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Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks
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Minimum-Cost Spanning Trees

 For a weighted undirected graph, find a spanning 
tree with the sum of the weights (costs) of the 
edges being minimum

 Three greedy algorithms:

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm 
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Kruskal’s Algorithm

Idea: add edges to the tree one at a time according to 
their edge costs, from the smallest to the largest

 Step 1: find an edge with the minimum cost

 Step 2: if it creates a cycle to the edges already 
selected, discard the edge; otherwise, select the 
edge

 Step 3: repeat steps 1 and 2 until we select n-1 
edges
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Running Example
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Kruskal’s Algorithm

 Steps 3 and 4: use a min heap to store edge cost

 Step 5: use disjoint sets representation (Sec. 5.10) for 
intermediate trees, one set for each partial tree

– For an edge (v,w) to be added, if v and w are in the same 
set, discard the edge; else union two corresponding sets

1. T = ψ
2. While((T has fewer than n-1 edges)&&(E is not empty)){

3. choose an edge (v,w) from E with the minimum cost;

4. delete (v,w) from E;

5. if((v,w) does not create a cycle) add (v,w) to T;

6. else discard (v,w);

7. }

8. If(T contains fewer than n-1 edges) 

9. cout << “no spanning tree!” << endl;
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Running Example
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Running Example
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Running Example
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Running Example
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Running Example
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Running Example
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Running Example
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Running Example
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Time Complexity

 Min heap: find minimum edge and delete from E

– Steps 3 and 4: O(log e)

 Set: find vertices in sets and union two sets

– Step 5: O(a(e))

 At most execute e-1 rounds:

– (e-1)(log e + a(e)) = O(e log e)

15
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Optimality Proof of Kruskal’s Algorithm

《Theorem 6.1》

Kruskal’s algorithm can generate a minimum-cost
spanning tree for any undirected connected graph G

<Proof>:

(a) Kruskal’s method results in a spanning tree 
whenever a spanning tree exists

(b) The generated spanning tree is of minimum cost

16
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Optimality Proof of Kruskal’s Algorithm

<Proof>: (a)

 Only delete those edges that form a cycle

 Delete a cycle does not affect the connectivity of G

 Since G is initially a connected graph, Kruskal’s 
algorithm always results in a connected graph with 
n-1 edges, i.e., the algorithm cannot terminate with 
E= and |T|<n-1

 Therefore, Kruskal’s algorithm always creates a 
spanning tree for an undirected connected graph

17
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Optimality Proof of Kruskal’s Algorithm

<Proof>: (b)

 Let U be another minimum-cost spanning tree of G

 If T = U, then T is a minimum-cost spanning tree

 If T ≠ U, let k, k > 0, be the number of edges in T not 
in U

 We shall see that there exists a way to transform U 
to T in k steps such that the cost of U is not changed

18
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Optimality Proof of Kruskal’s Algorithm

<Proof>: (b)

 Transform U to T:

(1) Let e be the least-cost edge in T that is not in U

(2) When e is added to U, a cycle C is created

(3) Let f be any edge on C that is not in T
(This edge must exist as T contains no cycle)

–Now U’ = U+{e}-{f} is a spanning tree

–We need to prove that cost(e) = cost(f)
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Optimality Proof of Kruskal’s Algorithm

<Proof>: (b)

 Case i:   cost(e) < cost(f)
– cost (U+{e}-{f}) < cost(U)  Impossible!

– Because U is a minimum cost spanning tree

 Case ii: cost(e) > cost(f)
– f should be considered earlier than e in Kruskal’s 

algorithm, but why f is not in T?

 f together with certain edges in T, whose costs must be 
smaller than or equal to f, form a cycle

– Those edges are also in U, and thus U must contain a cycle 
 Contradiction!

