CS4101 g‘}\ PRI B JR
Introduction to LaunchPad

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University, Taiwan

Materials from MSP430 Microcontroller Basics, John H. Davies,
Newnes, 2008

ational Tsing Hua University

Outline

e MSP430 LaunchPad
e MISP430 Microcontroller

— Processor
— Memory
- 1/0
e First Program on LaunchPad
— C
— Assembly
e LaunchPad Development Environment

ational Tsing Hua University

MSP430 LaunchPad Development Kit

e LaunchPad development board

e Mini-USB cable, 10-pin PCB connectors

e 2 MSP430 MCUs: NISP430G2211, MSP430G2231
e Micro Crystal 32.768kHz Oscillaor

National Tsing Hua University

MSP430 Microcontroller

e LaunchPad development kit uses microcontroller
such as MSP430G2231

e Microcontroller:

— A small computer on a single IC containing a processor
core, memory, programmable |I/O peripherals

e MSP430 microcontroller:

— Incorporates a 16-bit RISC CPU, peripherals, and a flexible
clock system that are interconnected using a von-
Neumann common memory address bus (MAB) and
memory data bus (MDB)

ational Tsing Hua University

MSP430 Microcontroller

e MSP430G2231 outside view (pin-out):

— Ve, Vss: supply voltage and ground

— P1.0~P1.7, P2.6 and P2.7 are for digital input and output,
grouped into ports P1 and P2

— TACLK, TAO, and TA1 are associated with Timer_A

(TOP VIEW)

Ve D:

P1.0/TACLK/ACLK/A0+ [T]
P1.1/TA0/A0—/A4+ [T]
P1.2/TA1/A1+/A4— [T

P1.3/VREF/A1— []]

P1.4/SMCLK/A2+/TCK [T]

P1.5/TA0/A2—/SCLK/TMS []]

14
13
12
11
10

9

:D Vss

T] XIN/P2.6/TAT

1] xouT/P2.7

[] TEST/SBWTCK

T] RST /NMI/SBWTDIO

1] P1.7/A3—/SDI/SDA/TDO/TDI

8 [I] P1.6/TA1/A3+/SDO/SCL/TDI/TCLK

National Tsing Hua University

MSP430 Microcontroller

e MSP430G2231 outside view: (cont’d)

— AO-, A0+, and so on, up to A4+, are inputs to the analog-
to-digital converter

— VREF is the reference voltage for the converter

— ACLK and SMCLK are outputs for the microcontroller’s
clock signals

— SCLK, SDO, and SCL are used for the universal serial
interface

— XIN and XOUT are the connections for a crystal
— RST is an active low reset signal
— NMI is the nonmaskable interrupt input

ational Tsing Hua University

MSP430G2231 Inside View

XIN XOUT DVCC DVSS

P1x

P2x

2

rﬁii

National Tsing Hua University

'
.

. ACLK

: ADC Fort P1 Port P2
H SMCLKY Flash RAM - 81/0 21/0

: kB 8 Ch Interrupt Interrupt
’ 128B) capability capability
' 1kB Autoscan

N 1 ch DMA pull-up/dowry R pull-up/dow
: resistors resistors
o| 16MHz MAB

: CPU

]

o] incl 16

: Registers MDB

.

'

L]

¥ | Emulation usli

]

' 2BP Watchdog | [Timer0_A2

: Brownout WDT+ Universal

: JTAG Protection 2CC Serial

a1 | Interface 15-Bit Registers Interface

H - SPI, 12C

’
’
’
]

-

L T X & 3 B & 0 4 & 5 3§ & ' 0 0 90 | ---------------------------------------‘

MSP430 CPU

e |nstruction set architecture:

RISC with 27 instructions and 7 addressing modes

16 16-bit registers with full register access including program counter,
status registers, and stack pointer

Constant generator provides six most used immediate values and
reduces code size

e Memory:

Word and byte addressing and instruction formats

16-bit address bus allows direct access and branching throughout
entire memory range

16-bit data bus allows direct manipulation of word-wide arguments

Direct memory-to-memory transfers without intermediate register
holding

National Tsing Hua University

MSP430 CPU Registers

e Sixteen 16-bit registers
— RO, R1, R2, and R3 have dedicated functions
— R4 to R15 are working registers for general use

15 .. [} 0
RO/PC program counter 0
R1/SP stack pointer 0

R2/SR/CG1 status register

R3/CG2 constant generator

R4 general purpose
R15 general purpose

ational Tsing Hua University

Memory Organization

Word3 =

Word2 -

Word1 =

W

Low Byte

15

14

. « Bits. .

. « Bits . .

High Byte2

Low Byte2

High Byte1

Low Byte1

020Ah
0209h
0208h
0207h
0206h
0205h
0204h

16-bit addresses,
addressing to bytes

Aligned words:

The address of a word is
the address of the byte
with the lower address,
which must be even

Little-endian ordering:
The low-order byte is
stored at the lower
address and the high-
order byte at the higher
address.

National Tsing Hua University

MSP430G2231 Memory Map

Information
memory: A 256B
block of flash
memory that is
intended for storage
of nonvolatile data,
including serial
numbers to identify
the equipment

OFFFFh| Interrupt Vector Table
OFFCOh
OFFBFh Code Memory
OF800h
O10FFh Information
01000h Memory
027Fh RAM
0200h
O1FFh 16-bit
0100h Peripherals
OFFh 8-bit
010h Peripherals
OFh 8-bit Special Function
_ Registers

National Tsing Hua University

Flash/ROM
(2kB)

Flash/ROM
(256 bytes)

}

} RAM
(128 bytes)

MSP430 Input/Output

e Simple digital input and output of MSP430 takes
place through sets of pins on the package of the IC
called ports

— MSP430G2231 has two ports: P1 (8 bits: P1.0~P1.7), P2 (2
bits: P2.6~P2.7)

— Typical pins can be configured for either input or output
and some inputs may generate interrupts when the
voltage on the pin changes

— The ports appear to the CPU as registers (memory-
mapped [/0), each bit corresponds to a pin and a port
may be associated to many registers for different purposes
(next page)

tional Tsing Hua University

Registers Associated with Port 1

Register | |

P1IN Input from The 8 bits of data from port P1
port 1

P1OUT Output to Outputs 8 bits of data to port P1
port 1

P1DIR Direction of Bits written as 1 (0) configure
port 1 data corresponding pin for output (input)
transfer

P1SEL Select Bits written as 1 configure the
function for corresponding pin for use by the
port 1 specialized peripheral; 0 configure

general-purpose |/O

tional Tsing Hua University

Outline

e MSP430 LaunchPad
e MISP430 Microcontroller

— Processor
— Memory
— 1/0
e First Program on LaunchPad
— C
— Assembly
e LaunchPad Development Environment

ational Tsing Hua University

LaunchPad Development Board

USB Emulator
Connection

VT wD wluluR PPN my N
NEREaE e 0@ 0 O o
: 2 s £

> Embedded Emulation

‘‘‘‘‘‘

h 6-pin eZ430 Connector

l1r
D[¥

000000
J

Crystal Pads
Chip Pinouts <

e < Qs Part and Socket
gt 5"~ 25 o)
ri\ %TEEIRLMENIS ,[__
;22 | , Power Connector
= O = g LaunchFa B
LEDs and Jumpers
P1.0 & P1.6

National Tsing Hua University

LaunchPad Pinouts

-
e On-board features of LaunchPad are pinned in the
following fashion:
— LED1 (red) = P1.0
— LED2 (green) = P1.6
— Switchl1=P1.3
— Switch2 = Reset
— Timer UART Transmit = P1.1
— Timer UART Receive = P1.2

e |In order to blink the Red and Green LEDs, we have to
set Ports 1.0 and 1.6 as outputs, and toggle them

tional Tsing Hua University

Sample Code (msp430g2xx1_1.c)

