CS 2351 Data Structures
Graphs (ll)

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University

National Tsing Hua University

Outline
I

® Minimum cost spanning tree (Sec. 6.3)
— Kruskal’s algorithm
— Prims’s algorithm
— Sollin’s algorithm
® Shortest path and transitive closure (Sec. 6.4)
— Single source/all destination: non-negative edge costs
— All-pairs shortest paths

— Transitive closure

® Activity networks (Sec. 6.5)

— Activity-on-vertex (AOV) networks

ational Tsing Hua University

Minimum-Cost Spanning Trees

® For a weighted undirected graph, find a spanning
tree with the sum of the weights (costs) of the
edges being minimum

® Three greedy algorithms: Spanning tree
with cost 105

— Kruskal’s algorithm
— Prims’s algorithm

— Sollin’s algorithm

tional Tsing Hua University

Kruskal’s Algorithm

-
ldea: add edges to the tree one at a time according to
their edge costs, from the smallest to the largest

® Step 1: find an edge with the minimum cost

® Step 2: if it creates a cycle to the edges already
selected, discard the edge; otherwise, select the
edge

® Step 3: repeat steps 1 and 2 until we select n-1
edges

National Tsing Hua University

Running Example

Refer to the textbook for detailed steps

Spanning tree with cost 99

tional Tsing Hua University

Kruskal’s Algorithm

___._.__"_ """ " ...
. T = ¢

. While ((T has fewer than n-1 edges) &&(E is not empty)) {
choose an edge (v,w) from E with the minimum cost;
delete (v,w) from E;

if((v,w) does not create a cycle) add (v,w) to T;
else discard (v,w);

.}
. If(T contains fewer than n-1 edges)
cout << “no spanning tree!” << endl;

WO JdJo Ol dWDNHR

® Steps 3 and 4: use a min heap to store edge cost
® Step 5: use disjoint sets representation (Sec. 5.10) for
intermediate trees, one set for each partial tree

— For an edge (v,w) to be added, if vand w are in the same
set, discard the edge; else union two corresponding sets

ational Tsing Hua University

Running Example

@ Disjoint sets
10 : L0 L1){2){(3 (4 {5)6

ONO

Spanning tree with cost 99

tional Tsing Hua University

Running Example

@ Disjoint sets
10 : \(|)\1\2\3\4 .6
a : ' 5)

12

Spanning tree with cost 99

tional Tsing Hua University

Running Example

@ Disjoint sets

12

Spanning tree with cost 99

tional Tsing Hua University

Running Example

@ Disjoint sets

10 .0 \ 2
(1))
5

14 16 |
a a a '\ L 3)
12

Spanning tree with cost 99

National Tsing Hua University

Running Example

@ Disjoint sets

Spanning tree with cost 99

tional Tsing Hua University

Running Example

Disjoint sets

\ 2) \ 4
™\
(3)6)

National Tsing Hua University

Running Example

Disjoint sets

National Tsing Hua University

Running Example

Disjoint sets

National Tsing Hua University

Time Complexity
___._.__"_ """ " ...

® Min heap: find minimum edge and delete from E
— Steps 3 and 4: O(log e)

® Set: find vertices in sets and union two sets
— Step 5: O(a(e))

® At most execute e-1 rounds:
— (e-1)x(log e + a(e)) = O(e log e)

tional Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

{Theorem 6.1)

Kruskal’s algorithm can generate a minimum-cost
spanning tree for any undirected connected graph G

<Proof>:

(a) Kruskal’s method results in a spanning tree
whenever a spanning tree exists

(b) The generated spanning tree is of minimum cost

National Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

-
<Proof>: (a)

® Only delete those edges that form a cycle
® Delete a cycle does not affect the connectivity of G

® Since G is initially a connected graph, Kruskal’s
algorithm always results in a connected graph with
n-1 edges, i.e., the algorithm cannot terminate with
E=J and |T|<n-1

® Therefore, Kruskal’s algorithm always creates a
spanning tree for an undirected connected graph

National Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

<Proof>: (b)
® Let U be another minimum-cost spanning tree of G
e If T=U, thenTis a minimum-cost spanning tree

o IfT2U,letk, k>0, bethe number of edges in T not
in U

® \We shall see that there exists a way to transform U
to T in k steps such that the cost of U is not changed

