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Recap: A Single-Cycle Processor

Add |
Registers
Read ¢ 34 ALU operation MemWrite
L Read register 1. o4 ALLIJSrC
adaress %%agte 2 data 1 MemtoReg
I I r
Instruction .
Writ Read M | Address F;e?d b
Instruction register  data 2 u ata M
memory - \évartlée X Data X
Write memory
Renge| data
16 Sign 32
extend MemRead

=R = > [
= I@ 2 7% i‘ 71:- '%% Multicycle Design-2 Computer Architecture
National Tsing Hua University CTKing/TTHwang

What's Wrong with Single-cycle?

Arithmetic & Logical

[Pc | InstMemory | RegFile [mu] ALU | mux]| setud

Load

[Pc_ | InstMemory | RegFile [Jmu| ALU | Data Mem |muxketug|
Critical Path

Store

[PC | InstMemory | RegFile |muf ALU | Data Mem |

Branch

[PC | instMemory | RegFile | cmp fmul

¢ Long cycle time
¢ Allinstructions take same time as the slowest
¢ Redal memory is not so ideal
cannot always get job done in one (short) cycle
¢ A FU can only be used once => higher cost
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Multicycle Implementation

¢ Reduce cycle time
+ Diff. Inst. take diff. cycles

¢ Share functional units l>sfor<':_ge element |
Pstorage element | Acyclic
Combinational
4 . ) Logic (A)
Acyclic 1
Combinational =>
Logic / Pstorage element |
o Acyclic
Combinational
D —

Pstorage element | Pstorage element |
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Multicycle Approach

¢+ Break up the instructions into steps, each step takes a
cycle
balance the amount of work to be done
res.:rict each cycle to use only one major functional
uni
¢ Atthe end of a cycle
store values for use in later cycles (easiest thing to do)
introduce additional internal registers

=R = > [
’3* I@ EZA 7% i‘ 7!:. ‘%’-]’ Multicycle Design-6 Computer Architecture

National Tsing Hua University CTKing/TTHwang

Partition Single-Cycle Datapath

¢ Add registers between smallest steps | RF access
ALU operation
memory access

pCST} |

,\1
Add, AL s
-

M
u
X

Registers
Read F{eadt ; eration MemWrite
N ea register Read
address ?e%eilger , datat | gemtoReg
Instruction f= .
Write Read Lo->| Address Féead e
Instruction reg.\ster data 2 ata M
memory = ertlte Data X
ata Write memory =
ch\/\lr\lc‘ data
16 Sign 37
—x extend B MemRead
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Multicycle Datapath

¢ 1 memory (instr. & data), 1 ALU (addr, PC+4, add,...),
registers (IR, MDR, A, B, ALUOut)
Storage for subsequent inst. (arch.-visible) vs. storage
for same inst. but in a subsequent cycle

[ |
|

InstI.Action L

reflister

Dat
PC Address ate ]
| . —>| Register #
Memory nstfr)t;%t;g Registers >ALU > ALOutr

p—>| Register #
D ] —I
t
| aa —>| Register #
| |

o
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Multicycle Datapath for Basic Instr.

oD  MemRead MemWrite RWrite RegDs RegWrite ALUSTCA
Read o
Address [25-21] register 1 M
Read|
datas fe— A ‘x

Read
Memory a Zero
[20-16] register 2
MemData f== structio | S wedeosters AU ALy ALUOU
nstruction ite ea
850 M e | | B !

Writ Instruction| U register  data 2 0
rite 15— 11 x ’ M
P Inrstrnfcmn L5 ; Write smelt M
egister data 2 5
Tnstruction -0 —3
[15-0] M
u
X
Memory 1
data N ALU
register ontro
.
Instruction [5- 0] Flg. 5-27

MemtoReg ALUSrcB ALUOp

¢ IR needs write control, but others don't
¢ MUX to select 2 sources to memory; memory needs read signal

¢ PC and A to one ALU input; four sources to another input
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Adding Branch/Jump

o e
Wemosa] \‘ :
) | -
Jomoies | /
op /&
5-0)
Instruction [25— 0] kS @28
.T— ot 2
TrsusTon
oo ( [31-26] l o PC [31-28]
M Instruction Read *(%
u || Adaress [25-21] register 1 vl
x Read x
Instruction Read ea A |
- Memory irution — Fnsler data 1 ' Y
=g M Read
(15-0I[T instruction| u register  gata 2 e 0 Y|
Write Instruction Us 1) x Wiite g M
register ! data 2%
Tnstruction ] 3
[15-0] M
u
X
Memory '
data ~ e
register
Instruction [5- 0]

¢ Three sources to PC Fig. 5.28
¢ Two PC write signals
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Designing a processor
Building the datapath
A single-cycle implementation
A multicycle implementation
Multicycle datapath
Multicycle execution steps
Multicycle control (Appendix C.3)
¢ Microprogramming: simplifying control (Appendix
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Five Execution Steps

