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Memory hierarchy

The basics of caches

Measuring and improving cache performance
Virtual memory

A common framework for memory hierarchy

* & & o o

’3“ lﬂ %‘ i— l %ﬂ ]ﬂ %‘ i— l Memory-1 Computer Architecture
aaaaaa | Tsing Hua Unwersny National Tsing Hua Universi(y CTKing/TTHwang
Technology Trends Processor Memory Latency Gap
Capacity Speed (latency)
Logic: 4x in 1.5years 4x in3years 1000 » Proc
DRAM: 4x in 3years 2x in 10 years Moore’s Law N 60%/yr.
o . . (2X/1.5 yr)
Disk: 4x in 3 years 2x in 10 years @
2100 Processor-memory
DRAM g / performance gap:
Year Size Cycle Time ° 10 (grows 50% / year)
1980.000:1! ¢4 Kb2:1! 250 ns & *,_./‘DR/AM
o 9%lyr.
1 983 256 Kb 220 ns 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J (2X/.1 O yl’S)
1986 1 Mb 190 ns I EE R R R R R R R -
1992 16 Mb 145 ns
1995 64 Mb 120 ns
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Solution: Memory Hierarchy

¢ An lllusion of a large, fast, cheap memory
Fact: Large memories slow, fast memories small

How to achieve: hierarchy, parallelism
¢ An expanded view of memory system:

Processor
Control
-1 Memory
Memory
=
Datapath g L]
°
Speed: Fastest Slowest
Size: Smallest Biggest
e & o st;;; Highest Lowest
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Memory Hierarchy: Principle

¢+ At any given time, data is copied between only two
adjacent levels:
Upper level: the one closer to the processor
= Smaller, faster, uses more expensive technology
Lower level: the one away from the processor
= Bigger, slower, uses less expensive technology
¢ Block: basic unit of information transfer
Minimum unit of information that can either be present
or not present in a level of the hierarchy

Lower Level
To Processor | Upper Level Memory
Memory
Block X
From Processor - Block Y
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Why Hierarchy Works?

¢ Principle of Locality:
Program access a relatively small portion of the
address space at any instant of time
90/10 rule: 10% of code executed 90% of time

¢+ Two types of locadlity:
Temporal locality: if an item is referenced, it will tend to

be referenced again soon
Spatial locdlity: if an item is referenced, items whose
addresses are close by tend to be referenced soon

Probability
of reference

0 address space
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How Does It Work?

¢ Temporal locality: keep most recently accessed data items
closer to the processor

¢ Spatial locality: move blocks consists of i
contiguous words to the upper levels
Processor
Control /__,—"" Tertiary
-1 ) Secondary || Storage
i Second M”'a'" Storage (Disk)
2] o Level emory (Disk)
Datapath | & g f_‘) Cache (DRAM)
% 3 z (SRAM)
Speed (ns): 1's  10°s 100°'s  10,000,000°s  10,000,000,000‘s
(10’s ms) (10’s sec)
i s); .100‘s;, K’s M’s G’s Ts
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Levels of Memory Hierarchy

Capacity Upper Level
Access Time Staging

Cost Transfer Unit | faster
CPU Registers E ; I

100s Bytes egister

<10s ns Instr. Operands prog./compiler

Cache 1-8 bytes

K Bytes . Cache .

10-100 ns h "
$.01-.001/bit Blocks g?1°28":;’t2;’° er

Main Memory

M Bytes . Memory .

100ns-1us 0s

$.01-.001 Pages

Disk 512-4K bytes

G Bytes - Disk -

ms

103 - 104 cents Files :\‘nslfr/OPel‘ator

Tape ytes Larger
infinite - Tape Lower Level
sec-min

106

How Is the Hierarchy Managed?

¢ Registers <-> Memory

by compiler (programmer?)
¢ cache <-> memory

by the hardware
¢ memory <-> disks

by the hardware and operating system (virtual
memory)

by the programmer (files)
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Memory Hierarchy Technology

¢ Random access:
Access time same for all locations

DRAM: Dynamic Random Access Memory
= High density, low power, cheap, slow
= Dynamic: need to be refreshed regularly
= Addresses in 2 halves (memory as a 2D matrix):
RAS/CAS (Row/Column Access Strobe)
= Use for main memory
SRAM: Static Random Access Memory
= Low density, high power, expensive, fast

m Static: content will last (forever until lose power)
= Address not divided

= Use for caches

Comparisons of Various Technologies
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Memory Typical access $ per GB
technology time in 2004
SRAM 0.5-5ns $4000 — $10,000
DRAM 50-70ns $100 — $200
B s
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Memory Hierarchy Technology

