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Outline

¢ Instruction set architecture
(using MIPS ISA as an example)
¢ Operands
Register operands and their organization
Memory operands, data transfer
Immediate operands
¢ Instruction format
¢ Operations
Arithmetic and logical
Decision making and branches
Jumps for procedures
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What Is Computer Architecture?

Computer Architecture =
Instruction Set Architecture
+ Machine Organization

¢ “... the dttributes of a [computing] system as

seen by the [ assembly language]

programmer, i.e. the conceptual structure
and functional behavior ...”

What are specified?
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Recall in C Language

¢ Operators: +, -, *, /, $ (mod), ...
7/4==1, 7%4==
¢ Operands:
Variables: lower, upper, fahr, celsius
Constants: 0, 1000, -17, 15.4
¢ Assignment statement:
variable = expression
Expressions consist of operators operating on
operands, e.g.,
celsius = 5* (fahr-32)/9;
a = b+c+d-e;
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When Translating to Assembly

Components of an ISA

=b + 5; ¢ Organization of programmable storage
Stat ; registers
@ Srl m atemen memory: flat, segmented
load $ 2' Modes of addressing and accessing data items and
oa 2,5 instructions
P ——— R
add $r3, $r1, $r2  Constant ¢ Data types and data structures
store $r3' M[ q] enco.dlng and representation (next chapter)
> Operands ¢ Instruction formats
Memor ¢ Instruction set (or operation code)
Regist Y ALU, control transfer, exceptional handling
egister .
Operaior (op code)
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MIPS ISA as an Example Outline

+ Instruction categories: Registers
Load/Store
Computational $r0 - $r31
Jump and Branch
Floating Point
Memory Management I G |
Special I i |
[ LO |
3 Instruction Formats: all 32 bits wide
| op [ors | st | $rd | sa | funct |

| OP |$rs | $rt | immediate |

[ op | jump target |
’3* Iﬂ EZA «%— i‘ Instruction Set-6 Computer Architecture
al Tsing Hua Un C.T.King/T.T.Huang

¢ Instruction set architecture
(using MIPS ISA as an example)
¢ Operands
Register operands and their organization (Sec. 2.2)
Memory operands, data transfer
Immediate operands
¢ Instruction format
¢+ Operations
Arithmetic and logical
Decision making and branches
Jumps for procedures
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Operands and Registers

¢ Unlike high-level language, assembly don't use
variables
=> assembly operands are registers

Limited number of special locations built directly into
the hardware

Operations are performed on these
¢ Benefits:
Registers in hardware => faster than memory

Registers are easier for a compiler to use

m e.g., as a place for temporary storage
Registers can hold variables to reduce memory traffic
and improve code density (since register named with
fewer bits than memory location)

MIPS Registers

¢+ 32 registers, each is 32 bits wide
Why 32?7 smaller is faster
Groups of 32 bits called a word in MIPS
Registers are numbered from 0 to 31
Each can be referred to by number or name
Number references:
$0, $1, $2, .. $30, $31
By convention, each register also has a name to make
it easier to code, e.g.,
$16 — $22 = $s0 - $s7 (C variables)
$8 - $15 > $t0 - $t7 (temporary)
¢ 32 x 32-bit FP registers (paired DP)
¢ Others: HI, LO, PC
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[TTTT
Memory

Registers Conventions for MIPS

0 zero constant 0 16 s0 callee saves

1 at reserved forassembler L (caller can clobber)

2 v0 expression evaluation & 23 s7

3 vi1 function results 24 t8 temporary (cont’d)

4 a0 arguments 25 19

5 ai 26 kO reserved for OS kernel
6 a2 i .

7 a3 28 gp pointer to global area

8 t0 temporary: caller saves 29 sp stack pointer

(callee can clobber) 30 fp frame pointer

15 17 31 ra returnaddress (HW)
S PR Y g2
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MIPS R2000

Ld Ld
Organ'zatlon CPU Coprocessor 1 (FPU)
Registers Registers
$0 $0
’, $31 _‘ $31
Arithmetic Multiply
unit divide
Arithmetic
Coprocessor 0 (traps and memory)
Flg. A.10.1 Registers
BadVAddr Cause
Status EPC




Operations of Hardware

¢ Syntax of basic MIPS arithmetic/logic instructions:
add $s0,$sl1,$s2 # £f=g+nh
1) operation by name
2) operand getting result (“destination™)
3) 1st operand for operation (“source1™)
4) 2nd operand for operation (“source2”)
¢ Each instruction is 32 bits
¢ Syntax is rigid: 1 operator, 3 operands
Why? Keep hardware simple via regularity
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Example

¢ How to do the following C statement?

£ =(g+h) - (i+ 3);

use intermediate temporary register £ 0

add $s0, $s1,$s2 $# £f=g+h
add $t0, $s3,$s4 # t0=1i 4+ j
sub $s0, $s0, $t0 # £=(g+h)-(i+3)
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Register Architecture

¢ Accumulator (1 register):
1 address: add A acc <« acc + mem[A]
1+x address: addx A acc <« acc + mem[A+X]
¢ Stack:
0 address: add tos « tos + next
¢ General Purpose Register:
2 address: add AB EA(A) « EA(A) + EA(B)
3 address: add A,B,C EA(A) « EA(B) + EA(C)
¢ Load/Store: (a special case of GPR)
3 address: add Sra,Srb,Src  Sra « Srb + Src

load Sra,Srb Sra <« mem|[Srb]
store Sra,Srb mem[Srb] « Sra
mﬁ Iﬂ %— i‘ ‘ Instruction Set-14 Computer Architecture
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Register Organization Affects

Programming
Code for C = A + B for four register organizations:
Stack Accumulator  Register Register

(reg-mem) (load-store)
Push A Load A Load Sr1,A Load Sr1,A

Push B Add B Add $Sr1,B  Load $r2,B
Add Store C Store C,Sr1  Add Sr3,5r1,5r2
Pop C Store C,$r3

=> Register organization is an attribute of ISA!