National Tsing Hua University

Optimality Proof of Kruskal’s Algorithm
___._.__"_ """ " ...
<Proof>: (b)

® Transform U to T:
(1) Let e be the least-cost edge in T that is not in U
(2) When e is added to U, a cycle Cis created

(3) Let f be any edge on CthatisnotinT
(This edge must exist as T contains no cycle)

—Now U’ = U+{e}-{f} is a spanning tree
—We need to prove that cost(e) = cost(f)

tional Tsing Hua University

Optimality Proof of Kruskal’s Algorithm
___._.__"_ """ " ...
<Proof>: (b)
® Casei: cost(e) < cost(f)
— cost (U+{e}-{f}) < cost(U) = Impossible!
— Because U is a minimum cost spanning tree
® Case ii: cost(e) > cost(f)

— f should be considered earlier than e in Kruskal’s
algorithm, but why fis notin T?

- f together with certain edges in T, whose costs must be
smaller than or equal to f, form a cycle

— Those edges are also in U, and thus U must contain a cycle

~ Contradiction! \ Because e is the least-cost edge
® Therefore cost(e)=cost(f) |inTthatisnotinU

ational Tsing Hua University

Outline
I

® Minimum cost spanning tree (Sec. 6.3)
— Kruskal’s algorithm
— Prims’s algorithm
— Sollin’s algorithm
® Shortest path and transitive closure (Sec. 6.4)
— Single source/all destination: non-negative edge costs
— All-pairs shortest paths

— Transitive closure

® Activity networks (Sec. 6.5)

— Activity-on-vertex (AOV) networks

ational Tsing Hua University

Prim’s algorithm
-
ldea: add edges with minimum edge weight to the tree
one at a time. At all times during the algorithm, the

set of selected edges forms a tree

® Step 1: start with a tree T contains a single arbitrary
vertex

® Step 2: among all edges, add a least cost edge (u,v)
to T such that T U (u,v) is still a tree

® Step 3: repeat step 2 until T contains n-1 edges

National Tsing Hua University

Running Example

Refer to the textbook for detailed steps

Spanning tree with cost 99

tional Tsing Hua University

Prim’s Algorithm

1. v(T) = {0}; // start with vertex 0

2. for(T=¢; T has fewer than n-1 edges; add (u,v) to T){
3 Let (u,v) be a least cost edge that ueV(T), ve¢V(T);
4 if (there is no such edge) break;

5. add v to V(T);
6
7
8

-}
. If (T contains fewer than n-1 edges)
cout << “no spanning tree!” << endl;

® Step 3: use an array to record nearest distance of
each vertexto T

— Only vertices not in V(T) & adjacent to T are updated, O(n)
® At most execute n rounds =2 O(n?)

ational Tsing Hua University

Running Example

near-to-tree 0

V(T)=10} *
V(T)={0,5} x
V(T)={0,5,4} .
V(T)={0,5,4,3} .

V(T)={0,54,3,2} =
V(T)={0,5,4,3,2,1} =
V(T)={0,5,4,3,2,1,6}

28

28

28
28

16

24
18
18

14

tional Tsing Hua University

Outline
I

® Minimum cost spanning tree (Sec. 6.3)
— Kruskal’s algorithm
— Prims’s algorithm
— Sollin’s algorithm
® Shortest path and transitive closure (Sec. 6.4)
— Single source/all destination: non-negative edge costs
— All-pairs shortest paths

— Transitive closure

® Activity networks (Sec. 6.5)

— Activity-on-vertex (AOV) networks

ational Tsing Hua University

Sollin’s Algorithm

-
ldea: select several edges at each stage

® Step 1: start with a forest which has n spanning trees
(each has one vertex)

® Step 2: select one minimum cost edge for each tree
and this edge has exactly one vertex in the tree

® Step 3: delete multiple copies of selected edges and
if two edges with the same cost connecting two
trees, keep only one of them

® Step 4: repeat until we obtain only one tree

A parallel algorithm!