 Therefore cost(e)=cost(f)

20

Because e is the least-cost edge 
in T that is not in U
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Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks

21



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Prim’s algorithm

Idea: add edges with minimum edge weight to the tree 
one at a time. At all times during the algorithm, the 
set of selected edges forms a tree

 Step 1: start with a tree T contains a single arbitrary 
vertex

 Step 2: among all edges, add a least cost edge (u,v) 
to T such that T U (u,v) is still a tree

 Step 3: repeat step 2 until T contains n-1 edges
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Running Example
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Prim’s Algorithm 

 Step 3: use an array to record nearest distance of 
each vertex to T

– Only vertices not in V(T) & adjacent to T are updated, O(n)

 At most execute n rounds  O(n2)

1. V(T) = {0};  // start with vertex 0

2. for(T=ψ; T has fewer than n-1 edges; add (u,v) to T){

3. Let (u,v) be a least cost edge that uV(T), vV(T);

4. if(there is no such edge) break;

5. add v to V(T);

6. }

7. If(T contains fewer than n-1 edges) 

8. cout << “no spanning tree!” << endl;
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near-to-tree 0 1 2 3 4 5 6

Running Example
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Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks
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Sollin’s Algorithm 

Idea: select several edges at each stage 

 Step 1: start with a forest which has n spanning trees 
(each has one vertex)

 Step 2: select one minimum cost edge for each tree 
and this edge has exactly one vertex in the tree

 Step 3: delete multiple copies of selected edges and 
if two edges with the same cost connecting two 
trees, keep only one of them

 Step 4: repeat until we obtain only one tree

27
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Running Example
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Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destinations: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks
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Single Source Shortest Paths

 Given a digraph with nonnegative edge costs, we 
want to compute a shortest path from a source 
vertex to each of the other vertices
 single source/all destinations problem
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Paths from 0 to 1:
0->1              : 50
0->2->4->1  : 95
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0->3->4->1   : 45
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Dijkstra’s Algorithm

 Use a set S to store the vertices whose shortest path 
have been found 

 An array dist stores the shortest distance found so 
far from source v to each of the other vertices

– dist[w] = length of shortest path starting v, going through 
only vertices in S, and ending at w

 When a new vertex w is visited, update dist:

 Always select the vertex with smallest dist[w] into S

dist[w] = min(dist[u]+length(<u,w>),dist[w])
u is a vertex in S which is adjacent to w
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Running Example
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S 0 1 2 3 4 5 6 7

Running Example
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{4} ∞         ∞        ∞      1500 0       250 ∞        ∞ 

{4, 5} ∞        ∞        ∞      1250 0       250     1150 1650

{4, 5, 6} ∞        ∞        ∞      1250 0        250    1150   1650
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Running Example
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Running Example
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Running Example
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Dijkstra’s Algorithm

1. void MatrixWDigraph::ShortestPath(const int n, const int v)

2. { // dist[j], 0 ≤ j < n, stores shortest path from v to j

3. // length[i][j] stores length of edge <i,j>

4. for(int i=0; i<n; i++){s[i]=false; dist[i]=length[v][i];}

5. s[v] = true;

6. dist[v] = 0;

7. // find n − 1 paths starting from v

8. for(int i=0; i<n−2; i++){ 

9. // Choose() returns u that dist[u] min. & s[u] = false

10. int u = Choose(n);  

11. s[u] = true;

12. for(int w=0; w<n; w++)

13. if(!s[w] && dist[u] + length[u][w] < dist[w])

14. dist[w] = dist[u] + length[u][w];

15. } // end of for (i = 0; ...)

16. }

O(n)

O(n)

O(n)

Time complexity: O(n2)
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Digraph with Negative Costs

 A similar algorithm can be applied to digraph with 
negative cost edges (Bellman and Ford Algorithm)

 However, the digraph MUST NOT contain cycles of 
negative length, e.g., shortest path from 0 to 2 is -

7 -5
210

5

Digraph with a negative cost edge
(Dijkstra’s Algorithm won’t work)

1 1
210

-2

Digraph with a cycle of negative cost
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Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks
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All-Pairs Shortest Paths

 Intuitive idea: apply single source shortest path to 
each of n vertices  O(n3)

 Alternative: use an idea similar to induction

– Suppose we have found all-pairs shortest paths using only 
a set of k-1 vertices as the intermediate vertices

– By adding one more vertex into this set, can we further 
reduce all-pairs shortest paths?

 only need to consider paths from source to that node 
and from that node to destination

40
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Floyd-Warshall’s Algorithm

 Assumption: G has no cycles with negative length

 Any shortest path must have at most n-1 edges

 Represent G using a length-adjacency matrix A:

– A-1[i][j]: just length[i][j]

– An-1[i][j]: the length of the shortest path from i to j in G

– Ak[i][j]: the length of the shortest path from i to j going 
through no intermediate vertex of index greater than k

 i.e., use only a set of k vertices as intermediate vertices

41

Run at most n-1 rounds
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Floyd-Warshall’s Algorithm

 There are only two possible paths for Ak[i][j]!

