
 Page 1/3

Mid-Term Exam
CS2422 Assembly Language and System Programming

November 14, 2006

INSTRUCTIONS: Show your work (i.e., how you derived your answer or the reason behind
your thinking) in addition to your answer. Budget your time wisely (e.g., do not spend too much
time on a single question). You have 110 minutes to work on this exam. The total number of
points is 100.

1. (5 points) An Apple II computer uses 16-bit addresses to access the memory. Each address is
transmitted twice on the 8-bit address bus.

(a) What is the maximum size of memory (in bytes) it can support?
(b) If each address were transmitted only once on the address bus (to form a 8-bit memory

address), then what would be the maximum supported memory size?

2. (5 points) Which two of the following produce the same 4 bytes in MASM?
A1 BYTE “1234”
A2 BYTE 1,2,3,4
A3 BYTE 4,3,2,1
A4 WORD 1,2,3,4
A5 DWORD 01020304H
A6 DWORD 01020304
A7 DWORD 04030201

3. (5 points) Write an instruction that moves the first two bytes in the following array (A1) to

the AX register. The resulting value will be 2010h.
A1 BYTE 10h, 20h, 30h, 40h

4. (7 points) Suppose there were no PUSH instruction. Write a sequence of two other

instructions that would accomplish the same as PUSH EAX.

5. (8 points) In the following instruction sequence, show the changed value of AL where

indicated, in hexadecimal:
MOV AL, 01101111b
AND AL, 00101101b ; (a)
MOV AL, 6Dh
AND AL, 4Ah ; (b)
MOV AL, 00001111b
OR AL, 61h ; (c)
MOV AL, 94h
XOR AL, 37h ; (d)

6. (5 points) A limitation of the LOOP instruction is that it must jump to a label that is –128 to
+127 bytes from the current location. That is why MASM shows the “jump destination too
far” error if the loop body is too long. However, the Jcondition (Conditional Jump, e.g.,
JE, JG, JL…etc.) instruction does not have such a limitation. Show how to replace the
LOOP instruction in a loop that contains a large loop body.

 Page 2/3

7. (5 points) Identify the problems in the following code and propose a solution to fix it.

main PROC
 call Example1
 exit
main ENDP
Example1 PROC
 push 5
 push 6
 call AddTwo
 ret
Example1 ENDP
Stub PROC
 ; do nothing
 ret
Stub ENDP

8. (3 points) How many times will the following loop execute?

X2: mov ecx,0
inc ax

 loop X2

9. (7 points) Create a macro named mAdd16 that adds any two signed 16-bit memory operands

and produces a 16-bit sum. Remember to save the content of the register before you use it for
addition, and restore it when you are done. Syntax: mAdd16 sum,op1,op2

10. (5 points) Write instructions that jump to label L4 if bits 1, 2, and 3 are all set in the DL

register. (Note: the right-most bit is bit 0.)

11. (10 points) Use the following data definitions for this question.

dArray DWORD 10 DUP(?)
dSize = ($ - dArray)
byte1 BYTE 0FFh,1,2
word3 SWORD 7FFFh,8000h

Where marked by a letter (a, b, c, d, e, f, g, h) in the following code segment, give your
answer and explain your reasons. Suppose the code segment is executed sequentially from top
to bottom. Note that some instructions may be illegal.
mov ax,dSize a. ax = ?
mov ax,[word3+2] b. ax = ?
mov eax,[word3+4] c. eax = ?
mov OFFSET byte1,10h d. byte1 = ?
mov ebx,OFFSET byte1
mov al,[ebx+3] e. al = ?
movsx eax,byte1 f. eax = ?
mov al,80h
add al,80h g. ZF,CF,SF,OF= ?
mov al,00110011b
test al,2 h. ZF,CF,SF = ?

 Page 3/3

12. (10 points) Use jl and jg to implement the following pseudo code.

while(int2 >= int1){
add ebx,2

 if(ebx > int2)
 mov ebx,0
 else
 mov ebx,int1
}

13. (15 points) Implement the following pseudo code and return the sum in EAX. Use explicit

stack parameters (such as [ebp+n]) and follow common procedure conventions (e.g., stack
frame). Draw a figure to show the contents of the stack right before return, including the ebp
and esp.

int ProcTwo(int x, y)
{ int i = 5;
 Return x + y + i;
}

14. (10 points) To evaluate a compound Boolean expression, we typically use Short-Circuit

Evaluation. For examples, the second part of the AND condition in the following code is not
evaluated and b is still 1. However, some languages (e.g., BASIC) use Non-Short-Circuit
Evaluation, which will cause b to become 0. Implement the following code in assembly
using the Non-Short-Circuit Evaluation.

a = 10;
b = 1;
if((a > 0) && (b-- > 0)) {
 c = a;
}
// Is b 1 or 0 now?

