
National Tsing Hua University ® copyright OIANational Tsing Hua University

CS 2351 Data Structures

Graphs (II)

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIANational Tsing Hua University

Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

2

National Tsing Hua University ® copyright OIANational Tsing Hua University

Minimum-Cost Spanning Trees

 For a weighted undirected graph, find a spanning
tree with the sum of the weights (costs) of the
edges being minimum

 Three greedy algorithms:

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28
0

1

3

2

4

5 6

10

24
25 18 12

16

Spanning tree
with cost 105

3

National Tsing Hua University ® copyright OIANational Tsing Hua University

Kruskal’s Algorithm

Idea: add edges to the tree one at a time according to
their edge costs, from the smallest to the largest

 Step 1: find an edge with the minimum cost

 Step 2: if it creates a cycle to the edges already
selected, discard the edge; otherwise, select the
edge

 Step 3: repeat steps 1 and 2 until we select n-1
edges

4

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

14

24
25

22

18 12

16

28

Connected graph

0

1

3

2

4

5 6

10

14

25

22

12

16

Spanning tree with cost 99

Refer to the textbook for detailed steps

5

National Tsing Hua University ® copyright OIANational Tsing Hua University

Kruskal’s Algorithm

 Steps 3 and 4: use a min heap to store edge cost

 Step 5: use disjoint sets representation (Sec. 5.10) for
intermediate trees, one set for each partial tree

– For an edge (v,w) to be added, if v and w are in the same
set, discard the edge; else union two corresponding sets

1. T = ψ
2. While((T has fewer than n-1 edges)&&(E is not empty)){

3. choose an edge (v,w) from E with the minimum cost;

4. delete (v,w) from E;

5. if((v,w) does not create a cycle) add (v,w) to T;

6. else discard (v,w);

7. }

8. If(T contains fewer than n-1 edges)

9. cout << “no spanning tree!” << endl;

6

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0 1 32 4 5 6

7

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0 1 32 4

5

6

12

8

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0 1

3

2 4

5

6

12

14

9

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0

13

2 4

5

6

12

14 16

10

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0

1

3

2 4

5 6

12

14 16

11

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28
18

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0

1

3

2 4

5 6

12

14 16

22

12

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0

1

3

2

4

5 6

12

14 16

22

25

13

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

Spanning tree with cost 99

0

1

3

2

4

5

612

14 16

22

25

14

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

Disjoint sets

National Tsing Hua University ® copyright OIANational Tsing Hua University

Time Complexity

 Min heap: find minimum edge and delete from E

– Steps 3 and 4: O(log e)

 Set: find vertices in sets and union two sets

– Step 5: O(a(e))

 At most execute e-1 rounds:

– (e-1)(log e + a(e)) = O(e log e)

15

National Tsing Hua University ® copyright OIANational Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

《Theorem 6.1》

Kruskal’s algorithm can generate a minimum-cost
spanning tree for any undirected connected graph G

<Proof>:

(a) Kruskal’s method results in a spanning tree
whenever a spanning tree exists

(b) The generated spanning tree is of minimum cost

16

National Tsing Hua University ® copyright OIANational Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

<Proof>: (a)

 Only delete those edges that form a cycle

 Delete a cycle does not affect the connectivity of G

 Since G is initially a connected graph, Kruskal’s
algorithm always results in a connected graph with
n-1 edges, i.e., the algorithm cannot terminate with
E= and |T|<n-1

 Therefore, Kruskal’s algorithm always creates a
spanning tree for an undirected connected graph

17

National Tsing Hua University ® copyright OIANational Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

<Proof>: (b)

 Let U be another minimum-cost spanning tree of G

 If T = U, then T is a minimum-cost spanning tree

 If T ≠ U, let k, k > 0, be the number of edges in T not
in U

 We shall see that there exists a way to transform U
to T in k steps such that the cost of U is not changed

18

National Tsing Hua University ® copyright OIANational Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

<Proof>: (b)

 Transform U to T:

(1) Let e be the least-cost edge in T that is not in U

(2) When e is added to U, a cycle C is created

(3) Let f be any edge on C that is not in T
(This edge must exist as T contains no cycle)

–Now U’ = U+{e}-{f} is a spanning tree

–We need to prove that cost(e) = cost(f)

19

National Tsing Hua University ® copyright OIANational Tsing Hua University

Optimality Proof of Kruskal’s Algorithm

<Proof>: (b)

 Case i: cost(e) < cost(f)
– cost (U+{e}-{f}) < cost(U)  Impossible!