¢ Instruction Fetch

¢ Instruction Decode and Register Fetch

¢+ Execution, Memory Address Computation, or Branch
Completion

¢ Memory Access or R-type Instruction Completion

¢ Memory Read Completion (Write-back)

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!
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Step 1: Instruction Fetch

¢ Use PC to getinstruction and put it in the Instruction
Register (IR)

¢ Increment the PC by 4 and put the result back in the
PC

¢ Can be described succinctly using RTL (Register-
Transfer Language)

IR = Memory|[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?
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Step 2: Instruction Decode and
Register Fetch

¢ Read registers rs and rt in case needed

¢ Compute the branch address in case the instruction
is a branch

¢ RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut=PC+ (sign—ext (IR[15-0]) <<2);

We aren't setting any control lines based on the
instruction type yet
(we are busy "decoding" it in control logic)
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Step 3: Execution

ALU is performing one of three functions, based on
instruction type:

¢ Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

¢ R-type:
ALUOut = A op B;

¢ Branch:
if (A==B) PC = ALUOut;
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Step 4: R-type or Memory-access

¢ Loads and stores access memory

MDR = Memory [ALUOut];
or

Memory [ALUOut] = B;

¢ R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle
on the edge
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Step 5: Write-back

¢ Loads write to register

Reg[IR[20-16] ]= MDR;

What about all the other instructions?
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Summary of the Steps Cycle 1 of add
IR = Memory[PC]; PC = PC + 4;
Action for R-tym Ac‘“on for mmry.reference Mim for Ac‘“on for lorD MemRead MemWrite IRWrite RegDstf RegWrite ALUSrcA

Step name instructions instructions branches jumps I ) h S ‘|‘ :

Instruction fetch IR = Memory[PC] |
PC=PC+4
Instruction A= Reg [IR[25‘21 ]] Instruction Read L 0
decode/register fetch B = Reg [IR[20-16]] Address =211 register 1 s u
! Instructi Read Read—» x
ALUOut = PC + (sign-extend (IR[15-0]) <<2) Memory 0] o regster2 @1 E_: O N i
leml ister: e N ALUOu
Execution, address ALUOuUt=AopB ALUOut = A+ sign-extend | if (A==B) then | PC=PC[31-28] Il Memp instucton _ M YZS?ST:,Q SIZ E‘saéi e 0 resul L____j_
computation, branch/ (IR[15-0)) PC=ALUOU | (IR[25-0]<<2) e nstruction || S 3 I e
jump completion aa register 1 data o U
Memory access or Ritype | Reg [IR[15-11]] = | Load: MDR = Memory[ALUOu] i Nt ¢
completion ALUOut or M
Store: Memory [ALUOut] = B Memary : [..\
register

Memory read completion Load: Reg[IR[20-16]] = MDR
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Instruction [5—0]

r = {Control
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Cycle 2 of add

A=Reg[IR[25-21]]; B=Reg[IR[20-16]];

ALUOut=PC+ (sign-s/x; (IR[15H79‘] ) <<2? ;

lorD MemRead MemWrite

RegWrite

ALUSIcA

Instruction Read
[25-21]

Address S M
Instruction Read
Memory aotion : ster 2 data 1
MemData [==g -
Instruction = Write
[15-0]7 register  data 2 B
- (\il\;rtl;e Instruction Write
register data
""" IhEfHactioh
[15-0]
Memory
data
register
Instruction [5—0]

p=>{Control,

VR EERE
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ALUSrcB ALUC
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Cycle 3 of add

ALUOut = A op B;

lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSIcA

Instruction |5 Read
Address [25-21] register 1
- Read|
Instruction Read
Memory [20-16] [ P register 2 datat
MemData =g F l—’ 0 _Registers
Instruction & M Write Rea
[15-0] | Instruction| U register  data 2
Write i 5 X .
| data Instruction [15-11] K Write
register q data
""" Ih&tHactioh =>{0
[15-0] M
u
X
Memory 1
data N
register
Instruction [5-0]
.

ALUSIcB ALUOp
Computer Architecture
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Cycle 4 of add

Reg[IR[15-11]] = ALUOut;

Zero r N
ALU ALY | ALUOU
result i

lorD Mem! MemWrite RWrite RegDst RegWrite ALUSIcA
Instruction |z Read
Address [25-21]1 ¢ register 1
.- Read|
Instruction Read
Memory [20-16] | I N register 2 data
MemData [==— . . Registers
Instruction f= Write Read|
)} [15-01 1Ry struction register  data 2
> | g‘;"";e Instruction 15-11 Write
register data
""" hEtHactioh
[15-0]
Memory
data ALU
register control
Instruction [5—0]

TRZAEE RS

National Tsing Hua University

MemtoReg

Multicycle Design-22

ALUSrcB ALUOp

Computer Architecture
CTKing/TTHwang

Simple Question

¢+ How many cycles will it take to execute this code?
1w $t2, 0($t3)
1w $t3, 4($t3) assume not
beq $t2, $t3, Label —
add $t5, $t2, $t3
sw $t5, 8($t3)
Label: ...