National Tsing Hua University

Running Example

Refer to the textbook for detailed steps

Spanning tree with cost 99

tional Tsing Hua University

Outline
I

® Minimum cost spanning tree (Sec. 6.3)
— Kruskal’s algorithm
— Prims’s algorithm
— Sollin’s algorithm
® Shortest path and transitive closure (Sec. 6.4)
— Single source/all destinations: non-negative edge costs
— All-pairs shortest paths

— Transitive closure

® Activity networks (Sec. 6.5)

— Activity-on-vertex (AOV) networks

ational Tsing Hua University

Single Source Shortest Paths

® Given a digraph with nonnegative edge costs, we
want to compute a shortest path from a source
vertex to each of the other vertices
—> single source/all destinations problem

45

Paths from O to 1:
0->1 : 50
0->2->4->1 :95

0->3->4->1 :45

National Tsing Hua University

Dijkstra’s Algorithm
-
® Use a set S to store the vertices whose shortest path

have been found

® An array dist stores the shortest distance found so
far from source v to each of the other vertices

— dist[w] = length of shortest path starting v, going through
only vertices in S, and ending at w

® \When a new vertex w is visited, update dist:

dist[w] = min(dist[u]+length(<u,w>),dist[w])
uis a vertex in S which is adjacent to w

® Always select the vertex with smallest dist[w] into S

National Tsing Hua University

Running Example

0
{0} 0
{0, 3} 0
{0, 3, 4} 0
{0, 3,4, 1} 0
{0,3,4,1,2} O

tional Tsing Hua University

45

g g 8§ 8 8§ o

Running Example

S 0 1 2 3 4 5 6 7
{4} © oo oo 1500 0 250 oo oo
{4, 5} o oo oo 1250 0 250 1150 1650
{4, 5, 6} © e oo 1250 0 250 1150 1650

tional Tsing Hua University

Running Example

S o 1 2 3 4 5 6 7
(4,5, 6) oo oo oo 1250 0 250 1150 1650
{4,5,6, 3} oo oo 2450 1250 O 250 1150 1650
{4,5,6,3,7) 3350 e 2450 1250 O 250 115 1650

tional Tsing Hua University

Running Example

S 6 7

{4,5,6, 3,7} 3350 oo 2450 1250 250 1150 1650

4
0

{4,5,6,3,7,2} 3350 3250 2450 1250 O 250 1150 1650
0

{4,5,6,3,7,2,1} 3350 3250 2450 1250 250 1150 1650

tional Tsing Hua University

Running Example

S 0 1 2 3 4 5 6 7
{4,5,6,3,7,2,1} 3350 3250 2450 1250 O 250 1150 1650

{4,5,6,3,7,2,1,0} 3350 3250 2450 1250 O 250 1150 1650

tional Tsing Hua University

Dijkstra’s Algorithm

1. void MatrixWDigraph: :ShortestPath (const int n, const int v)

2. { // dist[j], 0 £ j < n, stores shortest path from v to j

3. // length[i][j] stores length of edge <i, j>

4. for (int i=0; i<n; i++) {s[i]=false; dist[i]=length[v][i];}

5. s[v] = true;

6. dist[v] = 0;

7. // find n - 1 paths starting from v

8. for(int i=0; i<n-2; i++){ = = = = = = = = = = = = > O(n)

9. // Choose () returns u that dist[u] min. & s[u] = false

10. int u = Choose(N); —m - - - - e o o o o o = = = > O(n)

11. s[u] = true;

12. for(int w=0; w<n; Wt+) = = = = = == — = — - - - O(I‘I)

13. if(!'s[w] && dist[u] + length[u] [w] < dist[w])

14. dist[w] = dist[u] + length[u] [w]

15. } // end of for (i = 0; ...)

le6. } . . 2
Time complexity: O(n?)

National Tsing Hua University

Digraph with Negative Costs

® A similar algorithm can be applied to digraph with
negative cost edges (Bellman and Ford Algorithm)

® However, the digraph MUST NOT contain cycles of
negative length, e.g., shortest path from 0 to 2 is -o©

Digraph with a negative cost edge Digraph with a cycle of negative cost
(Dijkstra’s Algorithm won’t work)

ational Tsing Hua University

Outline
I

® Minimum cost spanning tree (Sec. 6.3)
— Kruskal’s algorithm
— Prims’s algorithm
— Sollin’s algorithm
® Shortest path and transitive closure (Sec. 6.4)
— Single source/all destination: non-negative edge costs
— All-pairs shortest paths

— Transitive closure

® Activity networks (Sec. 6.5)

— Activity-on-vertex (AOV) networks

ational Tsing Hua University

All-Pairs Shortest Paths

® Intuitive idea: apply single source shortest path to
each of n vertices 2 O(n3)

® Alternative: use an idea similar to induction

— Suppose we have found all-pairs shortest paths using only
a set of k-1 vertices as the intermediate vertices

— By adding one more vertex into this set, can we further
reduce all-pairs shortest paths?