#include <msp430x2231.h>
void main (void) {
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0x41l; // set P1.0 & 6 to outputs
// (red & green LEDs)
for(;;) {
yolatile unsigned int_i>
P1OUT ~= 0x41l; // Toggle P1.0 & 6 using XOR
i = 50000; // Delay
do (1--);
while (i '= 0);

National Tsing Hua University

Sample Code (cont’d)

e Configure the LED connected to the GPIO line

— The green and red LED are located on Port 1 Bit O and Bit 6

- make these pins to be output
— P1DIR set to 0x41 = 01000001

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= [0x41} // P1.0 & 6 outputs

0100 0001

e To turn on/off LED, set bit in register to 1/0
— Use XOR to toggle P1OUT

P1OUT “= 0x41; // toggle P1.0 & 6 on/off

tional Tsing Hua University

Characteristics of Sample Code

T,
e No printf(), no GUI operations

e Do not end
e Do I/O mainly

— More on control of peripherals through their special
registers = details of individual bits, bytes, words are
important = manipulations of bits, bytes, words

e Complete ownership of CPU
e No OS

tional Tsing Hua University

Notes of Sample Code

e volatile variable:
volatile unsigned int 1;

— The variable may appear to change “spontaneously,” with

no direct action by the user’s program
- may be due to memory-mapped |I/O devices

— Compiler must be careful in optimizing it

e Ex.: should not keep a copy of the variable in a register for
efficiency; should not assume the variable remains constant

when optimizing the structure of the program, e.g.,
rearranging loops
— The peripheral registers associated with the input ports
should be declared as volatile

ational Tsing Hua University

Notes of Sample Code

e Example from wikipedia:

static int foo;
void bar (void) {

foo = 0;

while (foo '= 255) ;
}

— Optimizing compiler will think that £o0 is never changed
and will optimize the code into

static int foo;

void bar (void) {
foo = 0; The volatile keyword in

while (true) ; declaration of foo
) prevents this optimization

ational Tsing Hua University

Notes of Sample Code

e Bit manipulation:
— Important ISA feature for embedded processors

— Bit mask:
set a bit PLOUT = P1OUT | BIT3
clear a bit P1OUT &= ~BIT3
toggle a bit P1OUT "= BIT3

— Bit field:
struct {

unsigned short TAIFG:1;
unsigned short TAIE:2;
unsigned short TACLR:5;
} TACTL bit;

& = # < Y-

National Tsing Hua University

Other Aspects of Embedded C

T,
e Programs for small embedded systems tend not to
contain a lot of complicated manipulation of
complex data objects

— Much code is usually devoted to the control of peripherals
through their special registers

— Details of individual bits, bytes, words are important

e Important operations

— Shifting and rotating bits

— Bit-level Boolean logic (A && B) and bitwise operator (A
& B)

— Bit mask for testing and modifying individual bits

tional Tsing Hua University

Other Aspects of Embedded C

e Union for manipulating individual bits or the whole
byte/word as a unit
union {
unsigned short TACTL; // Timer_ A Control
struct { bit O
unsigned short TAIFG : 1; //Wptﬂag
unsigned short TAIE : 1; // Timer_A counter interrupt enable
unsigned short TACLR : 1; // Timer_A counter clear
unsigned short : 1;
unsigned short TAMC : 2; // Timer_A mode control
unsigned short TAID : 2; // Timer_A clock input divider
unsigned short TASSEL : 2; // Timer_A clock source select
unsigned short : 6;
} TACTL_ bit;
} TimerA;

National Tsing Hua University

Sample Code (Assembly)

ORG OF800h ; Program Toggle
Toggle mov.w #0280h,SP ; Initialize SP
StopWDT mov.w H#WDTPW+WDTHOLD, &§WDTCTL ; Stop WDT
SetupPl bis.b #001h,&P1DIR ; P1.0 output
Mainloop xor.b #001h,&P1OUT ; Toggle P1.0
Wait mov.w #050000,R15 ; Delay to R15
L1 dec.w R15 ; Decrement R15

jnz L1l ; Delay over?