Comparison: Byte per instruction? Number of
instructions? Cycles per instruction?

Since 1975 all machines use GPRs
m. ]ﬂ %i‘ 7’- Jﬂ Instruction Set-15 Computer Architecture
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Outline

¢ Instruction set architecture
(using MIPS ISA as an example)

¢ Operands
Register operands and their organization
Memory operands, data transfer (Sec 2.3)
Immediate operands

¢ Instruction format

¢ Operations
Arithmetic and logical
Decision making and branches
Jumps for procedures
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Memory Operands

¢ C variables map onto registers; what about large
data structures like arrays?

Memory contains such data structures
¢ But MIPS arithmetic instructions operate on registers,
not directly on memory

Data transfer instructions (lw, sw, ...) to transfer between
memory and register

A way to address memory operands
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Data Transfer: Memory to Register
(1/2)

+ To transfer a word of data, need to specify two things:
Register: specify this by number (0 - 31)
Memory address: more difficult
m Think of memory as a 1D array
= Address it by supplying a pointer to a memory
address
m Offset (in bytes) from this pointer
= The desired memory address is the sum of these two
values, e.g., 8 ($t0)
= Specifies the memory address pointed to by the
value in $t0, plus 8 bytes (why “bytes”, not
“words”?)

m Each address is 32 bits

aal m HERE . .
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Data Transfer: Memory to Register
(2/2)
¢ Load Instruction Syntax:
lw $t0,12($s0)
1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory
¢ Example: 1w $t0,12($s0)
Iw (Load Word, so a word (32 bits) is loaded at a time)
Take the pointer in $s0, add 12 bytes to it, and then

load the value from the memory pointed to by this
calculated sum into register $t0

¢ Notes:
$s0 is called the base register, 12 is called the offset

Offset is generally used in accessing elements of array:
base register points to the beginning of the array

l
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Data Transfer: Register to Memory

¢ Also want to store value from a register into memory
¢ Store instruction syntax is identical to Load instruction
syntax
¢ Example: sw $t0,12 ($s0)
sw (meaning Store Word, so 32 bits or one word are
loaded at a time)
This instruction will take the pointer in $s0, add 12 bytes
to it, and then store the value from register $t0 into the
memory address pointed to by the calculated sum
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Compilation with Memory

¢ Compile by hand using registers:
g: $s1, h: $s2, $s3:base address of A
g =h + A[8];

¢ What offset in 1w to select an array element A[8] in a
C program?
4x8=32 bytes to select A[8]
1st transfer from memory to register:
1w $t0,32($s3) # St0 gets A[8]
Add 32 to $s3to selecta[8], putinto $t0

¢ Next additto h and placeing
add $s1,$s2,5t0 # 8sl1 = h+A[8]
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Addressing: Byte versus Word

¢ Every word in memory has an address, similar to an
index in an array
¢ Early computers numbered words like C numbers
elements of an array:
Memory[0], Memory[1], Memory[2],

/
Callsdthe “address™of a word

¢+ Computers needed to access 8-bit bytes as well as
words (4 bytes/word)
¢+ Today, machines address memory as bytes, hence
word addresses differ by 4
Memory[0], Memory[4], Memory[8], ...
This is also why Iw and sw use bytes in offset
mﬁ Iﬂ %— i‘ Instruction Set-22 Computer Architecture
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A Note about Memory: Alignment

¢ MIPS requires that all words start at addresses that are
multiples of 4 bytes

o 1 2 3

Not
Aligned

¢ Cadlled Alignment: objects must fall on address that is
multiple of their size
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Another Note: Endianess

¢+ Byte order: numbering of bytes within a word
¢ Big Endian: address of most significant byte = word
address (xx00 = Big End of word)
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
¢+ liftle Endian: address of least significant byte = word
address (00xx = Little End of word)
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte 0
3 2 1 0
msb Isb
0 1 2 3
big endian byte 0
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MIPS Data Transfer Instructions

Instruction Comment
sw  $13,500(S14) Store word
sh $13,502(512) Store half

sb $12,41(S13) Store byte
Iw St1, 30(St2) Load word

lh St1, 40(513) What does it mean?

lhu  S$t1, 40($13)

Load halfword
Load halfword unsigneg

Ib St1, 40(St3) Load byte
Ibu  $t1, 40($t3) Load byte@nsigneg
lui St1, 40 Load Upper Immediate
(16 bits shifted left by 16)
%'a ]@ j)-» 3%_ i‘ 71: ‘%ﬂ) Instruction Set-25 Computer Architecture
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Load Byte Unsigned

$to

SN

~
|12 IZFO

Ib $t1, 0($10)

$t1
FFFFFF F7 | Sign-extended

$t2
Ibu $t2, 0($t0) (000000 F7| Zero-extended
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Role of Registers vs. Memory

¢ What if more variables than registers?
Compiler tries to keep most frequently used variables
in registers
Writes less common variables to memory: spilling
¢ Why not keep dll variables in memory?
Smaller is faster:
registers are faster than memory
Registers more versatile:
= MIPS arithmetic instructions can read 2 registers, operate
on them, and write 1 per instruction
= MIPS data transfers only read or write 1 operand per
instruction, and no operation
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Outline

¢ Instruction set architecture
(using MIPS ISA as an example)

¢ Operands
Register operands and their organization
Memory operands, data transfer, and addressing
Immediate operands (Sec 2.3)