– Because U is a minimum cost spanning tree

 Case ii: cost(e) > cost(f)
– f should be considered earlier than e in Kruskal’s

algorithm, but why f is not in T?

 f together with certain edges in T, whose costs must be
smaller than or equal to f, form a cycle

– Those edges are also in U, and thus U must contain a cycle
 Contradiction!

 Therefore cost(e)=cost(f)

20

Because e is the least-cost edge
in T that is not in U

National Tsing Hua University ® copyright OIANational Tsing Hua University

Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

21

National Tsing Hua University ® copyright OIANational Tsing Hua University

Prim’s algorithm

Idea: add edges with minimum edge weight to the tree
one at a time. At all times during the algorithm, the
set of selected edges forms a tree

 Step 1: start with a tree T contains a single arbitrary
vertex

 Step 2: among all edges, add a least cost edge (u,v)
to T such that T U (u,v) is still a tree

 Step 3: repeat step 2 until T contains n-1 edges

22

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

14

24
25

22

18 12

16

28

Connected graph

0

1

3

2

4

5 6

10

14

25

22

12

16

Spanning tree with cost 99

Refer to the textbook for detailed steps

23

National Tsing Hua University ® copyright OIANational Tsing Hua University

Prim’s Algorithm

 Step 3: use an array to record nearest distance of
each vertex to T

– Only vertices not in V(T) & adjacent to T are updated, O(n)

 At most execute n rounds  O(n2)

1. V(T) = {0}; // start with vertex 0

2. for(T=ψ; T has fewer than n-1 edges; add (u,v) to T){

3. Let (u,v) be a least cost edge that uV(T), vV(T);

4. if(there is no such edge) break;

5. add v to V(T);

6. }

7. If(T contains fewer than n-1 edges)

8. cout << “no spanning tree!” << endl;

24

National Tsing Hua University ® copyright OIANational Tsing Hua University

near-to-tree 0 1 2 3 4 5 6

Running Example

V(T)={0}

V(T)={0,5}

V(T)={0,5,4}

V(T)={0,5,4,3}

V(T)={0,5,4,3,2}

V(T)={0,5,4,3,2,1}

V(T)={0,5,4,3,2,1,6}

* 28 ∞ ∞ ∞ 10 ∞

* 28 ∞ ∞ 25 * ∞

* 28 ∞ 22 * * 24

* 28 12 * * * 18

* 16 * * * * 18

* * * * * * 14

25

0

1

3

2

4

5 6

10
14

24
25

22

18 12

16

28

National Tsing Hua University ® copyright OIANational Tsing Hua University

Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

26

National Tsing Hua University ® copyright OIANational Tsing Hua University

Sollin’s Algorithm

Idea: select several edges at each stage

 Step 1: start with a forest which has n spanning trees
(each has one vertex)

 Step 2: select one minimum cost edge for each tree
and this edge has exactly one vertex in the tree

 Step 3: delete multiple copies of selected edges and
if two edges with the same cost connecting two
trees, keep only one of them

 Step 4: repeat until we obtain only one tree

27

A parallel algorithm!

