C52403 Programming Languages

Homework 1

Due: March 22, 2012 in class

1 (40%) As discussed in the class, many language rules are checked by the compiler, and it is
possible to bypass the rules using assembly language after compilation. Consider the following
C program:
#include<stdio.h>
int x=3;
int main(void)
{
int x=5;
printf ("x = %d\n", x);
return 0;
}
(1) Compile the program and generate its assembly code. (2) Understand the assembly code
and modify it to let the program print the global variable x instead of the local variable x.
2 (20%) Using the following grammar, show whether it is possible to generate a parse tree for
the statements given. If so, show its leftmost derivation.
<assign> 2 <id> = <expr>
<id> >A | B | C
<expr> - <expr> + <term> | <term>
<term> - <term> * <factor> | <factor>
<factor> > (<expr>) | <id>
(1)A =2 * B+ C * A
2)A =B + C * (A + B)
3 (40%) Use the grammar shown at the end (PL Detective) to derive a parse tree for the

following program. Is the operator “+” right-associative or left-associative?
VAR xyz: INTEGER;
VAR count: INTEGER;
BEGIN
Xyz := 5;
count :=
END;

xyz + 1;

PL Detective Grammar
<Program> - <Block> | <Block> ;

<DeclList> — <Decl> | <Decl> ; <DeclList> | ¢
<Decl> — VAR id : <Type> | TYPE id = <Type> | <ProcDecl>

<ProcDecl> — PROCEDURE id (<Formals>) : <Type> = <Block>
| PROCEDURE id (<Formals>) = <Block>
<Formals> —~ <Formallist> | ¢

<Formallist> —» <Formal> | <Formallist> ; <Formal>

<Formal> - 1d : <Type>

<Type> — INTEGER | <SubrTy> | <ArrayTy> | id | <ProcTy>
<SubrTy> - [Number TO Number]

<ArrayTy> — ARRAY <SubrTy> OF <Type>

<ProcTy> — PROCEDURE (<Formals>) : <Type> | PROCEDURE (<Formals>)
<Block> — <DeclList> BEGIN <StmtList> END

<StmtList> - <Stmt> | <Stmt> ; <StmtList> | ¢

<Stmt> — <Assignment> | <Return> | <Block> | <Conditional>

| <Iteration> | <Output> | <Expr>
<Assignment> - <Expr> := <Expr>
<Return> — RETURN <Expr>
<Conditional>- IF <Expr> THEN <StmtList> ELSE <StmtList> END
<Iteration> — WHILE <Expr> DO <StmtList> END

<Output> — PRINT (<Expr>)
<Expr> - <Operand> | <Expr> <Operator> <Operand>
<Operand> — Number | id | <Operand> [<Expr>]

| <Operand>(<Actuals>) | (<Expr>)

<Operator> - + | > | AND
<Actuals> —~ <Actuallist> | ¢
<Actuallist> - <Expr> | <ActuallList> , <Expr>

Notes:

® <Program> is the start symbol of the grammar.

The symbol ¢ is empty string.

® This grammar is in BNF, not in EBNF. Particularly, the '[' and ']' are terminals in the
language: they do not mean "optional" in EBNF.

® The words in upper case are reserved words of the language (e.g., PROCEDURE and
AND)

® <SubrTy>is a subrange type. For example, a variable declared to be of subrange
type [1 TO 10] can hold values between 1 and 10 only.

® Numbers include both negative and positive integers.

® id (which are variables or procedure names) are a string of characters (a-zA-Z)