¢ Instruction format

¢ Operations
Arithmetic and logical
Decision making and branches
Jumps for procedures
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Constants

¢ Small constants used frequently (50% of operands)
eg., A=A+5;
B=B+1;
C=C-18;
¢ Solutions? Why not?
put typical constants' in memory and load them
create hard-wired registers (like $zero) for constants

¢ MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, é
ori $29, $29, 4
¢ Design Principle: Make the common case fast
Which format?
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Immediate Operands

¢ Immediate: numerical constants
Often appear in code, so there are special instructions

for them

Add Immediate:
£f =g+ 10 (in C)
addi $s0,$s1,10 (in MIPS)

where $s0, $s1 are associated with £, g
Syntax similar to add instruction, except that last
argument is a number instead of a register

One particular immediate, the number zero (0),
appears very often in code; so we define register zero
($0 or $zero) to always 0

This is defined in hardware, so an instruction like

addi $0,$0,5 will not do anything
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Outline

¢ Instruction set architecture
(using MIPS ISA as an example)
¢ Operands
Register operands and their organization
Memory operands, data transfer
Immediate operands
¢ Instruction format (Sec. 2.4. 2.9)
¢+ Operations
Arithmetic and logical
Decision making and branches
Jumps for procedures
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Instructions as Numbers

¢ Currently we only work with words (32-bit blocks):
Each register is a word
1w and sw both access memory one word at a time
¢ So how do we represent instructions?

Remember: Computer only understands 1s and Os, so
“add $t0, $0, $0” is meaningless to hardware

MIPS wants simplicity: since data is in words, make
instructions be words...
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MIPS Instruction Format

¢ One instruction is 32 bits
=> divide instruction word into “fields”
Each field tells computer something about instruction
¢ We could define different fields for each instruction,
but MIPS is based on simplicity, so define 3 basic
types of instruction formats:
R-format: for register
I-format: for immediate, and 1w and sw (since the offset
counts as an immediate)

J-format: for jump
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R-Format Instructions (1/2)

¢ Define the following “fields”:
6 5 5 5 5 6

opcode rs rt rd shamt | funct
opcode: partially specifies what instruction it is (Note: 0
for all R-Format instructions)
funct: combined with opcode to specify the instruction
Question: Why aren’t opcode and funct a single 12-bit
field?
rs (Source Register): generally used to specify register
containing first operand
rt (Target Register): generally used to specify register
containing second operand
rd (Destination Register): generally used to specify
register which will receive result of computation
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R-Format Instructions (2/2)

¢+ Notes about register fields:
Each register field is exactly 5 bits, which means that it
can specify any unsigned integer in the range 0-31.
Each of these fields specifies one of the 32 registers by
number.

¢ Final field:
shamt: contains the amount a shift instruction will shift
by. Shifting a 32-bit word by more than 31 is useless, so
this field is only 5 bits
This field is set to 0 in all but the shift instructions

‘*‘E
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R-Format Example (1/2)

¢ MIPS Instruction:
add  $8,$9,510
opcode =0 (look up in table)
funct = 32 (look up in table)
rs = 9 (first operand)
rt = 10 (second operand)
rd = 8 (destination)
shamt = 0 (not a shift)

binary representation:

000000 | 01001 [ 01010| 01000 | 00000 | 100000

called a Machine Language Instruction
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I-Format Instructions

¢ Define the following “fields”:
6 5 5 16

opcode rs rt | immediate
opcode: Uniquely specifies an I-format insiruction

rs: specifies the only register operand

rt: specifies register which will receive result of
computation (target register)

addi, slti, slitu, immediate is sign-extended to 32
bits, and treated as a signed integer

16 bits = can be used to represent immediate up to 21¢
different values

¢+ Key concept: Only one field is inconsistent with R-
format. Most importantly, opcode is still in same

location
= l
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I-Format Example 1

¢ MIPS Instruction:
addi $21,$22,-50
opcode = 8 (look up in table)
rs = 22 (register containing operand)
rt = 21 (target register)
immediate = -50 (by default, this is decimal)

decimal representation:

8 22 21 -50

binary representation:

001000| 10110} 10101 1111111111001110

aal m HERE . .
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I-Format Example 2

¢ MIPS Instruction:
1w $t0,1200($t1)
opcode = 35 (look up in table)
rs = 9 (base register)
rt = 8 (destination register)
immediate = 1200 (offset)

decimal representation:

35 9 8 1200
binary representation:

100011 01001 | 01000f 0000010010110000

’mﬁ ]ﬂ %— i‘ Instruction Set-39 Computer Architecture
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I-Format Problem

What if immediate is too big to fit in immediate field?
¢ Load Upper Immediate:
lui register, immediate
puts 16-bit immediate in upper half (high order hailf) of
the specified register, and sets lower half to Os
addi  $t0,$t0, OxABABCDCD

becomes:
lui $at, OxABAB
ori $at, $at, 0xCDCD

add $t0, $t0, Sat

Big Idea: Stored-Program Concept

¢ Computers built on 2 key principles:
1) Instructions are represented as numbers

2) Thus, entire programs can be stored in memory to
be read or written just like numbers (data)
¢ One consequence: everything addressed
Everything has a memory address: instructions, data
= both branches and jumps use these

One register keeps address of the instruction being
executed: “Program Counter” (PC)

= Basically a pointer to memory: Intel calls it Instruction
Address Pointer, which is better

A register can hold any 32-bit value. That value can

l = Fi1/| l be a (signed) int, an unsigned int, a pointer (memory
R1 | | 0000 ... 0000 | address), etc.
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Outline MIPS Arithmetic Instructions