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0

1

3

2

4

5 6

10

14

24
25

22

18 12

16

28

Connected graph

0

1

3

2

4

5 6

10

14

25

22

12

16

Spanning tree with cost 99

Refer to the textbook for detailed steps

28

National Tsing Hua University ® copyright OIANational Tsing Hua University

Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destinations: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

29

National Tsing Hua University ® copyright OIANational Tsing Hua University

Single Source Shortest Paths

 Given a digraph with nonnegative edge costs, we
want to compute a shortest path from a source
vertex to each of the other vertices
 single source/all destinations problem

0 1

3

2

4 5

35

3

30

15

1050

10 20 20
15

45
Paths from 0 to 1:
0->1 : 50
0->2->4->1 : 95
…
0->3->4->1 : 45

30

National Tsing Hua University ® copyright OIANational Tsing Hua University

Dijkstra’s Algorithm

 Use a set S to store the vertices whose shortest path
have been found

 An array dist stores the shortest distance found so
far from source v to each of the other vertices

– dist[w] = length of shortest path starting v, going through
only vertices in S, and ending at w

 When a new vertex w is visited, update dist:

 Always select the vertex with smallest dist[w] into S

dist[w] = min(dist[u]+length(<u,w>),dist[w])
u is a vertex in S which is adjacent to w

31

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

0 1

3

2

4 5

35

3

30

15

1050

10 20 20
15

45

S 0 1 2 3 4 5

{0}

{0, 3}

{0, 3, 4}

{0, 3, 4, 1}

{0, 3, 4, 1, 2}

0 50 45 10 ∞ ∞

0 50 45 10 25 ∞

0 45 45 10 25 ∞

0 45 45 10 25 ∞

0 45 45 10 25 ∞

32

National Tsing Hua University ® copyright OIANational Tsing Hua University

S 0 1 2 3 4 5 6 7

Running Example

800

300 1000

1700

1200 1500

1000

1400

1000

250

900

4321

670

5

{4} ∞ ∞ ∞ 1500 0 250 ∞ ∞

{4, 5} ∞ ∞ ∞ 1250 0 250 1150 1650

{4, 5, 6} ∞ ∞ ∞ 1250 0 250 1150 1650

33

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

800

300 1000

1700

1200 1500

1000

1400

1000

250

900

4321

670

5

S 0 1 2 3 4 5 6 7

{4, 5, 6} ∞ ∞ ∞ 1250 0 250 1150 1650

{4, 5, 6, 3} ∞ ∞ 2450 1250 0 250 1150 1650

{4, 5, 6, 3, 7} 3350 ∞ 2450 1250 0 250 115 1650

34

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

800

300 1000

1700

1200 1500

1000

1400

1000

250

900

4321

670

5

S 0 1 2 3 4 5 6 7

{4, 5, 6, 3, 7} 3350 ∞ 2450 1250 0 250 1150 1650

{4, 5, 6, 3, 7, 2} 3350 3250 2450 1250 0 250 1150 1650

{4, 5, 6, 3, 7, 2, 1} 3350 3250 2450 1250 0 250 1150 1650

35

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

800

300 1000

1700

1200 1500

1000

1400

1000

250

900

4321

670

5

S 0 1 2 3 4 5 6 7

{4,5,6,3,7,2,1} 3350 3250 2450 1250 0 250 1150 1650

{4,5,6,3,7,2,1,0} 3350 3250 2450 1250 0 250 1150 1650

36

National Tsing Hua University ® copyright OIANational Tsing Hua University

Dijkstra’s Algorithm

1. void MatrixWDigraph::ShortestPath(const int n, const int v)

2. { // dist[j], 0 ≤ j < n, stores shortest path from v to j

3. // length[i][j] stores length of edge <i,j>

4. for(int i=0; i<n; i++){s[i]=false; dist[i]=length[v][i];}

5. s[v] = true;

6. dist[v] = 0;

7. // find n − 1 paths starting from v

8. for(int i=0; i<n−2; i++){

9. // Choose() returns u that dist[u] min. & s[u] = false

10. int u = Choose(n);

11. s[u] = true;

12. for(int w=0; w<n; w++)

13. if(!s[w] && dist[u] + length[u][w] < dist[w])

14. dist[w] = dist[u] + length[u][w];

15. } // end of for (i = 0; ...)

