#### CS4100: 計算機結構

#### Introduction

#### 國立清華大學資訊工程學系 九十三學年度第一學期

Adapted from class notes of D. Patterson and W. Dally Copyright 1998, 2000 UCB Also from history timeline (www.computer.org)



#### 大約一千三百多年前...



### National Tsing Hua University

Computer Architecture

#### 電腦是什麼時候發展出來的?

#### 「電腦」倒底是什麼?

- ◆ A device that computes, especially a programmable electronic machine that performs high-speed mathematical or logical operations or that assembles, stores, correlates, or otherwise processes information
  - -- The American Heritage Dictionary of the English Language, 4th Edition, 2000

#### 其實歷史上已有許多計算裝置發展出來

- Special-purpose versus general-purpose
- Non-programmable versus programmable
- Scientific versus office data processing
- Mechanical, electromechanical, electronic, ...



Tabulating machine (H. Hollerith, 1889)



Harvard Mark I (IBM, H. Aiken, 1944) Introduction-4



Difference Engine (C. Babbage, 1822)

Computer Architecture

# 一般用途 的電腦 是什麼時候發展出來的?



#### 第一部「電」腦

- ◆ 一般認為:ENIAC (Electronic Numerical Integrator and Calculator)
- Work started in 1943 in Moore School of Electrical **Engineering at the University of Pennsylvania, by** John Mauchly and J. Presper Eckert
- Completed in 1946
- ◆ 約25公尺長、2.5公尺高
- 20 10-digit registers, each 2 feet
- ◆ 使用18,000個真空管 (electronic switches, 1906年發明)
- ◆ 每秒執行1900個加法
- Programming manually by plugging cables and setting switches



#### **ENIAC**



National Tsing Hua University







Computer Architecture



#### 大約同一時期,人們發明了電晶體

- By W. Shockley, J. Bardeen, W. Brattain of Bell Lab. in 1947
  - Much more reliable than vacuum tubes
  - Electronic switches in "solids"







Introduction-8

Computer Architecture C.T.King

#### 不久後電腦開始商品化



UNIVAC (Remington-Rand, 1951)

主要用途為商務、辦公室自動化 其次為科學計算



IBM 701 (IBM, 1952)



Introduction-9

Computer Architecture C.T.King

#### 使用電晶體的電腦也跟著出現

• Ex.: IBM 1401 (IBM, 1959)



This is how IBM is called "Big Blue"!

National Tsing Hua University



Introduction-10

Computer Architecture C.T.King

#### 電腦元件的另一大突破是IC

◆ 1958年徳州儀器公司的Jack Kilby: integrated a transistor with resistors and capacitors on a single semiconductor chip, which is a monolithic IC





Introduction-11

Computer Architecture C.T.King

#### 當更多的電晶體能放入IC後...

- ◆ 1971年第一個微處理器: Intel 4004
  - 108 KHz, 0.06 MIPS
  - 2300 transistors (10 microns)
  - Bus width: 4 bits
  - Memory addr.: 640 bytes
  - For Busicom calculator (original commission was 12 chips)







Introduction-12

Computer Architecture

#### 微處理器造就了...

◆ 1977年Apple II: Steve Jobs, Steve Wozniak Motorola 6502 CPU, 48Kb RAM







Introduction-13

Computer Architecture C.T.King

#### 以及PC

◆ 1981年IBM PC: Intel 8088, 4.77MHz, 16Kb RAM, two 160Kb floppy disks





ilcrosoft Corporation, 19

也造就了微軟



Computer Architecture C.T.King

#### 一些週邊設備也早已發展出來

- 1973: Researchers at Xerox PARC developed an experimental PC: Alto
  - Mouse, Ethernet, bit-mapped graphics, icons, menus, WYSIWG editing
- Hosted the invention of:
  - Local-area networking
  - Laser printing
  - All of modern client / server distributed computing





Computer Architecture C.T.King

#### 讓PC成為真正有用的東西--應用程式

- 1979: 1st electronic spreadsheet (VisiCalc for Apple II) by Don Bricklin and Bob Franston
  - "The killer application for early PCs"
  - Followed by dBASE II, ...







Introduction-16

Computer Architecture C.T.Kina

#### 人們也先後發展出許多其他東西...











Introduction-17

Computer Architecture

#### 80年代,IC的集成進入VLSI

- New processor architecture was introduced: RISC (Reduced Instruction Set Computer)
  - IBM: John Cocke
  - UC Berkelev: David Patterson
  - Stanford: John Hennessy



- MIPS: MIPS • Sun: Sparc
- IBM: Power RISC
- HP: PA-RISC DEC: Alpha
- They compete with CISC (complex instruction set computer) processors, mainly Intel x86 processors, for the next 15 years











後來的故事 ...

在計算機結構方面比較不精彩

不過似乎後PC的時代已經來臨

Introduction-19









C.T.Kina

#### Summary: Technology and Computers

#### Computer generation according to technology:

| Generation | Date      | Technology      | Relative<br>Performance<br>per unit cost |
|------------|-----------|-----------------|------------------------------------------|
| 1          | 1950-1959 | Vacuum<br>tubes | 1                                        |
| 2          | 1960-1968 | Transistors     | 35                                       |
| 3          | 1968-1977 | IC              | 900                                      |
| 4          | 1978-?    | LSI/VLSI        | 2,400,000                                |



Introduction-20

C T King

#### Why Do I Want to Know History?



### In Fact, Architecture Design Is an Iterative Process



#### Outline

- **◆ Computer: A historical perspective**
- Forces behind computer evolution and design
  - Supply: technology, architecture
  - Demand: applications
- Implementation technology and its trends
- Applications of processors



#### Let's Start with Processor Performance



("The Cooler the Better: New Directions in the Nomadic Ages," Computer, April 2001.)