¢ Performance of main memory:
Latency: related directly to Cache Miss Penalty
m Access Time: time between request and word arrives
m Cycle Time: time between requests
Bandwidth: Large Block Miss Penalty (interleaved
memory, L2)
¢ Non-so-random access technology:
Access time varies from location to location and from
time to time, e.g., disk, CDROM
¢+ Sequential access technology: access time linear in
location (e.g., tape)

=
’E Iﬂ 2 d%_ i‘ Memory-12 Computer Architecture

al Tsing Hua Un CTKing/TTHwang

Memory Hierarchy: Terminology

¢+ Hit: data appears in upper level (Block X)
II-Ili r?fe fraction of memory access found in the upper
eve
Hit fime: time to access the upper level
= RAM access time + Time to determine hit/miss
¢ Miss: data needs to be retrieved from a block in the
lower level (Block Y)
Miss Rate =1 - (Hit Rate)
Miss Penalty: time to replace a block in the upper level
+ time to deliver the block to the processor (latency +
transmit time)

¢ Hit Time << Miss Penalty

Lower Level
To Processor_| Upper Level Memory
Memory
Block X
From Processor . Block Y
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4 Questions for Hierarchy Design

Q1: Where can a block be placed in the upper level?
=> block placement
Q2: How is a block found if it is in the upper level?
=> block identification
Q3: Which block should be replaced on a miss?
=> block replacement
Q4: What happens on a write?
=> write strategy

mﬁ Iﬂ 52 4%— i‘ Memory-14 Computer Architecture
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Memory System Design

Workload or
Benchmark
programs

Processor

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, .

op: i-fetch, read, write

Memory Ophr.m.ze. the memory system orgamzahon.
s fo minimize the average memory access time
for typical workloads
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Summary of Memory Hierarchy

¢+ Two different types of locality:
Temporal Locality (Locality in Time)
Spatial Locdlity (Locality in Space)
¢ Using the principle of locality:
Present the user with as much memory as is available
in the cheapest technology.

Provide access at the speed offered by the fastest
technology.

¢ DRAM is slow but cheap and dense:

Good for presenting users with a BIG memory system
¢ SRAM is fast but expensive, not very dense:

Good choice for providing users FAST accesses

Outline

Memory hierarchy

The basics of caches

Measuring and improving cache performance
Virtual memory

A common framework for memory hierarchy
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Basics of Cache Accessing a Cache
.l.ddm-{mmg bit positions)
¢ Our first example: direct-mapped cache |?‘1 Ao B 2| o oy
¢ Block Placement: i - afes
For each item of data at the lower level, there is ¢+ 10K words, Tag +
exactly one location in cache where it might be 1-word block: Inclex Tt
Address mapping: modulo number of blocks Cache index: i el s
¢ Block identification : lower 10 bits 0
How to know if an item is in cache? Tag and valid bit Cache tag: .
If it is, how do we find it? upper 20 bits .
§ggg8s 2 Valid bit (When
start up, valid is b
N 0) 102z
>(;<< 1023 & =
N SEY é’
™ - -8 Fig. 7.7
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Hits and Misses

¢ Read hits: this is what we wantl!
¢ Read misses
Block replacement ?

Stall CPU, freeze register contents, fetch block from
memory, deliver to cache, restart

¢ Wirite hits: keep cache/memory consistent?

Write-through: write to cache and memory at same
time => but memory is very slow!

Write-back: write to cache only (write o memory when
that block is being replaced)

= Need a dirty bit for each block

DECStation 3100 uses write-through, but no need to
consider hit or miss on a write (one block has one word)
= index the cache using bits 15-2 of the address
= write bits 31-16 into tag, write datq, set valid

=~ m 3 d%-iwrjdeﬁglaia into main memory
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Hits and Misses

¢ Write misses:
Write-allocated: read block into cache, write the word
= low miss rate, complex control, match with write-back
Write-non-allocate: write directly into memory
= high miss rate, easy control, match with write-through

=
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Miss Rate

¢ Miss rate of Instrinsity FastMATH for SPEC2000

Benchmark:

Intrinsity] Instruction Data Effective

FastMAT miss rate miss combined

H rate miss rate

0.4% 11.4% 3.2%
Fig. 7.10
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Avoid Waiting for Memory
in Write Through

h
Processor Cache DRAM

[T+
Write Buffer
¢ Use a write buffer (WB):
Processor: writes data into cache and WB
Memory controller: write WB data to memory
¢ Write buffer is just a FIFO:
Typical number of entries: 4
¢ Memory system designer’s nightmare:
Store frequency > 1 / DRAM write cycle
Write buffer saturation => CPU stalled

m. ]ﬂ B2 «% i‘ Memory-23 Computer Architecture
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Exploiting Spatial Locality (I)

¢ Increase block size for spatial locality

31...16 15..43210

Data

Rt Tag \l‘16 T Toree
Index Block offset
16 bits 128 bits
Total no. of AL Data
tags and
valid bits a
entries
reduced
16 J32 Js2 J32 J32
(= |
'
Mux
Fig. 7.9 32
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Exploiting Spatial Locality (II)

¢ Increase block size for spatial locality
Read miss : bring back the whole block
Write: check tag and write at same time (WR-
allocate)
if tag match: OK; if not, read block and write again
(more than one word in a block)

Computer Architecture
CTKing/TTHwang
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Block Size on Performance

¢ Increase block size tends to decrease miss rate

10%

BER ooy oo o e o e e ey e e e e s e
rals
L
L\; . _._.___________.---' 16K
)"---._________u_ _—
. -I.-_-_-_-—-_.. B
Flg. 7.8 0% 0 4 i AR
16 3z B4 128 256

Block Size Tradeoff

¢ Larger block size take advantage of spatial locality
and improve miss ratio, BUT:
Larger block size means larger miss penalty:
= Takes longer time to fill up the block
If block size too big, miss rate goes up
= Too few blocks in cache => high competition
¢+ Average access time:
= hit time x (1 - miss rate)+miss penalty x miss rate

Miss Miss Ave. Access
Penalty Rate Exploits Spatial Locality Time
Increased Miss Penalt
Fewer blocks: & Miss Rate y
compromises
temporal locality
o s . ; i Block Size
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Memory Design to Support Cache

¢ How to increase memory bandwidth to reduce miss

penalty?
CPU CPU
Cache Cache
Memory [| Memory || Memory || Memory
e bank 0 || bank 1 [| bank2 || bank 3
Memory b. Wide memory organization c. Interleaved memory organization
.
Fig. 7.11
a. One-word-wide
’u_\ memory org |zat|onﬁﬂ> .
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Interleaving for Bandwidth

¢ Access pattern without interleaving:
Cycle time

Access time
D1 available

Start access for D1

o Star.t access for D2
¢ Access pattern with interleaving

Data ready
. I
Access Transfer time
Bank 0,1,2, 3 Access
3 l -
N ]Z(] 2, V% i‘ Memory-Bank 0 again Computer Architecture
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Miss Penalty for Different Memory
Organizations

Assume

¢ 1 memory bus clock to send the address

¢ 15 memory bus clocks for each DRAM access initiated
¢+ 1 memory bus clock to send a word of data

¢ A cache block = 4 words

¢ Three memory organizations :

A one-word-wide bank of DRAMs
Miss penalty =1+4x15+4x1=465

A two-word-wide bank of DRAMs
Miss penalty =1+2x15+2x1=33

A four-bank, one-word-wide bank of DRAMs
Miss penalty =1+ 1x15+4x1=20

-))
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Cache Performance

¢+ Simplified model: (instruction misses)
CPU time = (CPU execution cycles +
memory stall cycles) x cycle time
Memory stall cycles = instruction count x
miss ratio x miss penalty
¢ Impact on performance: (data misses)

Suppose CPU executes at clock rate = 200MHz,
CPI=1.1, 50% arith/logic, 30% Id/st, 20% control

10% memory op. get 50-cycle miss penalty

CPI = ideal CPI + average stalls per instruction
= 1.1+(0.30 mops/ins x 0.10 miss/mop x 50 cycle/miss)
=1.1cycle+ 1.5cycle=2.6

58 % of the time CPU stalled waiting for memory!
1% inst. miss rate adds extra 0.5 cycles to CPI!

mﬁ ]2)(] 2 /:’%‘ i‘ ﬁl Memory-31 Computer Architecture
aaaaaa | Tsing Hua Universny CTKing/TTHwang




Improving Cache Performance

¢ Decreasing the miss ratio
¢ Reduce the time to hit in the cache
¢ Decreasing the miss penalty