¢ Instruction set architecture
(using MIPS ISA as an example)

¢ Operands
Register operands and their organization
Memory operands, data transfer, and addressing
Immediate operands

¢ Instruction format

¢ Operations
Arithmetic and logical (Sec 2.5)
Decision making and branches
Jumps for procedures
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Instruction Example Meaning Comments

add add $1,$2,$3 $1=9%2+9%3 3 operands;
subtract sub $1,$2,$3 $1=9%2-9%3 3 operands;

add immediate addi $1,$2,100 $1=$2+ 100 + constant;
«m. m 2 v% i‘ Instruction Set-43 Computer Architecture
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Bitwise Operations

¢ Up until now, we've done arithmetic (add, sub, addi)
and memory access (1w and sw)
¢ All of these instructions view contents of register as a
single quantity (such as a signed or unsigned integer)
¢ New perspective: View contents of register as 32 bits
rather than as a single 32-bit number
¢ Since registers are composed of 32 bits, we may
want to access individual bits rather than the whole.
¢ Introduce two new classes of instructions:
Logical Operators
Shift Instructions
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Logical Operators

¢ Logical instruction syntax:
or $t0, $tl, s$t2

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or immediate (numerical
constant)
¢ Instruction names:
and, or: expect the third argument to be a register
andi, ori: expect the third argument to be immediate
¢ MIPS Logical Operators are all bitwise, meaning that
bit 0 of the output is produced by the respective bit
0's of the inputs, bit 1 by the bit 1's, etc.
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Use for Logical Operator And

¢ and operator can be used to set certain portions of a
bit-string to Os, while leaving the rest alone => mask

¢ Example:
Mask: 1011011010100100 0011|1101 1001 1010
0000 0000 0000 0000 0000 1111 1111 1111

¢ The result of anding these two is:
0000 0000 0000 0000 000041101 1001 1010

¢ In MIPS assembly: andi $t0, $t0, OXFFF

aal m HERE . .
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Uses for Logical Operator Or

¢ or operator can be used to force certain bits of a
string to 1s

¢+ For example,
$t0 = 0x12345678, then after

ori $t0, $t0, OxFFFF
$t0 = 0x1234FFFF

(e.g. the high-order 16 bits are untouched, while
the low-order 16 bits are set to 1s)

‘*‘E
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Shift Instructions (1/3)

¢ Shift Instruction Syntax:

sll $t2,$s0,4
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant)

¢ MIPS has three shift instructions:

s11 (shift left logical): shifts left, fills empties with Os
srl (shift right logical): shifts right, fills empties with Os
sra (shift right arithmetic): shifts right, fills empties by
sign extending

Shift Instructions (2/3)

¢ Move (shift) all the bits in a word to the left or right by
a number of bits, filling the emptied bits with Os.

+ Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110|0111 1000

0000 0000{0001 0010 0011 0100 0101 0110

¢+ Example: shift left by 8 bits
0001 oo1o|oo11 0100 0101 01100111 1000

_ _—

001101000101 01100111 1000; 0000 0000
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Shift Instructions (3/3) Uses for Shift Instructions (1/2)
¢+ Example: shift right arithmetic by 8 bits ¢ Suppqse we want to get byte 1 (bit 15 to bit 8) of a
0001 0010 0011 0100 0101 011(§O111 1000 word in $t0. We can use:
sll $t0, $t0, 16
srl $t0, $t0, 24
0000 0000{0001 0010 0011 0100 0101 0110 0001 0010 0011 010Q[OTOTOTTTOTTT TOTD]
+ Example: shift right arithmetic by 8 bits / /
1001 001 11 01 101 0110J0111 1
001 00100011 0100 01010 o|0\000 010101100111 1000j0000 0000 0000 0000
1111 1111J1001 0010 0011 0100 0101 0110
I 0000 0000 0000 0000 0000 0000|01 010110
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Uses for Shift Instructions (2/2)

¢ Shift for multiplication: in binary
Multiplying by 4 is same as shifting left by 2:
= 11, x 100, = 1100,
= 1010, x 100, = 101000,
Multiplying by 2n is same as shifting left by n
¢ Since shifting is so much faster than multiplication
(you can imagine how complicated multiplication
is), a good compiler usually notices when C code
multiplies by a power of 2 and compiles it to a shift
instruction:
a *= 8; (in C)
would compile to:
sll $s0,8$s0,3 (in MIPS)

== H = [
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MIPS Logical Instructions

Instruction Example Meaning Comment

and and $1,$2,$3 $1=$2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3  $1=$219%3 3 reg. operands; Logical OR
nor nor $1,$2,$3  $1 =~($21$3) 3 reg. operands; Logical NOR

and immediate  andi $1,$2,10 $1=$2 & 10 Logical AND reg, zero exten.
or immediate ori $1,$2,10 $1=9%$2110 Logical OR reg, zero exten.
shift left logical sl $1,$2,10  $1 =$2 << 10 Shift left by constant

shift right logical srl $1,$2,10  $1=3$2>> 10 Shift right by constant

shift right arithm. sra $1,$2,10 $1=3$2>>10 Shift right (sign extend)

=R = [
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So Far...

¢ Allinstructions have allowed us to manipulate data.
¢+ So we've built a calculator.

¢ In order to build a computer, we need ability to
make decisions...