¢ What is going on during the 8th cycle of execution?
¢ In what cycle does the actual addition of $t2 and
$t3 takes place?
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Outline

Designing a processor
Building the datapath
A single-cycle implementation
A multicycle implementation
Multicycle datapath
Multicycle execution steps
Multicycle control (Appendix C.3)
Microprogramming: simplifying control (Appendix
C.J4)
Exceptions
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Implementing the Control

¢ Value of control signals is dependent upon:
what instruction is being executed
which step is being performed

= Control must specify both the signals to be set in any step
and the next step in the sequence

¢ Control specification
Use a finite state machine (graphically)
Use microprogramming

¢ Implementation can be derived from the
specification and use gates, ROM, or PLA
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Controller Design: An Overview

¢+ Several possible initial representations, sequence
control and logic representation, and control
implementation => all may be determined indep.

Initial Rep. Finite State Diagram | | Microprogram
~
. . . / .
Sequencing Explicit Next State Microprogram
Control Function Counter +

Dispatch ROMs

\7

Logic Rep. Logic Equations Truth Tables
—
. / <
Implementation PLA M
“hardwired control” “microprogrammed control
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Review: Finite State Machines

¢ Finite state machines:
a set of states and
next state (set by current state and input)
output (set by current state and possibly input)

Next-state
r function
Output
function

We will use a Moore Machine (output based only on
the current state)

m. ]ﬂ 2 «% i‘ 7’- Jﬂ Multicycle Design-27 Computer Architecture
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Next
state

—>| Current state

Clock

Inputs




Our Control Model

¢+ State specifies control points for RT
¢ Transfer at exiting state (same falling edge)
¢ One state takes one cycle

inputs (conditions)

Next State
Logic

EControI State |

Register Transfer
Control Points

Output Logic
P }

. _ouiputs (control points
il :),:%ipﬁ %?(' polnts)
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Summary of the Steps

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A=Reg[IR[25-21]]
decodef/register fetch B = Reg [IR[20-16]]
ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUCut=AopB ALUOUt = A + sign-extend if (A==B) then [ PC=PC[31-28] Il
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or Rtype | Reg[IR[15-11]] = | Load: MDR = Memory[ALUOut]
completion ALUOut or
Store: Memory [ALUOUL] = B
Memory read completion Load: Reg[IR[20-16]] = MDR
Fig. 5.30
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Control Specification for Multicycle

Instruction fetch

Decode/register fetch

Execute

Memory access

Memory read

Organization of Mylticycle Processor

Jum 1
35, (em\3® w o

T \lett2 7%

Instruction [25- 0]

y smum

~

\ns([rucuo
= [31-2¢ o
PCi 0 [31-28]
M Instructi Read *(%
: P=»| Address [25-21] register 1 i 1IN
Instruction Read Read A M 1
>\ Memory [20- 16] | B register 2 data 1 1 Zero) ]
MemD: T Instruct o wifegisters ALU Ly ALUOUY
nstruction M tite resu
115-01 T instruction| u register gy [ © —)
| it Instruction DN Write 4]

(]
Y
register N\, data 2%
Instruction (0 3
[15-0] M
u
X
Memory 1
16

data
register

Instruction [5-0]

Y Fig. 5.28
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Control Signals

= Signal name Effect when deasserted Effect when asserted
& ALUSrcA 1st ALU operand =PC  1st ALU operand = Reg]rs]
S  RegWrite None Reg file is written
8 MemtoReg Reg. data input = ALU  Reg. write data input = MDR
—  RegDst Reg. write dest. no. = rt Reg. write dest. no. = rd
E MemRead None Memory at address is read
MemWrite None Memory at address is written
= lorD Memory address = PC  Memory address = ALUout
20 IRWrite None IR = Memory
& PCWrite None PC = PCSource
PCWriteCond None If zero then PC = PCSource
_ Signal name Value Effect
S ALUOp 00 ALU adds
8 01 ALU subtracts Fig. 5.29
§ 10 ALU olg_)erates according to func code
o  ALUSrcB 00 2nd ALU input = B
~ 01 2nd ALU input = 4
& 10 2nd ALU input = sign extended IR[15-0]
© 11 2nd ALU input = sign ext., shift left 2 IR[15-0]
R PCSource 00 PC = ALU (PC + 4)
= 01 PC = ALUout (branch target address)
= 10 PC = PC+4[31-28] : IR[25-0] << 2
g i I@ I)_, 5’%‘ i‘ 7’: ‘%ﬂ’ Multicycle Design-32 Computer Architecture
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Mapping RT to Control Signals