Jmp Mainloop ; Again

; Interrupt Vectors
ORG OFFFEh ; MSP430 RESET Vector
DW Toggle
END

National Tsing Hua University

Notes of Assembly Code

e Where to store the program in memory?

— The code should go into the flash ROM and variables should be
allocated in RAM

- code at start of flash: OF800h
- stack at end of RAM: 0280h

e Where should execution of the program start?

— Address of the first instruction to be executed is stored at a specific
location in flash, called reset vector, which occupies the 2 bytes at
OFFFEh:OFFFFh

— Use an ORG OxFFFE directive to tell the assembler where to store the
reset vector

— The DW directive (“define word”) tells the assembler to store the
following word (2 bytes) in memory

National Tsing Hua University

Notes of Assembly Code

e The style of program shown above is known as
absolute assembly because the memory addresses
are given explicitly in the source using ORG
directives

e An alternative is to rely on the linker/loader to
determine the address, which is called relocatable
assembly

— The program must not contain absolute addresses, e.g.,

jump to a 16-bit address, only relative addresses, e.g.,
relative to current program counter

ational Tsing Hua University

Outline

e MSP430 LaunchPad
e MISP430 Microcontroller

— Processor
— Memory
—1/0
e First Program on LaunchPad
— C
— Assembly
e LaunchPad Development Environment

ational Tsing Hua University

Code Composer Studio (CCS)

T,
e An Integrated Development Environment (IDE) based
on Eclipse
e |ntegrated “Debugger” and “Editor” — IDE

— Edit and Debug have the own “perspectives” (menus,
windows)

e Contains all development tools — compilers, TI-RTOS
kernel and includes one target — the Simulator

National Tsing Hua University

Code Composer Studio (CCS)

r____-l _—_———— _————

. Standard | {1705 | Target |
Compiler | Runtime | |~ 22| jarget
.asm L | Libraries | Cfg File

| Libraries |~ < | e TS

(N

. |-asm .ob) .out __Pad
Edit Asm =—— Link Debug . \

/ EVM

TI-RTOS r————1|
i

Config |
(.cfg) " Bios.cmd|

\ 4

.map [Stand Alone |
Emulator

\ 4

ational Tsing Hua University

CCS GUI — EDIT Perspective

'« CCS Edit - C28x_Hwi_Task Timer_1/task.c -
File Edit View MNavigate Project Run Scripts Window Help
F4 v R~ T~ &~ o - I 5 [CCS Edit | %t CCS Debug :
[Project Explorer 53| [0 = 7 = 0|4 task.cfg lg] task.c 22 = O || g% Outline &2
4 = C28x_Hwi_Task Timer 1 [Active - 34 /* - =l xdc/std.h
>§|§;P Binaries 35 * =====o%= main ======== Bl xdc/rughime/Log.h
+ [t Includes Menus & Buttons . ‘BIOS.h
+ = Debug . . PerSpectlveS 'knl/Task.h
. (B2 sre ® SpECIfIC actions . EDIT d DEBUG knl/Semaphore.h
+ = targetConfigs related to EDlT’Ing 1lo world” to a an const ti_sysbios_knl_Ser
. || task.c - - - . - t : volatile Ulnt
. [TMS320F28027.cmd #2 Log_info@("Hello worldin®); ® main(): void
@ makefile.defs j 4 @ myTickFen{UArg) : void
& task.cfg [SYS/BIOS] 45 % ctart BIOS. @ myTaskFxn(veid) : void
s @ M5P430_Task_ledToggle 1 4R * Begins task scheduling. E
. = Stellaris_Hwi_5wi_ledToggle_1 47
43 BIOS start(); /* does not return */
A9 }-
Project Explorer D Source EDIT’ing Outline View
* Project(s) 2 . -.| * Tabbed windows . e Declarations
. _i X 1_ .
* Source Files > ., * Color-coded text and functions
56 Vold myTI TE arTET
57 {
58 tickCount += 1; /¥ increment the cour ™
‘ m b 4 0 b