=R S - i, ;
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Outline

¢ Instruction set architecture
(using MIPS ISA as an example)

¢ Operands
Register operands and their organization
Memory operands, data transfer, and addressing
Immediate operands

¢ Instruction format

¢+ Operations
Arithmetic and logical
Decision making and branches (Sec. 2.4, 2.9)
Jumps for procedures

P - |
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MIPS Decision Instructions

beq registerl, register2, Ll

¢ Decision instruction in MIPS:
beq registerl, register2, L1
“Branch if (registers are) equal”
meaning :
if (registerl==register2) goto L1
¢ Complementary MIPS decision instruction
bne registerl, register2, L1
“Branch if (registers are) not equal”
meaning :
if (registerl!=register2) goto L1
¢ These are called conditional branches

S iadv.
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MIPS Goto Instruction

Jj label

¢ MIPS has an unconditional branch:
Jj label

Called a Jump Instruction: jump directly to the given
label without testing any condition

meaning :
goto label

¢ Technicadlly, it's the same as:
beq $0,$0, label
since it always satisfies the condition
¢ It has the j-type instruction format

=
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Compiling C if into MIPS
¢ Compile by hand

if (i == j) f=g+h; (true) (false)
else f=g-h; - il=]

¢ Use this mapping: f=g+h f=g-h
f: $s0, g: $s1, h: $s2, I I
i: $s3, j: $s4

Exit
¢ Final compiled MIPS code:
beq $s3,$s4, True # branch i==
sub $s0,$s1,$s2 # f=g-h(false)
j Fin # go to Fin
True: add $s0,$s1,$s2 # f=g+h (true)

Fin:
Note: Compiler automatically creates labels to handle
decisions (branches) appropriately
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Inequalities in MIPS

¢ Until now, we've only tested equalities (== and !=in
C), but general programs need to test < and >

¢ Set on Less Than:
slt regl, reg2,reg3

meaning :
if (reg2 < reg3)
regl = 1; # set

else regl = 0; # reset

¢ Compile by hand: if (g < h) goto Less;
Letg: $s0, h: $s1

slt $t0,$s0,8s1 # St0 = 1 if g<h
bne $t0,$0,Less # goto Less if St0!=0

MIPS has no “branch on less than” => too complex
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Immediate in Inequalities

¢ There is also an immediate version of sl1t to test
against constants: s1ti

if (g >= 1) goto Loop

Branches: Instruction Format

¢ Use I-format:

immediate

opcode rs rt

opcode specifies beq or bne
Rs and Rt specify registers to compare

Cc Loop:
¢ What can immediate specify? PC-relative addressing
M slti $t0,$s0,1 # St0 = 1 if $s0<1 (g<1) Immediate is only 16 bits, but PC is 32-bit
| beq $t0,$0,Loop # goto Loop if $t0== => immediate cannot specify entire address
P Loops are generally small: < 50 instructions
S : . [TRgN . = Though we want to branch to anywhere in memory, a
¢ Unsigned inequality: situ, sitiu single branch only need to change PC by a small amount
$s0 = FFFF FFFA,,, $sl = 0000 FFFA,, How to use PC-relative addressing
slt $t0, $s0, $sl =>8$t0 = 2 = 16-bit immediate as a signed two’s complement integer
sltu $tl1l, $s0, $sl =>8tl = ? to be added to the PC if branch taken
= Now we can branch +/- 215 bytes from the PC ?
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Branches: Instruction Format Branch Example
¢ Immediate specifies word address ¢+ MIPS Code:
Instructions are word aligned (byte address is always a Loop: beq $9,$0,End
multiple of 4, i.e., it ends with 00 in binary) agg_ gg' gg' fio
= The number of bytes to add to the PC will always be a ? * Loclap '
multiple of 4 End:
Specify the immediate in words (confusing?) + Branch is I-Format:
Now, we can branch +/- 25 words from the PC (or +/- - -
2'7 bytes), handle loops 4 times as large opcode rs rt immediate
. " opcode =4 (look up in table)
¢ Immediate specifies PC + 4 rs = 9 (first operand)
Due to hardware, add immediate to (PC+4), not to PC rt = 0 (second operand)
If branch not taken: PC = PC + 4 immediate = 777
If branch taken: PC = (PC+4) + (immediate*4) Number of instructions to add to (or subtract from) the
PC, starting at the instruction following the branch
=> immediate =3
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Branch Example

¢ MIPS Code:

Loop: beq $9,$0,End
addi $8,$8,8%10
addi 89, %$9,-1
Jj Loop

End:

decimal representation:

4 9 0 3

binary representation:

000100( 01001 | 00000f 0000000000000011

= l
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J-Format Instructions (1/3)

¢ For branches, we assumed that we won'’t want to
branch too far, so we can specify change in PC.

¢ For general jumps (5 and jal), we may jump to
anywhere in memory.

¢ Ildeally, we could specify a 32-bit memory address to
jump to.

¢ Unfortunately, we can't fit both a 6-bit opcode and a
32-bit address into a single 32-bit word, so we

.
compromise.
g l
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J-Format Instructions (2/3)

¢+ Define “fields” of the following number of bits each:

6 bits 26 bits

¢ As usual, each field has a name:

opcode target address

¢ Key concepts:
Keep opcode field identical to R-format and I-format for
consistency
Combine other fields to make room for target address
¢ Optimization:
Jumps only jump to word aligned addresses
» last two bits are always 00 (in binary)

m spemfy 28 bits of the 32-bit bit address
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J-Format Instructions (3/3)

¢ Where do we get the other 4 bits?
Take the 4 highest order bits from the PC

Technically, this means that we cannot jump to
anywhere in memory, but it's adequate 99.9999...% of
the time, since programs aren’t that long

Linker and loader avoid placing a program across an
address boundary of 256 MB

¢ Summary:
New PC = PC[31..28] | | target address (26 bits) | | 00
Note: Il means concatenation
4 bits | | 26 bits | | 2 bits = 32-bit address

¢+ If we absolutely need to specify a 32-bit address:
Use jr Sra # jump to the address specified by Sra
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MIPS Jump, Branch, Compare