¢ Instruction fetch and decode portion of every
instruction is identical:

. Instruction decode/
Instruction fetch Register fetch

: IR = MEM[PC] o
iPC=PC+4 ;

MemRead
ALUSrcA =0
lorD=0
IRWrite

ALUSrcA =0
ALUSrcB = 11

R[rs]
R[rt]
PC+ :
.. $X(Imm16)]|09.
Fig. 5.32
Memory reference FSM R-type FSM Branch FSM Jump FSM
(Figure 5.38) (Figure 5.39) (Figure 5.40) (Figure 5.41)
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Mapping RT to Control Signals

From state 1
(Op = 'LW') or (Op = 'SW")

Memory address computation

¢ FSM for controlling
memory reference
instructions:

ALUSIcA = 1
ALUSrcB = 10
ALUOp = 00

Memory
access

Memory
access

MemRead
lorD =1

MemWrite
lorD =1

Write-back step

.
Flg' 5'33 RegWrite To state 0
MemtoReg = 1 (Figure 5.37)
RegDst=0
P R i, .
%" I@ EZA 2% 2‘ 7’:. F Multicycle Design-34 Computer Architecture
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Instruction decode

Instruction fetct register fetch

Complete
FSM

MemRead
ALUSrcA =0
lorD = 0
IR W rite
ALUSrcB = 01
ALUOp =00

P C W rite
PCSource =

ALUSTICA = 0
ALUSrcB = 11
ALUOD = 00

Start

00

Memory address )
computation Jump

completion

ALUSTrcA =1
ALUSrcB =00
ALUOp = 01
PC WriteCond
PCSource = 01

ALUSTICA = 1
ALUSTIcB = 10
ALUOp =00

ALUSrcA =1
ALUSrcB = 00
ALUOp=10

P C W rite
PCSource = 10

Memory
access

Memory

access R-type completion

RegDst=1
RegWrite
MemtoReg = 0

Mem W rite
lorD = 1

Fig. 5.38

RegDst=0
RegW rite
MemtoReg =1

« State number assignment




From FSM to Truth Table

¢ Please reference the logic equations in Fig. C.3.3 and
the truth table in Fig. C.3.6

Output Equation
PCWirite state0 + state9
PCWriteCond state8
lorD state3 + stateb
NexiState0 | Output Current states
0123456789
NexiState1 PCWrite 1000000001
NexiState2 |PCWriteCond 000000O0O0T1O
NexiState3 |lorD 0001010000
a':' Iﬂ %i‘ %ﬂ) Multicycle Design-36 ComputerArchiteoture
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Designing FSM Controller

next .
state| op [cond state control points

N
Truth Table next control points
—f/— ] 11 |state
zero v s
6 I
Control signals
(S0 ]
e tapath state
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The Control Unit

ra

Controllogic

Outputs<
Fig. C.3.2
In/ |
“&fza 2| 2| = j Sequence
ol ol ol o] © Control

Instruction register
opcode field
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ROM Implementation

¢ Need a ROM of 10-bit address, 20-bit word
(16-bit datapath control, 4-bit next state)

Lower 4 bits of address ___ Bits 19-4 of word

0000 1001,013000001000

0001 0000 000000011000

001 0 0IJ 15-0]

.
$|3-0| v formatl o (hani [ ) (£33 valuc

0100 o0t 0901 0oL 2001

0101 onm 6110 1000 oo:u:: 0010 illcgal
0010 XHRX xxxx W0 0011 0104 illegal

0110 i o011 0100 0100 0100 0100 0100 Hlsgal

0111 0100 o00g 0000 0000 0000 0600 legal
o101 0000 0000 0000 0000 0000 illagal

1000 0110 o111 0111 o111 0111 0111 illegal

‘| 001 ‘o111 | oogo 0000 0000 0000 0000 illegal
1000 oot 0noo 0000 0000 0000 illegal
1001 oo 000 0000 0000 0o0g Ulzgal

UInInyg/ 1 awdyg




ROM Implementation (cont.)

Address ROM content
op” S Patapaii control NS
000000 0000 |100101000000100 0001 e Rather wasteful

000000 0001 [000000000011000 0110

000000 0010 [000000000010100 xxxX since for lots of

entries, outputs are
same or are don't-
care

e Could break up

into two smaller
000010 0000 | 100101000000100 0001 ROM:s (Fig. C.3.7,
000010 0001 |000000000011000 1001 C.3.8)

000000 0010 |000000000010100 xxxx .