— — —

8] = [# Y-

National Tsing Hua University

CCS GUI — DEBUG Perspective

% ccs Debug - opt_audio_solfisr.c - Code Composer Studio

Menus & Buttons
* Related to DEBUG’ing
* Play, Pause Termlnate

. @ mcasp_TTO.C
B evmomapl 133_bsl.lib

[£] isr.c 22

m
H
o
8]
Hh

buffer, copvy rov

s

—-to-xme,

Zero

[mcaspReadySem) ;

File Edit View Search Project Tools Run Scripts Window Help
- B @B 0 e AR - R I | # ccs Debug | B CCS Edit
l{™ Project Explorer 52 B || %% pebug 53 = O ||t9= varisbles 52 | S5 Expressions | 34} Registers =8
B v TN NEE-E- A e v =l et ™
= 1= opt_audio_so = A opt_audio_sol [Code Compaser Studio - Device Debugging] Mame Type Value
9?,‘; Binaries =g Spectrum Digital XDS510USE Emulator_0/C674%_0 (Suspended) (= blkCnt unsigned short &0
&R Includ Slisraudio() at isr.c:111 0x1180C554)= dataln32 int 2864
(= Deb = ti_syshios_family_cédp_Hwi_dispatchC__IGnt)() at Hwi, O)= dataouti? it 109
= Op = (x00000000 {no symbols are defined for Ox00000000) \%
R .
= Connection Type L

1 * Specified in Target Cfg file
| * What options do users have

when connecting to a target?
* This window also provides a

112

rETTS

=

\ “call” stack

0x1131FCT0 0O53C033C O0T7TTEORCS 0838307FD 0143075E

makefile. defs if (blkCnt >= DATA SIZE)
S opt.cfg '
Semaphore p“st
pingPong "= 1
bElkCnt

1FCE8C (003500AR 00210010 01ABOOST O63EQ40E
C80 O8SDFOTC4 0963057C O883TOBEF O6FT0OEB06

k]

)

DEBUG Windows

21FCALO 031F0545 FFES010E 01C00070 02450260
. S1FCE0 00670130 FEEFFFAF FEADFEE4 FD32FDFS
_ ° WatCh Va r|ab|es S1FCCoO [FBODEFCT1 FC1BFBAS FDEDFDO4 FCACFDSS
- S1FCDO FBADFCO7 FBACFEET FCOEFC1E FD&2FD3L
120 ° Memory Browser S1FCZ0 FCTEFCES FCC4FCTS FD93FD33 FESEFDES
L4
B Console 52 * PC execution point 5 A E-r3- =0
opt_audio_sal .
Cé74X 0: Cutput: * Console Window =s. ~
CeT4E O: Cutput:
“6" 4¥ 0 Cutput: Using mDDE settings

Notes on Code Composer Studio

S,
e Download code to LaunchPad from CCS

— After application program is entered and all the changes
are made, we can download this code to the MSP430
MCU plugged into LaunchPad’s DIP target socket

— Make sure LaunchPad is plugged in to your PC

— Next, click the “Debug” button, which will check the code
and load it into the MSP430 device

— When the code successfully loads, we will enter the Debug
view of CCS. We can execute the code by clicking the
green “Run” arrow and start debugging

tional Tsing Hua University

Summary

-
e Basic structure of MSP430 LaunchPad:
— MSP430 CPU and memory
— MSP430 I/0O ports and LaunchPad I/O connections

e First MSP430 program

— Cand assembly
— Importance of bit/byte manipulation
— Management and allocation of memory

tional Tsing Hua University