- only need to consider paths from source to that node
and from that node to destination

ational Tsing Hua University

Floyd-Warshall’s Algorithm

-
® Assumption: G has no cycles with negative length
- Any shortest path must have at most n-1 edges

® Represent G using a len jacency matrix A:
— AMi][j]: ju
— A™Yi][j]: the length of the shortest path fromitojin G

— AX[i][j]: the length of the shortest path from i to j going
through no intermediate vertex of index greater than k

gthli][j] Run at most n-1 rounds

- i.e., use only a set of k vertices as intermediate vertices

tional Tsing Hua University

Floyd-Warshall’s Algorithm

® There are only two possible paths for AX[i][j]!
— The path that dose not pass vertex k
— The path that passes M\

AK[i1[] = min{ AI[i1[j], AL [k]+ A [K][]] 3, k 2 0

ational Tsing Hua University

Running Example

Al 0 1 2
0 0 4 11
1 6 0 2
2 3 o0 0

A%[2][1] = min(A*[2][1], A*1[2][0]+A*[O][1])
A°[2][1] = min(oe, 3+4) =7
A%[1][2] = min(A[1][2], A**[1][0]+A*[0][2])
A°[1][2] = min(2, 6+11) =2

&) = [Y-

ational Tsing Hua University

Running Example

A0 0 1 2
0 0 4 11
1 6 0 2
2 3 7 0

A'[2][0] = min(A°[2][0], A°[2][1]+A°[1][0])
A1[2][0] = min(3, 7+6) = 3
A'[0][2] = min(A°[0][2], A°[O][1]+A°[1][2])
Al[0][2] = min(11, 4+2) =6

&) = [Y-

ational Tsing Hua University

Running Example

Al 0 1 2
0 0 4 6
1 6 0 2
2 3 7 0

A2[0][1] = min(A*[0][1], A[O][2]+A%[2][1])
A%[0][1] = min(4, 6+3) =4
A2[1][0] = min(A*[1][0], AY[1][2]+A%[2][0])
A%[1][0] = min(6, 2+3) =5

B = F R G

ational Tsing Hua University

Running Example

A2 0 1 2
0 0 4 6
1 S} 0 2
2 3 7 0

ational Tsing Hua University

Floyd-Warshall’s Algorithm

1. void MatrixWDigraph: :AllLengths (const int n)
2. {// length[i][j]: edge length between i and j
3. // a[i]l[j]: shortest path from i to j

4. for (int i=0; i<n; i++) === == === > O(n)
5. for (int j=0; j<n; J++) === === = - > O(n)
6. al[i][J]= length[i] []]’

7. // path with top vertex index k

8. for (int k=0; k<n; kt+) === =0 e==== > O(n)
0. // all other possible vertices

10. for (int i=0; i<n; i++) == = = = = = = = > O(n)
11. for (int j=0; j<n; J++) === = = = = = = > O(n)
12. if((a[1] [k]+a[k][J])<ali1][3])

13. al[i1][J] = al1][k] + alk][]]’

14. }

Time complexity: O(n3)

ational Tsing Hua University

Outline
I

® Minimum cost spanning tree (Sec. 6.3)
— Kruskal’s algorithm
— Prims’s algorithm
— Sollin’s algorithm
® Shortest path and transitive closure (Sec. 6.4)
— Single source/all destination: non-negative edge costs
— All-pairs shortest paths

— Transitive closure

® Activity networks (Sec. 6.5)

— Activity-on-vertex (AOV) networks

ational Tsing Hua University

Migration of Gray-faced Buzzard Eagle

® Gray-faced Buzzard Eagle

BA2WE —e

BASK —e

(http://www.ktnp.gov.tw/cht/notes02.aspx?print=1& .
| SRERERE 5w -
ecologyContent|D=20) ll http:/raptor.oro.tw ISR

@];ﬁ_ l;ﬁ ;%, K;%i’ (http://raptor.org.tw/grey-faced-buzzard-satellite-
tracking/origin.html)