16. }

O(n)

O(n)

O(n)

Time complexity: O(n2)

37

National Tsing Hua University ® copyright OIANational Tsing Hua University

Digraph with Negative Costs

 A similar algorithm can be applied to digraph with
negative cost edges (Bellman and Ford Algorithm)

 However, the digraph MUST NOT contain cycles of
negative length, e.g., shortest path from 0 to 2 is -

7 -5
210

5

Digraph with a negative cost edge
(Dijkstra’s Algorithm won’t work)

1 1
210

-2

Digraph with a cycle of negative cost

38

National Tsing Hua University ® copyright OIANational Tsing Hua University

Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

39

National Tsing Hua University ® copyright OIANational Tsing Hua University

All-Pairs Shortest Paths

 Intuitive idea: apply single source shortest path to
each of n vertices  O(n3)

 Alternative: use an idea similar to induction

– Suppose we have found all-pairs shortest paths using only
a set of k-1 vertices as the intermediate vertices

– By adding one more vertex into this set, can we further
reduce all-pairs shortest paths?

 only need to consider paths from source to that node
and from that node to destination

40

i jk

National Tsing Hua University ® copyright OIANational Tsing Hua University

Floyd-Warshall’s Algorithm

 Assumption: G has no cycles with negative length

 Any shortest path must have at most n-1 edges

 Represent G using a length-adjacency matrix A:

– A-1[i][j]: just length[i][j]

– An-1[i][j]: the length of the shortest path from i to j in G

– Ak[i][j]: the length of the shortest path from i to j going
through no intermediate vertex of index greater than k

 i.e., use only a set of k vertices as intermediate vertices

41

Run at most n-1 rounds

National Tsing Hua University ® copyright OIANational Tsing Hua University

Floyd-Warshall’s Algorithm

 There are only two possible paths for Ak[i][j]!

– The path that dose not pass vertex k

– The path that passes vertex k

i j

0
k-1

…

0
k-1

… 0
k-1

…k

Ak[i][j] = min{ Ak-1[i][j], Ak-1[i][k]+ Ak-1 [k][j] }, k ≥ 0

42

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

2

2

10
4

6

11

3

A-1 0 1 2

0 0 4 11

1 6 0 2

2 3 ∞ 0

A0[2][1] = min(A-1[2][1], A-1[2][0]+A-1[0][1])
A0[2][1] = min(∞, 3+4) = 7

A0[1][2] = min(A-1[1][2], A-1[1][0]+A-1[0][2])
A0[1][2] = min(2, 6+11) = 2

43

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

2

2

10
4

6

11

3

A0 0 1 2

0 0 4 11

1 6 0 2

2 3 7 0

A1[2][0] = min(A0[2][0], A0[2][1]+A0[1][0])
A1[2][0] = min(3, 7+6) = 3

A1[0][2] = min(A0[0][2], A0[0][1]+A0[1][2])
A1[0][2] = min(11, 4+2) = 6

44

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

2

2

10
4

6

11

3

A1 0 1 2

0 0 4 6

1 6 0 2

2 3 7 0

A2[0][1] = min(A1[0][1], A1[0][2]+A1[2][1])
A2[0][1] = min(4, 6+3) = 4

A2[1][0] = min(A1[1][0], A1[1][2]+A1[2][0])
A2[1][0] = min(6, 2+3) = 5

45

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

2

2

10
4

6

11

3

A2 0 1 2

0 0 4 6

1 5 0 2

2 3 7 0

46

National Tsing Hua University ® copyright OIANational Tsing Hua University

Floyd-Warshall’s Algorithm

1. void MatrixWDigraph::AllLengths(const int n)

2. {// length[i][j]: edge length between i and j

3. // a[i][j]: shortest path from i to j

4. for (int i=0; i<n; i++)

5. for (int j=0; j<n; j++)

6. a[i][j]= length[i][j];

7. // path with top vertex index k

8. for (int k=0; k<n; k++)