000000 1010

000000 1111
000001 0000

Computer Architecture
CTKing/TTHwang
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Op5

Op4 T_l>
Op3 T_l>
Opt T_l>
Opo L_l>
55—
e —D>
51 >
so >
> .
PC W rite
PCWriteConc
PLA ;j\l rc[\)v Read
Mem W rite
[ IR W rite
Implementation
;C‘Tgm‘reﬂl
ALUOpO
ALUSrcB1
ALUSrcBO
e ——— —— ALUSIrcA
] B ogW rite
.
Fig. C.3.9 Seauende € ,¥1U:
|

ROM vs PLA

¢ ROM: use two smaller ROMs (Fig. C.3.7, C.3.8)
4 state bits give the 16 outputs, 24x14 bits of ROM
10 bits give 4 next state bits, 2'%x 4 bits of ROM
Total = 4.3K bits of ROM (compared to 29x 20 bits of
single ROM implementation)
¢ PLA is much smaller
can share product terms
only need entries that produce an active output
can take into account don't-cares
Size is (#inputs x #product-terms) + (#outputs x
#product-terms)
For this example = (10x17)+(20x17) = 460 PLA cells
¢ PLA cells usually about the size of a ROM cell (slightly
bigger)
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Instruction fetck

Complete
FSM

MemRead
ALUSrcA =0
lorD = 0
IR W rite
ALUSrcB = 01
ALUOp =00
P C W rite
PCSource = 00

Start

Memory address
computation

completion

ALUSTrcA =1
ALUSrcB =00
ALUOp = 01
PC WriteCond
PCSource = 01

ALUSTrcA =1
ALUSrcB = 10
ALUOpP =00

ALUSrcA =1
ALUSrcB = 00
ALUOp=10

Instruction decode

register fetch

ALUSTICA = 0
ALUSrcB = 11
ALUOD = 00

>m pletion

P C W rite
PCSource = 10

Memory
access

Memory

access R-type completion

RegDst=1
RegWrite
MemtoReg = 0

Mem W rite
lorD = 1

W rite-back step

RegDst=0
RegW rite

Fig. 5.38

MemtoReg =1

« State number assignment




Use Counter for Sequence Control

Control unit

PLA or ROM

Input

Outputs < | MemtoReg

— PCWrite

" [PCWriteCond
lorD
MemRead

MemWrite
IRWrite
BWrite

PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
L | RegDst
AddrCtl

=
b
=
@]

Address select logic  [+——-—-——

N

No Next-
State Lines

N

Fig. C.4.1

VR EERE

Instruction register
opcode field

Multicycle Design-44
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Address Select Unit

PLA or ROM

AddrCtl Value:
0 Set stateto 0
X 1 Dispatch ROM 1
l l State 2 Dispatch ROM 2
; V ; 3 Use incremented
Adder
state
Mux AddrCt
3210 )
f [
0
I I
| Dispatch ROM 2 | | Dispatch ROM 1 l
I__I Address select logic|

o

e}

Instruction register

opcode field

VR EEAE
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Control Contents i
Outline
Dispatch ROM 1 Dispatch ROM 2
Op Opcode name Value Op Opcode name Value P
000000 R-format 0110 100011 1w 0011 ¢ De.SIg.nlng a processor
000010 jmp 1001 101011 5w 0101 ¢ Building the datapath
000100 beq 1000 ¢ Asingle-cycle implementation
100011 1w 0010 i i i
01011 — 010 Fig. C.4.3, C.4.4 ¢ A mulh.cycle implementation
Multicycle datapath
State number Address-control action Value of AddrCtl Multicycle execution steps
0 Use incremented state 3 Multicycle control
1 Use dispatch ROM 1 1 . oL oe g o .
5 Use dispatch ROM 2 > ¢ I(\:I\I‘c‘:)roprogrqmmlng. simplifying control (Appendix
3 Use incremented state 3 : .
4 Replace state number by 0 0 ¢+ Exceptions
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0
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Microprogrammed Controller

¢ Control is the hard part of processor design
Datapath is fairly regular and well-organized
Memory is highly regular
Control is irregular and global
¢ But, the state diagrams that define the controller for
an instruction set processor are highly structured
Use this structure to

construct a simple sequencer ; datapath control
“microsequencer” control

Control reduces to - - ~fiErolsiadion """
programmingthis |  [--""- struction. o o .
simple device

=> microprogramming

! !
Imm .....

sequencer control

signals
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Microinstruction

¢ Control signals :

Think of the set of control signals that must be asserted
in a state as an instruction

Executing a microinstruction has the effect of asserting
the control signal specified by the microinstruction

¢+ Sequencing
What microinstruction should be executed next ?
= Execute sequentially (next state unconditionally)
= Branch (next state also depends on inputs)

¢+ A microprogram is a sequence of microinstructions
executing a program flow chart (finite state

machine)
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Designing a Microinstruction Set

1) Start with a list of control signals

2) Group signals together that make sense (vs.
random): called fields

3) Places fields in some logical order
(e.g., ALU operation & ALU operands first and
microinstruction sequencing last)