Instruction Example Meaning

branch on equal  beq $1,$2,25  if ($1 == $2) go to PC+4+100
Equal test; PC relative branch

branch on not eq. bne $1,$2,25 if ($1!=$2) go to PC+4+100
Not equal test; PC relative

set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

set less than imm. slti $1,$2,100  if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp..

go to 10000 26-bit+4-bit of PC

jump 7 10000

S iadv.
Iﬂ 25 d%_ Instruction Set-68 Computer Architecture
al Tsing Hua Un C.T.King/T.T.Huang

Outline

¢ Instruction set architecture
(using MIPS ISA as an example)
¢ Operands
Register operands and their organization
Immediate operands
Memory operands, data transfer, and addressing
¢ Instruction format
¢ Operations
Arithmetic and logical
Decision making and branches
Jumps for procedures (Sec. 2.7)
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C Function Call Bookkeeping

sum(a,b);... /* a:$s0; b:$sl */
}

int sum(int x, int y) {
return x+y;

}
¢ Return address $Sra
¢ Procedure address Labels
¢ Arguments $a0, $al, $a2, $a3
¢ Return value $vo0, $vl
¢ Local variables $s0, $s1, ..., $s7

Note the use of register conventions
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Instruction Support for Functions

. sum(a,b);... /* a:$s0; b:$sl */
}
C
int sum(int x, int y) { /* x:$a0; y:$al */
return x+y;
}
M address
1000 add $a0, $s0, $zero # x <= a
| 1004 add $al, $s1, $zero #y <=b
1008 addi $ra, $zero, 1016 # Sra <= 1016
P 1012 5 sum # jump to sum
S 1016 ...
2000 sum: add $vO0, $a0, $al
2004 jr $ra # new instruction
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JAL and JR

¢ Single instruction to jump and save return address:
jump and link (jal)

Replace:

1008 addi $ra, $zero, 1016 #8ra=1016
1012 j sum #go to sum
with:

1012 jal sum # Sra=1016,go to sum
Step 1 (link): Save address of next instruction into Sra
Step 2 (jump): Jump to the given label
Why have a jal? Make the common case fast:
functions are very common

¢ jumpregister: jr register
jr provides a register that contains an address to jump
to; usually used for procedure return

S iadv.
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MIPS Jump, Branch, Compare

Instruction Example Meaning

branch on equal  beq $1,$2,25 if ($1 == $2) go to PC+4+100
Equal test; PC relative branch

branch on not eq. bne $1,$2,25 if ($1!=$2) go to PC+4+100
Not equal test; PC relative

set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

set less than imm. slti $1,$2,100  if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp..

jump j 10000 go to 10000 26-bit+4-bit of PC
jump register jr$31 go to $31
For switch, procedure return
jump and link jal 10000 $31 =PC + 4; go to 10000
For procedure call
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Nested Procedures

int sumSquare(int x, int y) {
return mult (x,x)+ y;
}
¢ Need to save sumSquare return address (saved in
$ra) before call to mult
In general, may need to save some other info in
addition to $ra
¢ Recall 3 memory areas in a C program:

Static: variables declared once per program, cease to
exist only after execution completes

Heap: variables declared dynamically
Stack: space used by procedure at execution
¢ Use the stack to save register values
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C Memory Allocation

Address
o0
Space for saved
$sp — StTCK procedure information
stack
pointer '
Hea Explicitly created space,
P e.g., malloc(); C pointers
Static Variables declared
once per program
Code Program
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Compiling Nested C Function

int sumSquare (int x, int y) {

C return mult (x,x)+ y;}
sumSquare:
subl $sp, 9sp, 12 # space on stack
sw $ra, 8 ($sp) # save ret addr
Prologue  sw 7 # save x
swW # save y
add $al)$a0, $zero |# mult (x,x)
"Body # call mult
B 1w 3$ra)8(3sp) get ret addr
1w i restore x
1w restore y
: addi $sp, $sp, 12 => stack space
Epilogue  _ 35" $v0. 5v0, $a1 mult () +y
jr Sra
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Why Procedure Conventions?

¢ Definitions
Cadller: function making the call, using jal
Callee: function being called
¢ Procedure conventions as a contract between the
Caller and the Callee
¢ If both the Caller and Callee obey the procedure
conventions, there are significant benefits

People who have never seen or even communicated
with each other can write functions that work together

Recursion functions work correctly

=
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Caller's Rights, Callee’s Rights

¢ Callees’ rights:

Right to use VAT registers freely

Right to assume arguments are passed correctly
¢ To ensure callees’s right, caller saves registers:

Return address Sra

Arguments $ao0, Sal, $Sa2, Sa3
Return value Svo, Svi

St Registers $to - St9

¢ Callers’ rights:

Right to use S registers without fear of being overwritten
by callee

Right to assume return value will be returned correctly
¢ To ensure caller’'s right, callee saves registers:

Ss Registers Ss0 - Ss7
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Contract in Function Calls (1/2)

¢ Cadllee’s responsibilities (i.e. how to write a function)

e If using $s or big local structures, slide $sp down to
reserve memory: e.g., addi $sp, $sp, -48

e If using $s, save before using: e.g.,
sw $s0, 44 ($sp)

e Receive arguments in $a0-3, additional arguments on
stack

e Run the procedure body

e If not void, put return values in $v0, 1

e If applicable, undo first two steps: e.g.,

1w $s0, 44 ($sp) addi $sp, $sp, 48
® jr S$ra
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Contract in Function Calls (2/2)