National Tsing Hua University

Migration of Gray-faced Buzzard Eagle

® Migrating routes thru Taiwan

~
\
; vy S ~ i
4 3 ~
4 =
=
} B,
» L
= v }
— < P -
RS b .;‘?”’ ~I
=K Y -~ :. /’ —
‘ N -) ~ Z > J
= -
‘.}- 2z 3 » -
s, ~ s 3 ~«
N a ~ % /‘/ ~ 2 i
— X < ~
—— 4
- = o o~ e
-~ /

&) = [Y-

1612050905363)

= National Tsing Hua University

it

et |U |- BE AR
et] T B AR

o
N

(https://tw.knowledge.yahoo.com/question/question?qid=

Migration of Gray-faced Buzzard Eagle

® Resting sites (assumed)

® Let x Ry denote “eagles flight
directly from site x to y“

® IfxRyandyR z, can we imply
XRZz?

® The relation R over the set of
sites S is non-transitive

(https://tw.knowledge.yahoo.com/question/question?qid=
1612050905363)

National Tsing Hua University

Transitive Relations
-
® A relation R on a set Sis transitive if, for all x, y, and
zin S, wheneverx Ryand y R zthen xR z.
(Definition in page 376 of textbook)
— Example: equality, arrive-before, is-ancestor-of, ...
— Example of non-transitive relation: flight directly from site
x toy, is-parent-of, ...
® Can we extend a non-transitive relation into a
transitive relation?
— Example: from is-parent-of to is-ancestor-of?

— Canyou give an extended relation R’ for the relation
R = “eagles flight directly from x to y” that is transitive?

ational Tsing Hua University

Extended Relations for Transitivity
___._.__"_ """ " ...

® An example of an extended relation R’
“eagles starting at site x may rest at site y”

RI

ational Tsing Hua University

Extended Relations for Transitivity
S
® |t is always possible to extend a relation R to derive
another relation R’ that contains R and is transitive

® In fact, there are many such extended relations

® Among all such extended relations, the smallest one
is called the transitive closure of R

— May help to answer questions such as reachability of a
statements in a program

ational Tsing Hua University

Transitive Closure
Y

For a graph G with unweighted edges:

® The transitive closure matrix At:

— A*is a matrix such that A*[i][j] = 1 if there is a path of
length > 0 fromitojin the graph; otherwise, A*[i][j] =0

— A*[i][i] = 1 iff there is a cycle of length > 1 containing i
® The reflexive transitive closure matrix A*:

— A* is a matrix such that A*[i][j] = 1 if there is a path of
length > 0 fromito jin the graph; otherwise, A*[i][j] =0

— Arelation R on a set S is reflexive if, for every xin S, xR x is
true

tional Tsing Hua University

Transitive Closure

® Use Floyd-Warshall’s algorithm to get A*
— AMIIG] = AT 1T CASHT K] && AR [K][1]);

s

w N B O

O O O o o
©O B B R
©O B P B N
© B P P W

Transitive closure matrix

ational Tsing Hua University

Reflexive Transitive Closure

e A'[i][i] € 1 foralliin A*

”

o 1 2 3

o 1 1 1 1

1 0o 1 1 1

0 1 2 0 1 1 1
3 0 0 0 1

Reflexive transitive closure matrix

tional Tsing Hua University

Outline
I

® Minimum cost spanning tree (Sec. 6.3)
— Kruskal’s algorithm
— Prims’s algorithm
— Sollin’s algorithm
® Shortest path and transitive closure (Sec. 6.4)
— Single source/all destination: non-negative edge costs
— All-pairs shortest paths

— Transitive closure

® Activity networks (Sec. 6.5)

— Activity-on-vertex (AOV) networks

ational Tsing Hua University

Courses and Their Prerequisites
I

National Tsing Hua University

Course No. Course Prerequisites
C1l Programming | None
C2 Discrete Mathematics None
C3 Data Structures C1l, C2
C4 Calculus | None
C5 Calculus Il C4
C6 Linear Algebra C5
C7 Analysis of Algorithms C3, C6
C8 Assembly Language C3
C9 Operating Systems C7,C8
C10 Programming Languages C7
Cll Compiler Design C10
Cl12 Artificial Intelligence C7
C13 Computational Theory C7
Cl4 Parallel Algorithms C13