4) Create a symbolic legend for the microinstruction
format, showing name of field values and how they
set control signals

Use computers to design computers

5) To minimize the width, encode operations that will

never be used at the same time

=N = o )
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1-3) Control Signals and Fields

Signal name Effect when deasserted Effect when asserted
ALUSrcA 1st ALU operand = PC 1st ALU operand = Reg|rs]
RegWrite None Reg file is written
MemtoReg Reg. write data input = ALU Reg. write data input = MDR RegDst

Reg. write dest. no. = rt Reg. write dest. no. = rd
MemRead None Memory at address is read
MemWrite None Memory at address is written
lorD Memory address = PC Memory address = ALUout
IRWrite None IR = Memory
PCWrite None PC = PCSource
PCWriteCond None If zero then PC = PCSource

Signal name Value Effect
ALUOp 00 ALU adds

Multiple Bit Control Single Bit Control

01 ALU subtracts

10 ALU operates according to func code
ALUSrcB 00 2nd ALU input =B

01 2nd ALU input = 4

10 2nd ALU input = sign extended IR[15-0]

11 2nd ALU input = sign extended, shift left 2 IR[15-0]
PCSource 00 PC = ALU (PC +4)

01 PC = ALUout (branch target address)

10 PC = PC+4[31-28] : IR[25-0] << 2




4) Fields and Legend

Control Signals

Field name Value Signals active Comment
H i i i i ifi Add ALUOp = 00 Cause the ALU to add.
Qfl’jdcr\o’ﬂﬂ?oel Xg’é’es for F,eld FAtl’.rﬁchSSOf F'e’d Wl"'l SpeC'flC Value ALU control Subt ALUOp = 01 Elzunsci;h? ALU to subtract; this implements the compare for
SUbf. ALU SUbfrOCfS Func code ALUOpD = 10 Use the instruction's function code to determine ALU control.
Func code ALU does function code SRC1 ZC ﬁtggzﬁ - (1) giﬁé_ﬁiﬁ:ﬁ:ﬁfﬁmm'
SRC1 PC 1st ALU input = PC B ALUSIcB = 00 Register B is the second ALU input.
A 1st ALU input = A (Reg]rs]) SRC2 4 ALUSIcB = 01 Use 4 as the second ALU input.
i = Extend ALUSIcB = 10 Use output of the sign extension unit as the second ALU input.
SRC2 2 %ng ﬁtﬁ !npUI - 5 (Reg [rﬂ) Extshft ALUSIcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Extend 2:d ALU ;Rpﬂf : Si n ext |R[1 5 0] Read Read two registers using the rs and rt fields of the IR as the register
- . - numbers and putting the data into reqgisters A and B.
Extshﬂ' 2nd ALU ingut = sign ex., sl |R[‘| 5_0] Aot Write ALU :eg\glritf,1 :Ir\]lrite atreg‘istefr‘:sinAgLSg r? fiel::] o!dthle IR as the register number and
Register control Read A = Reg]rs]; B = Reg[r]; oo MeoRea 0 e comenisolfhe ATPdlas e dala
Write ALU Reg [rd] = ALUout Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
. RegDst = 0, the contents of the MDR as the data.
erfe MDR Reg [”] = MDR MemtoReq = 1
Memory Reqd PC |R (MDR) - mem[PC] Read PC MemRead, Read memory using the PC as address; write result into IR (and
-— lorD=0 the MDR).
Rwegd :I!'H MDR [_ATUemhALUBOU'] Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
rre mem oul] = lorD = 1
PC write ALU PC = ALU outpuf Write ALU Il\greDmlN:ite, Z\;rti;e memory using the ALUOut as address, contents of B as the
_ALUOU"'Cond. IF ALU zero then PC = ALUOU* ALU PCSource = 00 Write the output of the ALU into the PC.
jump addr. PC = PCSource PCWiite
Sequencing Seq Go to sequenﬁal microins"ucﬁon PC write control ALUOut-cond PCSource =01, If the Zero output of the ALU is active, write the PC with the contents
. . . N PCWriteCond of the register ALUOut.
FD?S'Fc)gfch 1 gics,'::gtt(?l’? Jlsrisril‘grnRICorﬂ?Struc"on jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite
H H H [Sea AddrCtl = 11 Choose the next microinstruction sequentially.
Dlquk:h 2 DISpOtCh USIng ROM2 Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.
Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.
The Microprogram The Controller
Control unit
ALU Registel' PCWrite Microcode memory Datapath
Label | control |SRC1| SRC2 | control | Memory control Sequencing
Fetch Add PC |4 Read PC |ALU Seq Outputs <
Add PC  |Extshft |Read Dispatch 1 ALUp
R A SrcB
Memt Add A Extend Dispaitch 2 ALUSIcA
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 |Func code [A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUQut-cond _|Fetch -
JUMP1 Jump address |Fetch g
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opcode field
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The Dispatch ROMs

