

CS4101 Introduction to Embedded Systems

Course Overview

Prof. Chung-Ta King Department of Computer Science National Tsing Hua University, Taiwan

Consider the Evolution of Watches

How about Refrigerators?

Picture Frames

PAUL COOK PHOTOGRAPHY

What is the trend?

Physical Things Augmented with Computing/Communication

OR

Computing/Communication "Embedded" into Physical Things

So, What Is Embedded System?

A computer, pretending not to be a computer

(Stephen A. Edwards)

What Is Embedded System?

 "An embedded system is an <u>application</u> that contains at least one programmable computer ... and which is used by individuals who are unaware that the system is computer-based."

-- Michael J. Pont, Embedded C

- Programmable computers require programs
 - \rightarrow embedded software

What Is an Embedded System?

- Information processing systems embedded into a larger product [Peter Marwedel]
 - Main reason for buying is **not** information processing
- Any device that includes a programmable processor but is not itself a *general-purpose computer*
- ➔ Application-specific: take advantage of application characteristics to optimize the design:
 - Do not need all general-purpose bells and whistles

Same Basics Inside

Why Embedded Systems?

• After all, we can still make phone calls with

• Why embed a computer into a phone?

Embedded vs Pure Hardware

- Many electronic products are implemented in pure hardware (ASICs, boards)
 - Lack of flexibility (changing standards, system revisions, bug fixes, extra functionalities)
 - Costly for specialized application-specific integrated circuits (ASICs) (M\$ range, technology-dependent)

• Trend towards implementation in software running on embedded processors (or possibly FPGAs)

Trends towards Software

Some Concepts to Clarify

 Embedded systems refer to not only small devices or gadgets

 But also large, complex systems requiring strict reliability, real-time responses

Some Concepts to Clarify

- A product, e.g., video decoder, may be implemented using pure hardware or microprocessor + embedded software
 - A chip may be implemented using pure logic gates or a microprocessor + peripheral logic + software
- An embedded system may or may not have OS
 - Simple systems may be implemented by a single program that runs continuously
 - Systems that need to control and respond to many activities may require an OS for management

Embedded = Smart

- Computers embedded into objects
 - Augment objects with programmatic control, communication, sensing, and actuation
- Let the world know you:
 - Make physical objects/phenomena accessible to digital world
- Let you know the world:
 - Give intelligence/life to physical objects so that they can sense/react
 - Put a "robot" inside everything!

Future Embedded Systems

Smart Grid

Smart City

(Source: oncor.com, Prof. L.G. Chen)

Future Embedded Systems

Smart Glasses

Unmanned Cars

Retinal Implant

- Infinite opportunities and innovations
- Integration: must know application domain, packaging, A/D, sensor/actuator, power, ...
- Innovation and execution

A New Paradigm of Computing

National Tsing Hua University

21

About This Course

- Principles behind the design of the course:
 - Build the course around labs: Use labs to carry out the course contents. Labs are to develop a simple embedded system, from I/O device to system
 - Cover basic concepts in embedded system development: interrupt, clocking, I/O, real-time system, OS service, development tools
 - Expose to assembly programming: MSP430 and ARM architecture and programming
 - Term project development: innovation, development process, communication and team work, learning-bydoing

TI MSP430 LaunchPad

• Freescale Kinetis Tower: TWR-K60D100M-KIT

Labs (subject to change)

- LaunchPad:
 - Registers/addressing mode/IO
 - Stacks
 - Timer and watchdog
 - Serial communication interface, UART
- Kinetis Tower
 - Environment and cross-compiler
 - Bootloader
 - Non-OS embedded application
 - Real-time OS
 - Device driver
- Kinetis Tower integrated with LaunchPad

- Discuss concepts related to the labs
 - May lack of a systematic discussion of embedded systems and a comprehensive coverage of all important concepts

What Will and Will Not Learn?

- Will learn:
 - Basic concepts of embedded systems
 - Hands-on development of a system and know what's behind
 - Innovation development, presentation, team work
- Will not learn (but important):
 - Software engineering for embedded systems
 - System evaluation, optimization

Course Information

- Instructor: Prof. Chung-Ta King (金仲達教授)
 - Office: Delta 640 Phone: x42804
 - email: king@cs.nthu.edu.tw
- Teaching assistants: 李荏敏、柯安琪、廖柏皓、張 子逸、廖毓強、鄭又仁
 - Office: CSEE 734 Phone: x33553
- Class time:
 - Tuesday 15:30 17:20
 - Thursday 15:30 16:20
- Classroom: Delta 105
- http://www.cs.nthu.edu.tw/~king/courses/cs4101.html

Expected Workload

- Labs:
 - Run on Tuesday in PC room
 - At least 2 basic assignments to be completed in class plus
 1 advanced assignment for bonus
- Term project:
 - Proposal, progress report, final demonstration, project report
- Grade breakdown
 - Assignments and Labs 70%
 - Term project

30%