9. // all other possible vertices

10. for (int i=0; i<n; i++)

11. for (int j=0; j<n; j++)

12. if((a[i][k]+a[k][j])<a[i][j])

13. a[i][j] = a[i][k] + a[k][j];

14. }

O(n)
O(n)

O(n)

O(n)
O(n)

Time complexity: O(n3)
47

National Tsing Hua University ® copyright OIANational Tsing Hua University

Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

48

National Tsing Hua University ® copyright OIANational Tsing Hua University

Migration of Gray-faced Buzzard Eagle

 Gray-faced Buzzard Eagle
(灰面鵟鷹)

49

(http://raptor.org.tw/grey-faced-buzzard-satellite-
tracking/origin.html)

(http://www.ktnp.gov.tw/cht/notes02.aspx?print=1&
ecologyContentID=20)

National Tsing Hua University ® copyright OIANational Tsing Hua University

Migration of Gray-faced Buzzard Eagle

 Migrating routes thru Taiwan

50

(https://tw.knowledge.yahoo.com/question/question?qid=
1612050905363)

National Tsing Hua University ® copyright OIANational Tsing Hua University

Migration of Gray-faced Buzzard Eagle

 Resting sites (assumed)

 Let x R y denote “eagles flight
directly from site x to y“

 If x R y and y R z, can we imply
x R z?

 The relation R over the set of
sites S is non-transitive

51

A

B

C

D
E

(https://tw.knowledge.yahoo.com/question/question?qid=
1612050905363)

National Tsing Hua University ® copyright OIANational Tsing Hua University

Transitive Relations

 A relation R on a set S is transitive if, for all x, y, and
z in S, whenever x R y and y R z then x R z.
(Definition in page 376 of textbook)

– Example: equality, arrive-before, is-ancestor-of, …

– Example of non-transitive relation: flight directly from site
x to y, is-parent-of, …

 Can we extend a non-transitive relation into a
transitive relation?

– Example: from is-parent-of to is-ancestor-of?

– Can you give an extended relation R’ for the relation
R = “eagles flight directly from x to y” that is transitive?

52

National Tsing Hua University ® copyright OIANational Tsing Hua University

Extended Relations for Transitivity

 An example of an extended relation R’
“eagles starting at site x may rest at site y”

53

A

B

C

D E

R

A

B

C

D E

R’

National Tsing Hua University ® copyright OIANational Tsing Hua University

Extended Relations for Transitivity

 It is always possible to extend a relation R to derive
another relation R’ that contains R and is transitive

 In fact, there are many such extended relations

 Among all such extended relations, the smallest one
is called the transitive closure of R

– May help to answer questions such as reachability of a
statements in a program

54

National Tsing Hua University ® copyright OIANational Tsing Hua University

Transitive Closure

For a graph G with unweighted edges:

 The transitive closure matrix A+:

– A+ is a matrix such that A+[i][j] = 1 if there is a path of
length > 0 from i to j in the graph; otherwise, A+[i][j] = 0

– A+[i][i] = 1 iff there is a cycle of length > 1 containing i

 The reflexive transitive closure matrix A*:

– A* is a matrix such that A*[i][j] = 1 if there is a path of
length  0 from i to j in the graph; otherwise, A*[i][j] = 0

– A relation R on a set S is reflexive if, for every x in S, x R x is
true

55

National Tsing Hua University ® copyright OIANational Tsing Hua University

Transitive Closure

 Use Floyd-Warshall’s algorithm to get A+

– Ak[i][j] = Ak-1[i][j] || (Ak-1[i][k] && Ak-1 [k][j]);