¢ Cadller's responsibilities (how to call a function)
e Slide $sp down to reserve memory:
e.d., addi $sp, $sp, -28
e Save $ra on stack because jal clobbers it:
e.g., sw Sra, 24 ($sp)
o If still need their values after function call, save $v,
$a, $t onstack or copy to $s registers

e Put first 4 words of arguments in $a0-3, additional
arguments go on stack: “a4” is 16 ($sp)

e jal to the desired function
e Receive return values in $v0, $v1

e Undo first steps: e.g. 1w $t0, 20($sp) 1w S$ra,
24 ($sp) addi $sp, $sp, 28

i
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An Example of Passing Arguments

int Doh(int i, int j, int k, int m,
char ¢, int

return i+j+n;

} —

6th argument

Doh: 1w (to) $SP)

add @ $al0, S$al
add @ $al0, $tO

jr Sra
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Registers Conventions for MIPS

16 sO callee saves

- reserved for assembler =

(caller can clobber)

gL
2 v0 expression evaluation & 23 s7
3 vi1 function results 24 t8 temporary (cont’d)
4 a0 arguments 25
5 ai 26 k
6 a2 27 | |
7 a3 28 gp pointer to global area
8 t0 temporary: caller saves 29 sp stack pointer
(callee can clobber) 30 fp frame pointer
15 7 31 ra return address (HW)
@ kA o2
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Addressing Modes

Example Meaning
o R4,R3 R4 < R4+R3
Immediate g, #3 R4 < R4+3
Displacement 1,100(R1) R4 < R4+Mem[100+R1]
4,(R1) R4 < R4+Mem|[R1]

Reglster |nd|rec1
Add R1,(1001)
Add R1,@(R3)
Add R1,(R2)+

Add R1,-(R2)

R3 < R3+Mem[R1+R2]

R1 < R1T+Mem[1001]

R1 < R1T+Mem[Mem[R3]]
R1 < R1+Mem|[R2]

R2 « R2+d

R2 < R2-d

R1 < R1+Mem[R2]

al Tsing Hua Un (y

Scaled Add R1,100(R2)[R3] RT1 « R1+
MIPS only supports these |Mem[100+R2+R3*d]
=> simple is fast
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MIPS Addressing Mode

1. Immediate addressing

| on ‘ rs | rt | Immediate
2. Register addressing
| on | rs | rt | rd \ | funct | Registers
L I Register
3. Base addressing
| on | rs | rt | Address | Memory
| Register kﬂ_ ||—£| Halfward | Ward
1 ]
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MPIS Addressing Modes

4. PC-relative addressing

| op | rs | rt | Address | Memory

| ] &—
[ i

5. Pseudodirect addressing

| op | Address | Mermory

L

| PC | d)—. Ward

I ]

VR EEAE
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Fig. 2.24
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To
Summarize

MIPS operands
Name Example Comments
$s0-$s7, $t0-$t9, $zero, |Fast locations for data. In MIPS, data must be in registers to perform
32registers |$a0-%a3, $v0-$vl, Sgp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, Ssp, Sra, $at reserved for the assermbler to handle large constants.
Memory[0], | Accessed only by data transfer instructions. MIPS uses byte addresses, so
230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words | Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS
Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $sl = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $s1, $s2, $s3 [$sl = $s2 - $s3 Three operands; data in registers
add i addi $sl, $s2, 100 [$sl = $s2 + 100 Used to add constants
load word lw_$sl, 100($s2) |$s1 = Memory[$s2 + 100]|Word from memory to register
store word sw_ $s1, 100($s2)  |Memory[$s2 +100] = $s1 |Word from register to memory
Data transfer |load byte 1b §$sl, 100($s2) |$s1 = Memory[$s2 + 100]|Byte from memory to register
store byte sb $sl, 100($s2) |Memory[$s2 + 100] = $s1 |Byte from register to memory
load upper immediate | 1ui $s1, 100 $s1=100%2' Loads constant in upper 16 bits
branch on equal beq $s1, $s2, 25 [if($s1 == $s2)goto Equal test; PC-relative branch
PC + 4+ 100
branch onnot equal  |bne  $s1, $s2, 25 |[if(Ssl != $s2)goto Not equal test; PC-relative
- PC + 4+ 100
Conditional
branch set on less than slt  $sl, $s2, S$s3 |[if($s2 < $s3) $s1=1; Compare less than; for beq, bne
else $s1 =0
set less than slti $sl, $s2, 100[if($s2 < 100) $s1=1; Compare less than constant
immediate else $s1 =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr  Sra goto Sra For switch, procedure return
tional jump _ [jump and link jal 2500 Sra =PC + 4;go to 10000 |For procedure call

AL AEERE
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Summary: MIPS ISA (1/2)

32-bit fixed format instructions (3 formats)

32 32-bit GPR (RO = zero), 32 FP registers, (and HI LO)
partitioned by software convention

3-address, reg-reg arithmetic instructions

Memory is byte-addressable with a single addressing

mode: base+displacement
16-bit immediate plus LUI

Decision making with conditional branches: beq, bne
Often compare against zero or two registers for =
To help decisions with inequalities, use: “Set on Less
Than”called sh, slti, sltu, sltui

Jump and link puts return address PC+4 into link

register (R31)

Branches and Jumps were optimized to address to
words, for greater branch distance

Computer Architecture
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Summary: MIPS ISA (2/2)

¢+ Immediates are extended as follows:
logical immediate: zero-extended to 32 bits
arithmetic immediate: sign-extended to 32 bits
Data loaded by Ib and |h are similarly extended:
Ibu, Ihu are zero extended; Ib, Ih are sign extended
+ Simplifying MIPS: Define instructions to be same size
as data (one word), so they can use same memory
¢+ Stored Program Concept: Both data and actual code
(instructions) are stored in the same memory

¢ Instructions formats are kept as similar as possible

R | opcode rs rt rd shamt | funct

| | opcode rs rt immediate

J opcode target address
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Alternative Architectures

¢ Design alternative:
provide more powerful operations
goal is to reduce number of instructions executed
danger is a slower cycle time and/or a higher CPI

—“The path toward operation complexity is thus fraught with peril.

