
 Page 1/2

Mid-Term Exam
CS2422 Assembly Language and System Programming

November 27, 2007

INSTRUCTIONS: Show your work (i.e., how you derived your answer or the reason behind
your thinking) in addition to your answer. Budget your time wisely (e.g., do not spend too much
time on a single question).

1. (4%) What is the program that combines object files into an executable program?
2. (4%) Explain the relationship between an assembly program and an assembler.
3. (4%) Which of the following are true? (multiple choices)

(a) a directive is executed at runtime
(b) an instruction is executed at runtime
(c) a directive is executed at assembly time
(d) an instruction is executed at assembly time

4. (4%) What is the memory byte order, from low to high address, of the following data
definition?

BigVal DWORD 12345678h
5. (4%) What is the value of the Overflow flag after the execution of code below?

MOV AL, 88h
ADD AL, 90h

6. (4%) What is the value of AL in hexadecimal representation after the execution of the
instruction below?

MOV AX, -68
7. (4%) What is the value of EAX after the execution of the code below?

array WORD 100, 200,
 300, 3 DUP(350),
 400, 500, 700
 MOV EAX, SIZEOF array
8. (3%) (True/False) The LOOPE instruction jumps to a label when (and only when) the Zero

flag is clear.
9. (6%) What are the values of the Carry flag and AL after the execution of the code below?

MOV AL, 8Fh
 SHL AL, 2
10. (3%) (True/False) A procedure’s stack frame always contains caller’s return address and

procedure’s local variables.
11. (4%) Assuming that a procedure contains no local variables, a stack frame is created by which

sequence of actions at runtime?
(a) EBP pushed on stack; arguments pushed on stack; procedure called; EBP set to ESP
(b) arguments pushed on stack; EBP pushed on stack; EBP set to ESP; procedure called
(c) arguments pushed on stack; procedure called; EBP pushed on stack; EBP set to ESP
(d) arguments pushed on stack; procedure called; EBP set to ESP; EBP pushed on stack

12. (16%) Translate the following C code into assembly. (Note: No .IF or other directives are
allowed.) You may assume that A and B are BYTE variables that are already defined.
 while (A > 10) {

 if (((A>=100) && (A<156)) || (B>20))
 A=A-2;
else {

 A=A-3;
 B=B+1;
}

 }

(continue on the back side)

 Page 2/2

13. (20%) Trace the following code:
 .data
 FinalResult DWORD 11223344h

 .code
 MOV AL, 3
 MOV BL, 2
 MOV ESI, OFFSET FinalResult
 MOV ECX, 4
 L1:
 MOV BYTE PTR [ESI], AL
 SUB BYTE PTR [ESI], BL
 MOV AL, BL
 MOV BL, BYTE PTR [ESI]
 INC ESI
 LOOP L1

(a) (10%) What is the value stored in FinalResult after the execution of the above code?
Please write it in little endian order and hexadecimal form.

(b) (10%) Suppose the 3rd line in the code is changed to MOV ESI,0 so as to initialize
ESI to 0. Change the code within the loop to produce the same results.

14. (20%) The procedure Factorial_no_stack below calculates the factorial of integer N
using a global variable instead of using the run-time stack.

main PROC
.data
 N DWORD 8
.code

call Factorial_no_stack
exit

main ENDP

Factorial_no_stack PROC

mov eax,N
cmp eax,0
ja L1
mov eax,1
jmp L2

L1: dec eax
mov N,eax
call Factorial_no_stack
mov ebx,N
mul ebx

L2: pop ebp
ret

Factorial_no_stack ENDP

main PROC
push 8
call Factorial_stack
exit

main ENDP

Factorial_stack PROC

push ebp
mov ebp,esp
mov eax,[ebp+8]
cmp eax,0
ja L1
mov eax,1
jmp L2

L1: dec eax
push eax
call Factorial_stack
mov ebx,[ebp+8]
mul ebx

L2: pop ebp
ret 4

Factorial_stack ENDP

(a) (6%) Explain why the procedure Factorial_no_stack does not work, while

Factorial_stack works?
(b) (7%) Rewrite the procedure Factorial_no_stack so that it works. (Hint: Use an

extra variable for the partial product, and consider when to perform mul.)
(c) (7%) Rewrite the procedure Factorial_stack so that the return value is also

passed by the stack instead of by eax.