Our Plan: Using ROM

p-instruction

Dispatch ROM 1
Op Opcode name Value
000000 R-format Rformat1
000010 Jmp JUMP1
000100 beq BEQ1
100011 1w Mem1
101011 Sw Mem1
Dispatch ROM2
Op Opcode name Value
100011 1w Lw2
101011 Sw SW2
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Microinstruction Interpretation

Main

Memory

execution

unit

CPU

control
memory

LADD |
SUB

LAND |
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User program
plus Data

this can change!

one of these is
mapped into one
of these

AND microsequence

e.g., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate
Save Answer(s)

Computer Architecture
CTKing/TTHwang

Microprogramming Using ROM : Pros
and Cons

¢ Ease of design

¢ Flexibility
Each to adapt to changes in organization, timing,
technology
Can make changes late in design cycle, or even in the
field

¢+ Generality
Implement multiple inst. sets on same machine
Can tailor instruction set to application
Can implement very powerful instruction sets (just more
control memory)

¢+ Compadatibility
Many organizations, same instruction set

¢ Costly to implement and Slow

AL AEERE
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5) Microinstruction Encoding

State number Control bits 17- 2 Control bits 1- 0
0 10010100000p1000 11
1 00000000000|1 1000 01
2 0000100000001 0100 10
3 0011j0000000p0000O 11
4 00000010000p0010 00
5 00101000000p0000 00
6 00000000010p0100 11
7 00000000000p0011 00
8 01000000101p0100 00
9 10000001000p0000 00

Fig. C.4.5
* Bits 7-13 can be encoded to 3 bits because only one bit
of the 7 bits of the control word is ever active

== H = U
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Minimal vs. Maximal Encoding

¢ Minimal (Horizontal ):

+ more control over the potential parallelism of operations in
the datapath

- uses up lots of control store

¢ Maximal (Vertical):
+ uses less number of control store
- extra level of decoding may slow the machine down

=k = [
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Summary of Control

¢+ Control is specified by a finite state diagram
¢+ Specialized state-diagrams easily captured by
microsequencer
simple increment and “branch” fields
datapath control fields
¢ Control can also be specified by microprogramming
¢ Control is more complicated with:
complex instruction sets
restricted datapaths
¢ Simple instruction set and powerful datapath =>
simple control
could reduce hardware
Or go for speed => many instructions at once!
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Outline

Designing a processor

Building the datapath

A single-cycle implementation

A multicycle implementation
Multicycle datapath
Multicycle execution steps
Multicycle control

®* & o o

¢ Microprogramming: simplifying control
¢ Exceptions
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Exceptions

User Progran

¢ Normal control flow: sequential, jumps, branches, calls, returns

¢ Exception = unprogrammed control transfer
system takes action to handle the exception
m must record address of the offending instruction
m should know cause and transfer to proper handler
m if returns to user, must save & restore user state

=k = > [
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111
i

return from
exception

User/System Modes

¢ By providing two modes of execution (user/system),
computer may manage itself

OS is a special program that runs in the privileged
system mode and has access to all of the resources of
the computer
Presents “virtual resources” to each user that are more
convenient than the physical resources

m files vs. disk sectors

= virtual memory vs. physical memory
protects each user program from others

¢+ Exceptions allow the system to taken action in
response to events that occur while user program is

executing
OS begins at the handler
%'a ]@ j)-» 3%_ i‘ 71: ‘%ﬂ) Multicycle Design-65 Computer Architecture
National Tsing Hua University CTKing/TTHwang

Two Types of Exceptions

¢ Interrupts:
caused by external events and asynchronous to
execution
=> may be handled between instructions
simply suspend and resume user program

¢+ Exceptions:
caused by internal events and synchronous to
execution, e.g., exceptional conditions (overflow),
errors (parity), faults
instruction may be retried or simulated and program
continued or program may be aborted
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MIPS Convention of Exceptions

+MIPS convention:

exception means any unexpected change in control
flow, without distinguishing internal or external

use interrupt only when the event is externally caused

Type of event From where? MIPS terminology
I/O device request External Interrupt
Invoke OS from user program Internal Exception
Hardware malfunctions Either Exception or
Interrupt
Arithmetic overflow Internal Exception
Using an undefined inst. Internal Exception
%‘:‘\ ]@ j’—, «% i‘ 7?: ‘%ﬂ’ Multicycle Design-67 Computer Architecture
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Precise Interrupts

¢ Precise: machine state is preserved as if program
executed upto the offending inst.

