Use an ORG 0xFFFE directive to tell the assembler where to store the
reset vector

 The DW directive (“define word”) tells the assembler to store the
following word (2 bytes) in memory

National Tsing Hua University
26

Notes of Assembly Code

• The style of program shown above is known as
absolute assembly because the memory addresses
are given explicitly in the source using ORG
directives

• An alternative is to rely on the linker/loader to
determine the address, which is called relocatable
assembly

 The program must not contain absolute addresses, e.g.,
jump to a 16-bit address, only relative addresses, e.g.,
relative to current program counter

National Tsing Hua University
27

Outline

• MSP430 LaunchPad

• MSP430 Microcontroller

 Processor

 Memory

 I/O

• First Program on LaunchPad

 C

 Assembly

• LaunchPad Development Environment

National Tsing Hua University

Code Composer Studio (CCS)

• An Integrated Development Environment (IDE) based
on Eclipse

• Integrated “Debugger” and “Editor” – IDE

 Edit and Debug have the own “perspectives” (menus,
windows)

• Contains all development tools – compilers, TI-RTOS
kernel and includes one target – the Simulator

28

National Tsing Hua University

Code Composer Studio (CCS)

29

Compiler

Asm

.c

.asm .obj

.asm

Edit Debug

Standard
Runtime
Libraries

.out

.lib

.mapUser.cmd

TI-RTOS
Libraries

TI-RTOS
Config
(.cfg) Bios.cmd

Launch
Pad

EVM

Stand Alone
Emulator

(MSP430 FET)

Target
Cfg File

.ccxml

Link

National Tsing Hua University

CCS GUI – EDIT Perspective

30

Project Explorer

• Project(s)

• Source Files

Source EDIT’ing

• Tabbed windows

• Color-coded text

Outline View

• Declarations
and functions

Menus & Buttons

• Specific actions
related to EDIT’ing

Perspectives

• EDIT and DEBUG

National Tsing Hua University

CCS GUI – DEBUG Perspective

31

DEBUG Windows

• Watch Variables

• Memory Browser

• PC execution point

• Console Window

Menus & Buttons

• Related to DEBUG’ing

• Play, Pause, Terminate

Connection Type

• Specified in Target Cfg file

• What options do users have
when connecting to a target?

• This window also provides a
“call” stack

National Tsing Hua University
32

Notes on Code Composer Studio

• Download code to LaunchPad from CCS

 After application program is entered and all the changes
are made, we can download this code to the MSP430
MCU plugged into LaunchPad’s DIP target socket

 Make sure LaunchPad is plugged in to your PC

 Next, click the “Debug” button, which will check the code
and load it into the MSP430 device

 When the code successfully loads, we will enter the Debug
view of CCS. We can execute the code by clicking the
green “Run” arrow and start debugging

National Tsing Hua University
33

Summary

• Basic structure of MSP430 LaunchPad:

 MSP430 CPU and memory

 MSP430 I/O ports and LaunchPad I/O connections

• First MSP430 program

 C and assembly

 Importance of bit/byte manipulation

 Management and allocation of memory