– The path that dose not pass vertex k

– The path that passes vertex k 

i j

0
k-1

…

0
k-1

… 0
k-1

…k

Ak[i][j] = min{ Ak-1[i][j], Ak-1[i][k]+ Ak-1 [k][j] }, k ≥ 0
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Running Example
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A0[2][1] = min(A-1[2][1], A-1[2][0]+A-1[0][1])
A0[2][1] = min(∞, 3+4) = 7

A0[1][2] = min(A-1[1][2], A-1[1][0]+A-1[0][2])
A0[1][2] = min(2, 6+11) = 2
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Running Example
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A1[2][0] = min(A0[2][0], A0[2][1]+A0[1][0])
A1[2][0] = min(3, 7+6) = 3

A1[0][2] = min(A0[0][2], A0[0][1]+A0[1][2])
A1[0][2] = min(11, 4+2) = 6
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Running Example
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Running Example
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Floyd-Warshall’s Algorithm

1. void MatrixWDigraph::AllLengths(const int n)

2. {// length[i][j]: edge length between i and j

3. // a[i][j]: shortest path from i to j

4. for (int i=0; i<n; i++)

5. for (int j=0; j<n; j++) 

6. a[i][j]= length[i][j];   

7. // path with top vertex index k

8. for (int k=0; k<n; k++)

9. // all other possible vertices

10. for (int i=0; i<n; i++)

11. for (int j=0; j<n; j++)

12. if((a[i][k]+a[k][j])<a[i][j])

13. a[i][j] = a[i][k] + a[k][j]; 

14. }

O(n)
O(n)

O(n)

O(n)
O(n)

Time complexity: O(n3)
47
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Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks
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Migration of Gray-faced Buzzard Eagle

 Gray-faced Buzzard Eagle
(灰面鵟鷹)

49

(http://raptor.org.tw/grey-faced-buzzard-satellite-
tracking/origin.html)

(http://www.ktnp.gov.tw/cht/notes02.aspx?print=1&
ecologyContentID=20)
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Migration of Gray-faced Buzzard Eagle

 Migrating routes thru Taiwan

50

(https://tw.knowledge.yahoo.com/question/question?qid=
1612050905363)
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Migration of Gray-faced Buzzard Eagle

 Resting sites (assumed)

 Let x R y denote “eagles flight
directly from site x to y“

 If x R y and y R z, can we imply
x R z?

 The relation R over the set of 
sites S is non-transitive

51
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Transitive Relations 

 A relation R on a set S is transitive if, for all x, y, and 
z in S, whenever x R y and y R z then x R z.
(Definition in page 376 of textbook)

– Example: equality, arrive-before, is-ancestor-of, …

– Example of non-transitive relation: flight directly from site 
x to y, is-parent-of, …

 Can we extend a non-transitive relation into a 
transitive relation?

– Example: from is-parent-of to is-ancestor-of?

– Can you give an extended relation R’ for the relation 
R = “eagles flight directly from x to y” that is transitive?
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Extended Relations for Transitivity

 An example of an extended relation R’
“eagles starting at site x may rest at site y”
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Extended Relations for Transitivity

 It is always possible to extend a relation R to derive 
another relation R’ that contains R and is transitive

 In fact, there are many such extended relations

 Among all such extended relations, the smallest one 
is called the transitive closure of R

– May help to answer questions such as reachability of a 
statements in a program 
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Transitive Closure

For a graph G with unweighted edges:

 The transitive closure matrix A+:

– A+ is a matrix such that A+[i][j] = 1 if there is a path of 
length > 0 from i to j in the graph; otherwise, A+[i][j] = 0

– A+[i][i] = 1 iff there is a cycle of length > 1 containing i

 The reflexive transitive closure matrix A*:

– A* is a matrix such that A*[i][j] = 1 if there is a path of 
length  0 from i to j in the graph; otherwise, A*[i][j] = 0

– A relation R on a set S is reflexive if, for every x in S, x R x is 
true

55



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Transitive Closure

 Use Floyd-Warshall’s algorithm to get A+

– Ak[i][j] = Ak-1[i][j] || ( Ak-1[i][k] && Ak-1 [k][j] );