== H = U
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Reduce Miss Ratio with Associativity

¢ A fully associative cache:
Compare cache tags of all cache entries in parallel
Ex.: Block Size = 8 words, N 27-bit comparators

31 4 0
[ Cache Tag (27 bits long) [ Byte Select |
Ex: 0x01
Cache Tag Valid Bit Cache Data
———)—] Byte 31| ** [Byte 1 |Byte 0
® Byte 63| ** |Byte 33[ Byte 32
_>®_
)
X
)
1.9
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Set-Associative Cache

¢ N-way: N entries for each cache index
N direct mapped caches operates in parallel

¢+ Example: two-way set associative cache
Cache Index selects a set from the cache
The two tags in the set are compared in parallel
Data is selected based on the tag result

Valid Cache Index
Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

selt | MUX 03e|o,T_C

OR
=R S ) Cache Block
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Possible Associativity Structures

(direct mapped)
Block Tag Data
0

Two-way set associative

Set Tag Data Tag Data

w v = o

N o s WO =

An 8-block cache

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

0 Fig. 7.14

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

S - ( r r r r r r ¢ - - f{ [ T ]
= ]@ 20 ~'F Memory-35 Computer Architecture
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Block Placement

¢ Placement of a block whose address is 12:

Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Tag 2 Tag 5 Tag 5
Search T Search T T Search T T T T T T T T
Fig. 7.13
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Data Placement Policy

¢ Direct mapped cache:

Each memory block mapped to one location

No need to make any decision

Current item replaces previous one in location
¢ N-way set associative cache:

Each memory block has choice of N locations
¢ Fully associative cache:

Each memory block can be placed in ANY cache
location

¢ Misses in N-way set-associative or fully associative
cache:
Bring in new block from memory
Throw out a block to make room for new block
Need to decide on which block to throw out

=
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Cache Block Replacement

¢ Easy for direct mapped
¢+ Set associative or fully associative:
Random

LRU (Least Recently Used):
= Hardware keeps track of the access history and replace
the block that has not been used for the longest time
An example of a pseudo LRU:
= use a pointer pointing at each block in turn

= whenever an access to the block the pointer is pointing
at, move the pointer to the next block

= when need to replace, replace the block currently

pointed at
mﬁ Iﬂ B2 4%— i‘ Memory-38 Computer Architecture
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Comparing the Structures

¢+ N-way set-associative cache

N comparators vs. 1

Extra MUX delay for the data

Data comes AFTER Hit/Miss decision and set selection
¢ Direct mapped cache

Cache block is available BEFORE Hit/Miss:

Possible to assume a hit and continue, recover later if
miss

m. ]ﬂ B2 «% i‘ Memory-39 Computer Architecture
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A 4-Way Set-Associative Cache

31 380 ---12 11 10 98 ---3210

\i\zz

Index \ Tag Data \ Tag Data \ Tag Data \ Tag Data

5

! 2 L1~ Ll
5 b
e L

H it Data

¢ Increqsmg associativity shrinks index, expands tag Fig. 7.17
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al Tsing Hua Un CTKing/TTHwang

15%

12% -\
Cache o
Per'for'mance T

6% .\

Miss rat

3%

\
0% L | I J
One-way Two-way Four-way Eight-way
Associativity = {1 KB <+ 16 KB
m 2 KB < 32 KB
Asso. 2-way 4-way 8-way DaKe e
Size LRU Rdm LRU Rdm LRU Rdm
16 KB 52% 57% 47% 53% 44% 5.0%
64 KB 1.9% 2.0% 15% 1.7% 1.4% 1.5%
256 KB 1. 15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Reduce Miss Penalty
with Multilevel Caches

¢ Add a second level cache:
Often primary cache is on same chip as CPU
L1 focuses on minimizing hit time to reduce effective
CPU cycle => faster, higher miss rate
L2 focuses on miss rate to reduce miss penalty
=> miss penalty goes down if data is in L2 cache
Average access time
= L1 hit time + L1 miss rate x L1 miss penalty
L1 miss penalty
= L2 hit time + L2 miss rate x L2 miss penalty
¢ Example:
CPI of 1.0 on a 500Mhz machine with a 5% miss rate,
200ns DRAM access

Adding a L2 cache with 20ns access time decreases
overall mlss rate to 2%, what miss penalty reduced?

e Iﬂ 52 4%— i‘ 7L 5" Memory-42 Computer Architecture
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Sources of Cache Misses