Numerical Analysis C5

Prerequisite Relationship as a Graph

Such a graph is called an @
activity-on-vertex (AOV) 4
network

7 &

ational Tsing Hua University

Activity-on-Vertex (AOV) Networks

® A digraph G with the vertices representing tasks or
activities and the edges representing precedence
relations between tasks

@ Predecessor:

Vertex i is a predecessor of vertex j

@ e iff there is a directed path from
e vertex | to vertex |

Precedence relation is transitive?
reflexive?
(Definition in page 376 of textbook)

National Tsing Hua University

AOV Network

® Topological order:

— A linear ordering of the vertices of a graph such that, for
any two vertices i and j, if i is a predecessor of j in the
graph, then i precedes j in the linear ordering

— from partial ordering to total ordering
@ C,>C,>C>cC (V)

@ @ C,>C,>C>C (V)

@ C,>C,>C>C, (X

tional Tsing Hua University

AOV Network of Courses

Use topological ordering to @
generate a linear order list, .
which represents one possible

@ way to take all the courses C10 @

7 &

ational Tsing Hua University

Topological Ordering

® |teratively pick a vertex v that has no predecessor
— Use a “count” field to record “in-degree” of each vertex

® Remove that vertex with all out-edges

adjLists
o [oF> 1 | => 2 |=> 3 |0
1[I 4 0

1 2> 4 => 5 0
1| 3> 5 = 4 0
3 | [4FT>NULL

2 | [5>NULL

ational Tsing Hua University

Running Example

adjLists
o [oF>» 1 => 2 |=> 3 0
1 [1F 4 0

1| 2> 4 | => 5 0
1/ B3> 5 => 4 0

3 | [4>NULL

2 | [5> NULL

Ordered list:

ational Tsing Hua University

Running Example

adjLists
o[> 1 |T> 2 = 3 |0
G o[> 4 |0
e ° O [2™> 4 => 5 |0
‘ O [8F=> 5 =—> 4 0
e‘e 3 | [4F>NULL

2 | [5> NULL

ational Tsing Hua University

Running Example

adjLists
o/[OF® 1 => 2 => 3 0
Q O [1F 4 0
e a O/ [2F> 4 => 5 0
O [8F=> 5 =—> 4 0
e 2 | [AF> NULL

1 | [5> NULL

Ordered list: @@

National Tsing Hua University

Running Example

adjLists
o/ [OfF® 1 => 2 = 3 0
Q O [1F 4 0
a O/ [2F> 4 |=—> 5 |0
O [8F=>» 5 =—> 4 0

@ 1 | [4>NULL

0 | [5>NULL

Ordered list: @@@

ational Tsing Hua University

Running Example

adjLists
o/[OF® 1 => 2 => 3 0
Q O [1F 4 0
a O/ 2> 4 |—> 5 |0
O [8F=> 5 =—> 4 0
1 | [4™>NULL

0 | [5> NULL

ordered list: (0)(3)(2)(5)

ational Tsing Hua University

Running Example

©

adjLists

o/ [OfF® 1 => 2 => 3 0
O [1F> 4 0

0 [2F> 4 => 5 0

0/ 3> 5 =—> 4 0

0 | [4F>NULL

0 | [5 > NULL

ordered list: (0)(3)(2)(5) (1)

ational Tsing Hua University

Running Example

-
adjLists

If there are cycles in G, then 0
the algorithm will end with 0
some vertices still having

predecessors and not being
removed 0
- digraph with no directed
cycles is an acyclic graph

0

oF>» 1 => 2 |=> 3 |0
[1F> 4 |0

2> 4 =—> 5 0

3F> 5 | > 4 |0

[4=> NULL

[5]> NULL

ordered list: (0)(3)(2)(5) (1) ()

ational Tsing Hua University

Summary
T

® Finding the minimum cost spanning tree of a graph
— Kruskal’s, Prims’s, and Sollin’s algorithm

® Finding the shortest path and transitive closure
— Dijkstra’s Algorithm for single source/all destination
— Floyd-Warshall’s Algorithm for all-pairs shortest paths

® Activity-on-vertex (AOV) networks

— Topological ordering

® Self-study topics

— Single source shortest path:
Digraph with negative edge costs

— Activity-on-edge (AOE) networks: critical path analysis

tional Tsing Hua University