56

310 2 A+ 0 1 2 3

0 0 1 1 1

1 0 1 1 1

2 0 1 1 1

3 0 0 0 0

Transitive closure matrix

310 2
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Reflexive Transitive Closure

 A+[i][i]  1 for all i in A+
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A* 0 1 2 3

0 1 1 1 1

1 0 1 1 1

2 0 1 1 1

3 0 0 0 1

Reflexive transitive closure matrix

310 2

310 2
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Outline

 Minimum cost spanning tree (Sec. 6.3)

– Kruskal’s algorithm

– Prims’s algorithm

– Sollin’s algorithm

 Shortest path and transitive closure (Sec. 6.4)

– Single source/all destination: non-negative edge costs

– All-pairs shortest paths

– Transitive closure

 Activity networks (Sec. 6.5)

– Activity-on-vertex (AOV) networks
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Courses and Their Prerequisites

Course No. Course Prerequisites

C1 Programming I None

C2 Discrete Mathematics None

C3 Data Structures C1, C2

C4 Calculus I None

C5 Calculus II C4

C6 Linear Algebra C5

C7 Analysis of Algorithms C3, C6

C8 Assembly Language C3

C9 Operating Systems C7, C8

C10 Programming Languages C7

C11 Compiler Design C10

C12 Artificial Intelligence C7

C13 Computational Theory C7

C14 Parallel Algorithms C13

C15 Numerical Analysis C5
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Prerequisite Relationship as a Graph

C10

C15

C11

C14C13

C12

C1

C2

C4

C3

C5 C6

C7

C9

C8
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Such a graph is called an 
activity-on-vertex (AOV) 
network
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 A digraph G with the vertices representing tasks or 
activities and the edges representing precedence 
relations between tasks

Activity-on-Vertex (AOV) Networks

C3

C1

C0

C2

Predecessor:
Vertex i is a predecessor of vertex j 
iff there is a directed path from 
vertex i to vertex j
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Precedence relation is transitive?
reflexive? 

(Definition in page 376 of textbook)
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AOV Network

 Topological order:

– A linear ordering of the vertices of a graph such that, for 
any two vertices i and j, if i is a predecessor of j in the 
graph, then i precedes j in the linear ordering

 from partial ordering to total ordering

C3

C1

C0

C2

C0 C1 C2 C3 ()

C0 C2 C3 C1 (X)

C0 C2 C1 C3 ()
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AOV Network of Courses

C10

C15

C11

C14C13

C12

C1

C2

C4

C3

C5 C6

C7

C9

C8

Use topological ordering to 
generate a linear order list, 
which represents one possible 
way to take all the courses
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Topological Ordering

 Iteratively pick a vertex v that has no predecessor

– Use a “count” field to record “in-degree” of each vertex

 Remove that vertex with all out-edges

4

1

0

3

2

5

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

1

1

3

2

1
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Running Example

Ordered list: 

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

1

1

3

2

1

4

1

0

3

2

5
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Running Example

Ordered list: 

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

3

2

0

4

1

3

2

5

0
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Running Example

Ordered list: 

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

2

1

0

4

1

2

5

0 3
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Running Example

Ordered list: 

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

1

0

0

4

1

5

0 3 2
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Running Example

Ordered list: 

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

1

0

0

4

1

0 3 2 5
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Running Example

Ordered list: 

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

0

0

0

4

0 3 2 5 1
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Running Example

Ordered list: 

[0]

[1]

[2]

[3]

3 021

4 0

54 0

adjLists

45 0

[4] NULL

[5] NULL

0

0

0

0

0

0

40 3 2 5 1
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If there are cycles in G, then 
the algorithm will end with 
some vertices still having 
predecessors and not being 
removed
 digraph with no directed 
cycles is an acyclic graph
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Summary

 Finding the minimum cost spanning tree of a graph

– Kruskal’s, Prims’s, and Sollin’s algorithm

 Finding the shortest path and transitive closure

– Dijkstra’s Algorithm for single source/all destination

– Floyd-Warshall’s Algorithm for all-pairs shortest paths

 Activity-on-vertex (AOV) networks

– Topological ordering

 Self-study topics

– Single source shortest path: 
Digraph with negative edge costs

– Activity-on-edge (AOE) networks: critical path analysis
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