¢ Compulsory (cold start, process migration):
First access to a block, not much we can do

Note: If you are going to run billions of instruction,
compulsory misses are insignificant

¢ Conflict (collision):
>1 memory blocks mapped to same location
Solution 1: increase cache size
Solution 2: increase associativity

¢ Capacity:
Cache cannot contain all blocks by program
Solution: increase cache size

¢ Invalidation:

Block invalidated by other process (e.g., 1/0) that
updates the memory

m. ]ﬂ B2 «% i‘ 7’- 2 Memory-43 Computer Architecture
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Cache Design Space

¢ Several interacting dimensions
cache size
block size
associativity
replacement policy
write-through vs write-back
write allocation
¢ The optimal choice is a compromise
depends on access characteristics
= workload Bad
= use (I-cache, D-cache, TLB)
depends on technology / cost

Cache Size

Associativity

Block Size

. .« o . Good Factor Factor B

¢+ Simplicity often wins
Less More
a':' Iﬂ 2 d%_ i‘ ' Memory-44 Computer Architecture
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Cache Summary

¢ Principle of Locality:
Program likely to access a relatively small portion of
address space at any instant of time
m Temporal locality: locality in time
= Spatial locality: locality in space
¢+ Three major categories of cache misses:
Compuisory: e.g., cold start misses.
Conflict: increase cache size or associativity
Capacity: increase cache size
¢ Cache design space
total size, block size, associativity
replacement policy
write-hit policy (write-through, write-back)
write-miss policy

=R = )
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Outline

¢ Memory hierarchy

¢ The basics of caches

¢ Measuring and improving cache performance
¢ Virtual memory

¢ A common framework for memory hierarchy
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Virtual Memory

¢ Provide illusion of a large single-level store
Every program has its own address space, starting at
address 0, only accessible to itself
= yet, any can run anywhere in physical memory
= executed in a name space (virtual address space)
different from memory space (physical address space)
= virtual memory implements the translation from virtual
space to physical space
Every program has lots of memory (> physical memory)
¢ Many programs run at once with protection and
sharing
¢ OS runs all the time and allocates physical resources

==
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Virtual Memory

¢ View main memory as a cache for disk

Address translation

S~
.\
.-\
.\
.-\
.\.)-<
= Fig. 7.19
._/ \/ .
Disk addresses
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Why Virtual Memory?

¢ Efficient and safe sharing of main memory among

multiple programs
Map multiple virtual addresses to same physical addr.

¢ Remove prog. burden of a small physical memory

¢ Generality: run programs larger than size of physical
memory

¢ Protection: regions of address space can be read-
only, exclusive, ...

¢ Flexibility: portions of a program can be placed
anywhere, without relocation

¢+ Storage efficiency: retain only most important
portions of program in memory

¢ Concurrent programming and I/O: execute other
processes while loading/dumping page

== ]@ j’-» V%_ i‘ A '%ﬂ) Memory-49 Computer Architecture
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Basic Issues in Virtual Memory

¢ Size of data blocks that are transferred from disk to
main memory

¢ When memory is full, then some region of memory
must be released to make room for the new block =>
replacement policy

¢ Which region of memory to hold new block
=> placement policy

¢ When to fetch missing items from disk?

Fetch only on a fault => demand load policy

register cache  femory disk
7
frame pages
= I@ ji_, ;1}5]_ i‘ A '%’ﬁ} Memory-50 Computer Architecture
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Paging

¢ Virtual and physical address space

- pages . pa eframes.
partitioned into blocks of equal size

¢+ Key operation: address mapping
MAP: V> M u {J} address mapping function

MAP(a) = o' if data at virtual address a is present in
physical address a' and a'in M

= ¢ if data at virtual address a is not present in M

missing item fault

a

. fault -
Processor handler
@ -
Addr Trans Main Secondary
a Mechanism Memory Memory
. a'
., physical address — OS does this transfer
%‘k ]@ 2z, .4’% i‘ 7?: ‘%ﬂ’ Memory-51 Computer Architecture
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Key Decisions in Paging

¢+ Huge miss penalty: a page fault may take millions of
cycles to process

Pages should be fairly large (e.g., 4KB) to amortize the
high access time
Reducing page faults is important

= LRU replacement is worth the price

m fully associative placement

=> use page table (in memory) to locate pages

Can handle the faults in software instead of hardware,
because handling time is small compared to disk
access