Same system code will work on different
implementations of the architecture

Position clearly established by IBM, and taken by MIPS
Difficult in the presence of pipelining, out-ot-order
execution, ...
¢ Imprecise: system software has to figure out what is
where and put it all back together
¢+ Performance goals often lead designers to forsake
precise interrupts

system software developers, user, markets etc., usually
wish they had not done this

aal-E HERE
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Handling Exceptions in Our Design

¢ Consider two types of exceptions:
undefined instruction & arithmetic overflow

¢ Basic actions on exception:
Save state: save the address of the offending
instruction in the exception program counter (EPC)
Transfer control to OS at some specified address
=> need to know the cause for the exception
=> then know the address of exception handler
After service, OS can terminate the program or
continue its execution, using EPC to return
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Saving State: General Approaches

¢ Push it onto the stack
Vax, 68k, 80x86
¢+ Save it in special registers
MIPS EPC, BadVaddr, Status, Cause
¢+ Shadow Registers
M88k
Save state in a shadow of the internal pipeline registers
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Addressing the Exception Handler

¢ Traditional approach: interrupt vector

The cause of exception is a vector
giving the address of the handler

PC <- MEM[ IV_base + cause | | 00]

68000, Vax, 80x86, . . . _ —]  |handler
iv_base code
cause
¢ RISC Handler Table N
PC <- IV_base + cause | | 0000
Saves state and jumps
Sparc, PA, M88K, . .. handler
¢ MIPS approach: fixed entry entry cople
use a status register (cause regisfer! AN cause
to hold a field to indicate the cause

PC <- EXC_addr
a2 HEA
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Additions for Our Design

¢ EPC:reg. to hold address of affected inst.

¢ Cause: reg. to record cause of exception
Assume LSB encodes the two possible exception
sources: undefined instruction=0 and arithmetic
overflow=1
¢ Two control signals to write EPC (EPCWrite) and
Cause (CauseWrite), and one control signal
(IntfCause) to set LSB of Cause register
¢+ Be able to write exception address into PC, assuming
at C000 0000,
=> needs a 4-way MUX to PC
¢ May undo PC = PC + 4, since want EPC to point to
offending inst. (not its successor)
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Datapath with Exception Handling

™
Jump
Instruction (26— 0] 2 [(snin\2 address [31-0] M
Nolleft2 [N
Tnstruction lco 0000
oo -~ [31-26] — A PC[31-28]
M Read s |
u [=»|Address [25-21] register 1 U ]
x Read fum ] x
Memory Read Zero}
! [20- 16] ~ register 2 data 1 ! ALU sty
MemD et 0 wrReasters A ALUOU g [EPC]
INStruction fug M || Write Read || B
) (150 T instruction | u register  gata 2 0 |
-] g“a"'f Instruction ps-1i | x Write Gempl 1M
register J 2y
instruction >0 3 0=p>{0
[15-0] M M
c
M u ause
M X
k| Memory i Tt
data )
register peb>{ cONtrol
Fig. 5.3%
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Exception Detection

¢ Undefined instruction: detected when no next state is
defined from state 1 for the op value
Handle this by defining the next state value for all op
values other than lw, sw, 0 (R-type), jmp, and beq as a
new state, “other”
¢ Arithmetic overflow: detected with the Overflow signal out
of the ALU
This signal is used in the modified FSM to specify an
additional possible next state
Note: challenge in designing control of a real machine is to
handle different interactions between instructions and other
exception-causing events such that control logic remains small
and fast
Complex interactions makes the control unit the most
challenging aspect of hardware design
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Instruction decode.
Instruction fetch Register fetch

FSM with :
Exception

Start

Handling

MemRead
ALUSrcA =0

ALUSrcA =0
ALUSrcB = 11
ALUOp = 00

Memory address
computation

completion

ALUSIcA =1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOPp = 10

ALUSICA = 1
ALUSIcB = 00
ALUOp = 00

PCWrite
PCSource = 10

Memory
access

Memory
access

R-type completion

IntCause = 0
CauseWrite

IntCause = 1
CauseWrite

X RegDst = 1 ALUSrcA = 0 ALUSrcA = 0

MemWrite RegWrite Overflow ALUSICB = 01 ALUSIcB = 01
lorD =1 MemtoReg = 0 ALUOp = 01 ALUOp = 01
EPCWrite EPCWrite

PCWrite
PCSource =11

PCWrite
PCSource = 11

Write-back step

Overflow

RegWrite

MemtoReg = 1
RegDst = 0

Fig. 5.40




Summary

¢+ Specidalize state diagrams easily captured by
microsequencer
simple increment and branch fields
datapath control fields
¢ Control design reduces to microprogramming
¢+ Exceptions are the hard part of control

Need to find convenient place to detect exceptions
and to branch to state or microinstruction that saves PC
and invokes OS

Harder with pipelined CPUs that support page faults on
memory accesses, i.e., the instruction cannot
complete AND you must restart program at exactly the
instruction with the exception
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