◆國立清華大學 National Tsing Hua University

Introduction-24

Computer Architecture

#### Why Such Changes?

#### **Several factors:**

- IC technology: clock rate, power, transistors per chip
- ◆ Computer architecture: pipeline, cache, MMX, instructions per cycle
- Mass market: market share, revenue, applications

#### Let's examine IC technology first ...



Introduction-25

Computer Architecture C.T.King

#### Outline

- **♦ Computer: A historical perspective**
- Forces behind computer evolution and design
  - Supply: technology, architecture
  - Demand: applications
- Implementation technology and its trends
- Applications of processors

#### VLSI IC Technology

|                               | 2001 | 2005 | 2010 | 2016  |
|-------------------------------|------|------|------|-------|
| Line width (nm)               | 130  | 80   | 45   | 22    |
| Clock (GHz)                   | 1.7  | 5.2  | 11.5 | 28.8  |
| DRAM cost<br>(microcents/bit) | 7.7  | 1.9  | 0.34 | 0.042 |
| MPU cost (microcent/trans)    | 97   | 24   | 4.31 | 0.54  |
| Supply voltage(V)             | 1.2  | 1.0  | 0.8  | 0.6   |
| Wiring levels                 | 7    | 9    | 10   | 10    |





Introduction-26

Computer Architecture

#### Line Width/Feature Size





## Technology Trends: Memory Capacity (1 Chip DRAM)



#### Technology Trends: Microprocessor Capacity



#### Technology => Dramatic Change

- Processor
  - 2X in speed every 1.5 years; 100X in last decade
- Memory
  - DRAM capacity: 2x / 2 years; 64X size in last decade
  - Cost per bit: improves about 25% per year
- Disk
  - Capacity: > 2X every year; 120X in last decade
  - Cost per bit: improves about 100% per year
- State-of-the-art PC when you graduate:
  - Processor clock: 4.0 GHz
  - Memory capacity: 1.0 GBytes
  - Disk capacity: 1.0 TeraBytes
  - New units! Mega => Giga, Giga => Tera



Introduction-32

Computer Architecture

#### **Technology Progress: Implication**

- Minimum feature size: halve every 7 years
  - O(n<sup>2</sup>) with respect to transistor count and O(n) with respect to switching time
    - $> O(n^3)$  improve in computing with lithography
  - Power dissipation
- Die size: X2 every 3 years
  - O(n²) with respect to transistor count
- Others: provide one-time improvement
- Price: lower costs due to
  - Simpler development and higher volumes with CMOS
- Highly integrated chips with improved speed, reliability, cost, functionality



Introduction-33

Computer Architecture C.T.King

### Technology Enables Architectural Innovation

An example:



#### Outline

- Computer: A historical perspective
- Forces behind computer evolution and design
  - Supply: technology, architecture
  - Demand: applications
- Implementation technology and its trends
- Applications of processors



### Computer Progress Supported/Driven by Market and Usage

- Applications drive machine "balance"
  - Numerical simulations: floating-point, memory BW
  - Transaction processing: I/O, INT performance
  - Media processing: low-precision 'pixel' arithmetic
- Applications drive machine performance
  - What if my computer runs all my software very fast?
  - Programs use increasing amount of memory:
    - 1.5-2 per year, or 0.5-1 addressing bit per year
  - High-level programming languages replace assembly languages => compilers important
    - Compiler and architecture work together
- Effects of compatibility and ease of use
- Effects of market demands and market share
  - Can investment in R&D, production be paid off?



Introduction-36

Computer Architecture

#### Computer Usage: General Purpose

- Uses: commercial (int.), scientific (FP, graphics), home (int., audio, video, graphics)
  - Software compatibility is the most important factor
  - Short product life; higher price and profit margin
  - OS issue: OS serves another interface above arch.
    - Effects of OS developments on architecture
    - RISC-based Unix workstation vs x86-based PC: (1) units sold is only 1% of PC's, (2) emphasize more on performance than on price
      - \* survive only if performance is high enough?
      - # effects of Linux-based PCs?

#### • Future:

• Use increased transistors for performance, human interface (multimedia), bandwidth, monitoring



Introduction-37

Computer Architecture

#### Computer Usage: Embedded

• Uses: control (traffic, printer, disk); consumer electronics (video game, CD player, PDA)



#### **Lego Mindstorms**

Robotic command explorer: A "Programmable Brick", Hitachi H8 CPU (8-bit), 32KB RAM, LCD, batteries, infrared transmitter/receiver. 4 control buttons, 6 connectors



Computer Architecture

#### 它可以做什麽?



#### 生活裡的應用比比皆是

















#### ◆國立清華大學 National Tsing Hua University

#### **Embedded Computers**

- Typically w/o FP or MMU, but integrating various peripheral functions, e.g., DSP
  - Large variety in ISA, performance, on-chip peripherals
  - Compatibility is non-issue, new ISA easy to enter, low power become important
- More architecture and survive longer: 4- or 8-bit microprocessor still in use (8-bit for cost-sensitive, 32-bit for performance)
- Large volume sale (billions) at low price (\$40-\$5)
  - 1995 #1: x86; #2: 6800; #3: Hitachi SuperH (Sega)
  - Others: MIPS, StrongARM, PA-RISC
- Trend: lower cost, more functionality
  - system-on-chip, μP core on ASIC

Computer Architecture

#### Summary

- Computer architecture studies instruction set architecture and computer organization
- Instruction set architecture is about interface
- All computers consist of five components:
  - Processor: (1) datapath and (2) control
  - (3) Memory
  - (4) Input devices and (5) output devices
- Architecture design is an iterative process; must consider:
  - Device technology
  - Application and market
  - Performance evaluation