» the software can be very smart or complex

» the faulting process can be context-switched
Using write-through is too expensive, so we use write
back <= wri're policy

’3“ Iﬂ 2 d%_ i‘ Memory-52 Computer Architecture
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Choosing the Page Size

¢ Minimize wasted storage:
small page minimizes internal fragmentation
small page increase size of page table

¢ Minimize transfer time:
Iqrgie pages (multiple disk sectors) amortize access
cos
sometimes transfer unnecessary info
sometimes prefetch useful data
sometimes discards useless data early

¢+ A trend toward larger pages because
big cheap RAM
increasing memory/disk perfformance gap
larger address spaces

=
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Page Tables

Page table register

Virtual address

31 30 29 28 27 - cssmsseseamscc: 15 14 13 12 11 10 9 8 - ----- 3210
| Qualpags nume | Page offset |
\\20 ~J2
‘ Valid ’ Physical page n a" addresses
] // How many generated by
Y 4 memory the program
? references for are virtual
Page table addresses
each address
~ranslation?
i NED . Flg. 7.21
10 then page is not table located in
29 28 27 sececeeeeeeeeenn- 5 RhYaSIEa! 1rn1eon;°sry ~-- 3210
| Physical page number | Page offset |
Phvsical address
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Page Fault: What Happens When
You Miss?

¢+ Page fault means that page is not resident in memory
¢ Hardware must detect situation (why? how?), but it
cannot remedy the situation
¢ Therefore, hardware must trap to the operating
system so that it can remedy the situation
Pick a page to discard (may write it to disk)
Load the page in from disk
Update the page table
Resume to program so HW will retry and succeed!

What can HW do to help the OS?

m. ]ﬂ B2 «% i‘ Memory-55 Computer Architecture

al Tsing Hua Un CTKing/TTHwang




Handling Page Faults

¢ OS must know where to find the page
Create space on disk for all pages of process

Use a data structure to record where each valid page
is on disk (may be part of page table)

Use another data structure to track which process and
virtual addresses use each physical page

=> for replacement purpose

How to determine which frame to replace?
=> LRU policy
How to keep track of LRU?
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Handling Page Faults

number
Page table X
:l Physical page or Physical memory
Valid disk address
1 —__
1
1 —
1 —_
0 [
1 o/\x/
1 o/
0 L
1 o <0 Disk storage
1 « /
0 v
1 4
I |
I |
Fig. 7.22 | |
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Page Replacement: 1-bit LRU

¢ Associated with each page is a reference flag:
ref flag = 1 if page has been referenced in recent past
=0 otherwise
¢ Ifreplacement is necessary, choose any page frame such that
its reference bit is 0. This is a page that has not been referenced
in the recent past

dirty (used page fault handler:
? 0 page table entry [~ last replaced pointer (Irp)
0

page 10 If replacement is to take place,

table 0 I— advance Irp to next entry (mod

entry 0 table size) until one with a 0 bit
is found; this is the target for
replacement; As a side effect,

all examined PTE's have their

Or search for a page that is both reference bits set to zero.

not recently referenced AND not dirty

Architecture part: support dirty and used bits in the page table (how?)
=> may need to }ﬁpdate PTE on any instruction fetch, load, store
F Py
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Impact of Paging (T)

¢+ Page table occupies storage
32-bit VA, 4KB page, 4bytes/entry
=> 220 PTE, 4MB table

¢ Possible solutions:

Use bounds register to limit table size; add more if
exceed

Let pages to grow in both directions

=> 2 tables, 2 limit registers, one for hash, one for stack
Use hashing => page table same size as physical
pages

Multiple levels of page tables

Paged page table (page table resides in virtual space)
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Hashing: Inverted Page Tables

¢ IBM AS400 implements 64-bit addresses
48 bits translated
start of object contains a 12-bit tag

Virtual hash
Page \

/

V.Page |P.Frame

=> TLBs or virtually addressed caches are critical

— l
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Two-level Page Tables

32-bit address:

10 10 12
P1 index| P2 index ff

02 GB virtual
address space

O4 MB of PTE2 — 4 bytes—
e paged, holes
O4 KB of PTE1

What about a 48-64 bit address space?