56

310 2 A+ 0 1 2 3

0 0 1 1 1

1 0 1 1 1

2 0 1 1 1

3 0 0 0 0

Transitive closure matrix

310 2

National Tsing Hua University ® copyright OIANational Tsing Hua University

Reflexive Transitive Closure

 A+[i][i]  1 for all i in A+

57

A* 0 1 2 3

0 1 1 1 1

1 0 1 1 1

2 0 1 1 1

3 0 0 0 1

Reflexive transitive closure matrix

310 2

310 2

National Tsing Hua University ® copyright OIANational Tsing Hua University

Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

58

National Tsing Hua University ® copyright OIANational Tsing Hua University

Courses and Their Prerequisites

Course No. Course Prerequisites

C1 Programming I None

C2 Discrete Mathematics None

C3 Data Structures C1, C2

C4 Calculus I None

C5 Calculus II C4

C6 Linear Algebra C5

C7 Analysis of Algorithms C3, C6

C8 Assembly Language C3

C9 Operating Systems C7, C8

C10 Programming Languages C7

C11 Compiler Design C10

C12 Artificial Intelligence C7

C13 Computational Theory C7

C14 Parallel Algorithms C13

C15 Numerical Analysis C5

59

National Tsing Hua University ® copyright OIANational Tsing Hua University

Prerequisite Relationship as a Graph

C10

C15

C11

C14C13

C12

C1

C2

C4

C3

C5 C6

C7

C9

C8

60

Such a graph is called an
activity-on-vertex (AOV)
network

National Tsing Hua University ® copyright OIANational Tsing Hua University

 A digraph G with the vertices representing tasks or
activities and the edges representing precedence
relations between tasks

Activity-on-Vertex (AOV) Networks

C3

C1

C0

C2

Predecessor:
Vertex i is a predecessor of vertex j
iff there is a directed path from
vertex i to vertex j

61

Precedence relation is transitive?
reflexive?

(Definition in page 376 of textbook)

National Tsing Hua University ® copyright OIANational Tsing Hua University

AOV Network

 Topological order:

– A linear ordering of the vertices of a graph such that, for
any two vertices i and j, if i is a predecessor of j in the
graph, then i precedes j in the linear ordering

 from partial ordering to total ordering

C3

C1

C0

C2

C0 C1 C2 C3 ()

C0 C2 C3 C1 (X)

C0 C2 C1 C3 ()

62

National Tsing Hua University ® copyright OIANational Tsing Hua University

AOV Network of Courses

C10

C15

C11

C14C13

C12

C1

C2

C4

C3

C5 C6

C7

C9

C8

Use topological ordering to
generate a linear order list,
which represents one possible
way to take all the courses

63

National Tsing Hua University ® copyright OIANational Tsing Hua University

Topological Ordering

 Iteratively pick a vertex v that has no predecessor

– Use a “count” field to record “in-degree” of each vertex

 Remove that vertex with all out-edges

4

1

0

3

2

5

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

1

1

3

2

1

64

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

Ordered list:

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

1

1

3

2

1

4

1

0

3

2

5

65

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

Ordered list:

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

3

2

0

4

1

3

2

5

0

66

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

Ordered list:

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

2

1

0

4

1

2

5

0 3

67

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

Ordered list:

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

1

0

0

4

1

5

0 3 2

68

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

Ordered list:

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

1

0

0

4

1

0 3 2 5

69

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

Ordered list:

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

0

0

0

4

0 3 2 5 1

70

National Tsing Hua University ® copyright OIANational Tsing Hua University

Running Example

Ordered list:

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

0

0

0

40 3 2 5 1

71

If there are cycles in G, then
the algorithm will end with
some vertices still having
predecessors and not being
removed
 digraph with no directed
cycles is an acyclic graph

National Tsing Hua University ® copyright OIANational Tsing Hua University

Summary

 Finding the minimum cost spanning tree of a graph

– Kruskal’s, Prims’s, and Sollin’s algorithm

 Finding the shortest path and transitive closure

– Dijkstra’s Algorithm for single source/all destination

– Floyd-Warshall’s Algorithm for all-pairs shortest paths

 Activity-on-vertex (AOV) networks

– Topological ordering

 Self-study topics

– Single source shortest path:
Digraph with negative edge costs

– Activity-on-edge (AOE) networks: critical path analysis

72