To avoid these problems, designers have moved toward simpler
instructions”

¢ Let's look (briefly) at 1A-32

==
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IA-32

1978: Intel 8086 is announced (16 bit architecture)
1980: 8087 floating point coprocessor is added
1982: 80284 increases address space to 24 bits, +instructions
1985: 80386 extends to 32 bits, new addressing modes
1989-1995: 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher performance)
1997: 57 new “MMX" instructions are added, Pentium Il
1999: Pentium Il added another 70 instructions (SSE)
2001: Another 144 instructions (SSE2)
2003: AMD extends to increase address space to 64 bits,
widens all registers to 64 bits and other changes (AMDé4)
¢ 2004: Intel capitulates and embraces AMDé4 (calls it EMé4T) and
adds more media extensions
“This history illustrates the impact of the “golden handcuffs” of compatibility
“adding new features as someone might add clothing to a packed bag”
“an architecture that is difficult to explain and impossible to love”

=
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IA-32 Overview

¢+ Complexity:
Instructions from 1 to 17 bytes long

one operand must act as both a source and
destination

one operand can come from memory
complex addressing modes
e.g., “base or scaled index with 8 or 32 bit
displacement”
¢ Saving grace:
the most frequently used instructions are not too
difficult to build

compilers avoid the portions of the architecture that
are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

=
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IA-32 Registers & Data Addressing

¢ Registers in 32-bit subset that originated with 80386

Name Use
0

EAX GPRO

ECX GPR 1

EDX GPR 2

EBX GPR3

ESP GPR 4

EBP GPR 5

ESI GPR 6

EDI GPR7
CS Code segment pointer
ss Stack segment pointer (top of stack)
DS Data segment pointer 0
ES Data segment pointer 1
FS Data segment pointer 2
GS Data segment pointer 3

EIP Instruction pointer (PC)
EFLAGS Condition codes

VR EERY
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IA-32 Register Restrictions

¢ Registers are not “general purpose” — note the
restrictions below

Registor
Description restrictions

Reglster Indiract.

Address |12 In g reglstar.

not ESP of EBP

Tw $s0,00%s1)

Basad mods with 8- ar 32-bit
displacemsant

Address |12 contents of base ragletar plus
displacamant.

not ESP of EBP

Tw b0, 1000413 # =16-bit
#displacement

Basa plus sealed Index The address 18 Ease: any GPR mul $t0.4s2.4
Base + (259° ¢ Index) Index: not ESP | add 0. 4t0.4s1
where Scale has thevalue 0,1, 2, or 3, 1w ds0, 004ty
EBasa plus scaled Index with The addrass 15 Ease: any GPR mul $t0.4s2.4
8- or 321t displacemant Base + (25598 % Indax) + displacament Index: not ESP | add 40,40, 451
where Scale has thevalue 0, 1, 2, or 3, Tw 450, 10004t0) #<16-bit

#displacement

FIGURE 2.42 1A-32 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled Index
addressing mede, not found in MIFS or the PowerPC, is included to avoid the multiplies by four {scale factor of 2) to turn an index in a register into a
byte address (see Figures 2.34 and 2.26). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. Scale factor of O means the
address is not scaled. If the displacement is longer than 16 bits in the second or fourth medss, then the MIPS equivalent mode would need two more
instructionsza 107 to lead the upper 16 bits of the displacerment and an add to sum the upper address with the bass registar 45 1. (Intel gives two dif-
ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we combine them here.)
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IA-32 Typical Instructions

¢ Four major types of integer instructions:

Data movement including move, push, pop

Arithmetic and logical (destination register or memory)

Control flow (use of condition codes / flags )

String instructions, including string move and compare

JE name if equalicondition codel IEIP=name):
EIF-128< name < EIF+128

JMP name EIF=name

CALL name SP=5P-4; M[SPI=EIP+5: EIP=nama:

MOWW EBX, [EOI+45] ERN=M[EDI+4F]

PUSH ESI EP=SP-4: M[SPI=EZ]

PapP EOIL EDI=ML5P]: SP=5F+4

ADDN E&K, #6765

EaX=EAX+ET 6L

TEST EDX, #42

St condton code (Nags) with EDX and 42

HOYEL

MEEDTI=M[E=1];
EDI=EDT+4: ESI=EST+4

TRZAEE RS
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IA-32 instruction Formats

¢ Typical formats: (notice the different lengths)

a. JE EIP +displacement
4 4 g
‘ JE Condi-‘ Displace ment ‘
tion
Fig. 2.45 b. CALL
g 32
‘ CALL ‘ Offset
d. PUSH ESI
5 3 c. MOV EBX, [EDI + 45]
[pusn Jred) T :
PUSH
rim .
‘ MOy ‘d‘w‘ Postbyte ‘Dlsplacement
e ADD EAX, #6765
4 31 32
| ADD [Reg w| Immediate |
f TEST EDX,#42
7 1 g 32
| TEST ‘w| Postbyte Immediate Computer Architecture

C.T.King/T.T.Huang




Summary

¢ Instruction complexity is only one variable

lower instruction count vs. higher CPI / lower clock rate
¢ Design Principles:

simplicity favors regularity

smaller is faster

good desigh demands compromise

make the common case fast
¢ Instruction set architecture

a very important abstraction indeed!
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