— 4 bytes~— -
m\-\ ]ﬂ %— i‘ l Memory-61 Computer Architecture

aaaaaa | Tsing Hua Universny CTKing/TTHwang

Impact of Paging (IT)

¢ Each memory operation (instruction fetch, load,
store) requires a page-table access!
Basically double number of memory operations
¢ Internal fragmentation: minimum a page
¢ Page fault may occur in the middle of an instruction
and OS must be invoked to serve it

|
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Making Address Translation
Practical

¢ In VM, memory acts like a cache for disk
Page table maps virtual page numbers to physical
frames
Use a page table cache for recent translation
=> Translation Lookaside Buffer (TLB)

hit .
VA PA miss
TLB Main
CPU Lookup Cache Memory
Translation miss hit
with a TLB
Trans-
lation
e — data
1/2t t 20t
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Translation Lookaside Buffer

Virtual page "7 Physical page
number Valid Tag address
|
1 D
1 . Physical memory
1
1 a_
0
1 -
Page table
Physical page
Valid or disk address
1 e
1 -—
1 — Disk storage
1 -~ —
0 -— = | S
1 ~ A T ]
1 -~
0 7 [ ]
1 o« [ ]
1 Cd ~—_ 0
o 0 '¢,
Fig.7.23 [—=
a3 > e
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Translation Lookaside Buffer

¢ Typical RISC processors have memory management
unit (MMU) which includes TLB and does page table
lookup

TLB can be organized as fully associative, set
associative, or direct mapped

TLBs are small, typically < 128 - 256 entries

m Fully associative on high-end machines, small n-way set
associative on mid-range machines

¢ TLB hit on write:

Toggle dirty bit (write back to page table on
replacement)

¢ TLB miss:
If page fault also => OS exception
If only TLB miss => load PTE into TLB (SW or HW?)
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TLB of MIPS R2000

¢+ 4KB pages, 32-bit VA
=> virtual page number: 20 bits
¢ TLB organization:
64 entries, fully assoc., serve address and data
64-bit/entry (20-bit tag, 20-bit physical page number,
valid, dirty)
¢ On TLB miss:
Hardware saves page number to a special register and
generates an exception
TLB miss routine finds PTE, uses a special set of system
instructions to load physical addr into TLB
¢ Write requests must check a write access bit in TLB to
see if it has permit to write
=> if not, an exception occurs
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TLB in Pipeline

¢ MIPS R3000 Pipeline:

| Inst Fetch | Dcd/ Reg | ALU / E.A | Memory | Write Reg |
| | I-Cache |RF 4)peration li e Wq; |
| E.A. | D-Cache
TLB: 64 entry, on-chip, fully associative, software TLB fault

handler
Virtual address space:

|ASID || | | | V. Page Number | Offset |

6 \_|_: 20 12

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

= > - |
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° Virtual page number Page offset |
Integrating -

l L and Valid Dirty Tag Physical page number
TLB S
Cache =
TLB hit +—] Ok
(Ol
(=)=
[OF
\FO
Physical page number | Page offset
[———————— Physical address
Physical address tag | Cache index | Byte
offset
I~
Valid Tag Data
Cache
- T°
.
Fig. 7.24 -
Cache hit Data
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Virtual address
Processing in
TLB access TLB + COC e

TLB miss No Yes

exception Physical address

A reference may miss
in all 3 components:
Yes TLB, VM, cache

.

.
Flg‘ 7‘25 Try to read data
from cache Write access
bit on?
v
Write protection
exgeption Write data into cache,
No Yes update the tag, and put
Cache miss stall the data and the address
into the write buffer
Deliver data
== S ) to the CPU
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Possible Combinations of Events

Cache | TLB Virtual Possible? Conditions?
Memory
Miss Hit Hit Yes; but page table never checked if
TLB hits
Hit Miss Hit TLB miss, but entry found in page
table; after retry, data in cache
Miss | Miss Hit TLB miss, but entry found in page
table; after retry, data miss in cache
Miss | Miss Miss TLB miss and is followed by a page
fault; after retry, data miss in cache
Miss Hit Miss No; not in TLB if page not in memory
Hit Hit Miss No; not in TLB if page not in memory
Hit Miss Miss No; not in cache if page not in
memory
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Virtual Address and Cache

¢ TLB access is serial with cache access
Cache is physically indexed and tagged

VA PA miss

CPU Trans- Cache Main
lation Memory

hit

¢ Alternativervirfually addressed cache
Cache is virtually indexed and virtually tagged

VA T PA r
rans- ain
CPU lation Memory
Cache
hit | | N
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Virtually Addressed Cache

¢ Require address translation only on miss!

¢ Problem:

Synonym/alias problem: two different virtual addresses
map to same physical address

= Two different cache entries holding data for the same

physical address!

For update: must update all cache entries with same
physical address or memory becomes inconsistent
Determining this requires significant hardware,
essentially an associative lookup on the physical
address tags to see if you have multiple hits;
Or software enforced alias boundary: same least-
significant bits of VA &PA > cache size

=
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An Alternative: Overlapped TLB and
Cache Access

32 TLB ;:los(;slzfil)atlve index Cache 1K
‘ — 4 bytes —
10 2
| | lool
PA mits/s 20 12 PA | Data Hit/
[ page # [displace | Miss

IF cache hit AND (cache tag = PA) then deliver data to CPU

ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
access memory with the PA from the TLB
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Problem with Overlapped Access

¢ Address bits to index into cache must not change as
a result of VA translation

Limits to small caches, large page sizes, or high n-way
set associdtivity if want a large cache

Ex.: cache is 8K bytes instead of 4K:
—11—>2
cache |9 This bit is changed by VA

translation, but is needed for
cache lookup

| Solutions:

go to 8K byte page sizes;
go to 2 way set associative cache
SW guarantee VA[13]=PA[13]

!
1K 2-way set
10 $ 4 4 l associative
=~ m 0%2_ j‘ cache
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20 12
| virt page # disp

Protection with Virtual Memory

¢ Protection with VM:

Must protect data of a process from being read or
written by another process

¢ Supports for protection:
Put page tables in the addressing space of OS
=> user process cannot modify its own PT and can only
use the storage given by OS
Hardware supports: (2 modes: kernel, user)

= Portion of CPU state can be read but not written by a user
process, e.g., mode bit, PT pointer
These can be changed in kernel with special instr.
= CPU to go from user to kernel: system calls
From kernel to user: return from exception (RFE)

¢ Sharing: P2 asks OS to create a PTE for a virtual page in P1's
space, pointing to page to be shared
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A Common Framework for Memory
Hierarchies

¢ Policies and features that determine how hierarchy
functions are similar qualitatively
¢ Four questions for memory hierarchy:

Where can a block be placed in upper level?

= Block placement: one place (direct mapped), a few
places (set associative), or any place (fully associative)

How is a block found if it is in the upper level?

= Block identification: indexing, limited search, full search,
lookup table

Which block should be replaced on a miss?
= Block replacement: LRU, random

What happens on a write?
= Write strategy: write through or write back

Modern Systems

Characteristic Intel Pentium Pro PowerPC 604
Virtual address |32 bits 52 bits
Physical address |32 bits 32 bits

Page size 4 KB. 4 MB

4 KB, selectable. and 256 MB

TLB organization |A TLB for instructions and a TLB for data
Both four-way set associative
Pseudo-LRU replacement

Instruction TLB: 32 entries

Data TLB: 64 entries

TLB misses handled in hardware

A TLB for instructions and a TLB for data
Both two-way set associative

LRU replacement

Instruction TLB: 128 entries

Data TLB: 128 entries

TLB misses handled in hardware

Characteristic

Intel Pentium Pro

PowerPC 604

Cache organization

Split instruction and data caches

Split intruction and data caches

Cache size

8 KB each for instructions/data

16 KB each for instructions/data

Cache associativity

Four-way set associative

Four-way set associative

Replacement

Approximated LRU replacement

LRU replacement

Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through
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Challenge in Memory Hierarchy Summary

¢+ Every change that potentially improves miss rate can
negatively affect overall perfformance
Design change Effects on miss rate  Possible effects

size T capacity miss access time T
associativity T conflict miss access time T
block size T spatial locality T miss penalty T
¢ Trends:

Synchronous SRAMs (provide a burst of data)

Redesign DRAM chips to provide higher bandwidth or
processing

Restructure code to increase locality
Use prefetching (make cache visible to ISA)
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¢ Caches, TLBs, Virtual Memory all understood by
examining how they deal with four questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?
¢+ Page tables map virtual address to physical address
¢ TLBs are important for fast translation
¢ TLB misses are significant in processor performance
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Summary (cont.)

¢ Virtual memory was controversial:
Can SW automatically manage 64KB across many
programs?

1000X DRAM growth removed the controversy

¢+ Today VM allows many processes to share single
memory without having to swap all processes to disk;
VM protection is more important than memory
hierarchy

¢ Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to compilers, data structures,
algorithms?
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