
National Tsing Hua University ® copyright OIA National Tsing Hua University

CS 2351 Data Structures

Graphs (I)

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Introduction to graphs (Sec. 6.1)

– Definitions, terminologies

– Representations

 Elementary graph operations (Sec. 6.2)

– Depth first search, breadth first search, connected
components, spanning trees

2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Konigsberg Bridge Problem (1736 AD)

 Given 4 lands with 7 bridges

 Problem: Starting at one land, is it possible to walk
across all the bridges exactly once and returning to
the starting land?

3

http://simonkneebone.com/2011/11/29/konigsberg-bridge-puzzle/

A

B

C

D

National Tsing Hua University ® copyright OIA National Tsing Hua University

Konigsberg Bridge Problem

 Leonhard Euler formulated the problem as a graph

 Proved that the
answer to the
problem is possible
iff the degree of
each vertex is even

A

B

C

D

4

A

B

C

D

National Tsing Hua University ® copyright OIA National Tsing Hua University

 Find the shortest path from Taipei to Hsinchu

Many Applications of Graphs

5

20

15

12
22

7

25

11

30

27

13 6
9

10

18

32

12

10
14

11

20
17 5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Many Applications of Graphs

 Co-authorship

6

http://www.public.asu.edu/~majansse/pubs/SupplementIHDP.htm

National Tsing Hua University ® copyright OIA National Tsing Hua University

Graph Definition

 A graph, G = (V, E), consists of two sets, V and E

– V : a set of vertices

– E : a set of pairs of vertices called edges

 Undirected graph (simply graph)

– (u,v) and (v,u) represent the same edge

 Directed graph (digraph)

– <u,v> ≠ <v,u>

– <u,v>: u is tail and v is head of edge

7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Examples

0

1

3

2

Undirected Graph
V(G)={0, 1, 2, 3}
E(G)={(0,1), (0,2), (0,3),
 (1,2), (1,3), (2,3)}

Undirected Graph
V(G)={0, 1, 2, 3, 4, 5, 6}
E(G)={(0,1), (0,2), (1,3),
 (1,4), (2,5), (2,6)}

0

1

3

2

4 5 6

0

1

2

Directed Graph
V(G)={0, 1, 2}
E(G)={<0,1>, <1,0>, <1,2>)}

8

tail

head

National Tsing Hua University ® copyright OIA National Tsing Hua University

Restrictions

 Self edges and self loops are not permitted!

– Edges of the form (v, v) and <v, v> are not legal

 A graph should not have multiple occurrences of the
same edge (otherwise, it is called a multigraph)

0

1

2

3

Graph with self edge

0

1

2

3

Multigraph

9

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 For a graph with n vertices, the max # of edges of:

– Undirected graph is n(n-1)/2

– Directed graph is n(n-1)

 Vertices u and v are adjacent if (u,v)  E and edge
(u,v) is incident on vertices u and v

 For a direct edge <u,v>, u is adjacent to v and v is
adjacent from u, and edge <u,v> is incident to
vertices u and v

10

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Complete undirected
graph

– Graph with n vertices
has exactly n(n-1)/2
edges

 Complete directed
graph

– Graph with n vertices
has exactly n(n-1) edges

11

0

1

3

2

0

1 2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Subgraph:

– G’ is a subgraph of G if V(G’)  V(G) and E(G’)  E(G)

0

1

3

2

0

1

3

2 1

3

2

Graph Subgraph Subgraph

12

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Path:

– A path from u to v represents a sequence of vertices u, i1,
i2 , …, ik, v, such that (u, i1), (i1 ,i2), …, (ik ,v) are edges in the
graph

 Simple path:

– A simple path is a path in which all vertices except possibly
the first and the last are distinct

0

1

3

2

Sequence Path? Simple path?

0,1,3,2

0,2,0,1

0,3,2,1

Yes Yes

Yes No
No No

13

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Cycle:

– A cycle is a simple path in which the first and the last
vertices are the same

 Notes: if the graph is a directed graph, we usually
add the prefix “directed” to the above terms:

– Directed path

– Directed simple path

– Directed cycle

14

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Undirected graph G is said to be connected iff for
every pair of distinct vertices u and v, there is a
path from u to v in G

0

1

3

2

0

1

3

2

4

5

6

7

Connected graph Not a connected graph

15

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 A connected component, H, of an undirected graph
is a maximal connected subgraph

 Tree:

– A connected acyclic graph

– n vertex connected graph with n-1 edges

0

1

3

2

4

5

6

7

Graph with two connected components

H1 H2

16

A connected
subgraph, but
not a maximal
connected
subgraph

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Directed graph G is said to be strongly connected iff
for every pair of distinct vertices u and v, there is a
directed path from u to v and also from v to u in G.

0

1

2

Not a strongly connected digraph!

There is no directed path from 2 to 0

17

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 A strongly connected component is a maximal
subgraph that is strongly connected

0

1

2

0

1

2

Two strongly connected components

H1 H2

18

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Degree of a vertex v:

– The # of edges incident to v

 In a directed graph:

– In-degree of v: # of edges for which v is the head

– Out-degree of v: # of edges for which v is the tail

– Degree of v = in-degree + out-degree

19

0

1

2

In-degree=1
Out-degree=2
Degree = 3

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Introduction to graphs (Sec. 6.1)

– Definitions, terminologies

– Representations

 Elementary graph operations (Sec. 6.2)

– Depth first search, breadth first search, connected
components, spanning trees

20

National Tsing Hua University ® copyright OIA National Tsing Hua University

Adjacency Matrix

 A two dimensional array with the property that
a[i][j] = 1 iff the edge (i,j) or <i,j> is in E(G)

– Row sum = degree or out-degree; column sum = in-degree

 Waste of memory & time, esp. when graph is sparse

– Storage complexity = O(n2)

0

1

3

2

0

1

2

21

Symmetric

National Tsing Hua University ® copyright OIA National Tsing Hua University

Adjacency List

 Undirected graph: use a chain to represent each
vertex and its adjacent vertices

0

1

3

2

2 0 1 3

0 0 3 2

0 0 3 1

[0]

[1]

[2]

[3] 2 0 1 0

adjLists

22

Array Length = n
of chain nodes = 2e

National Tsing Hua University ® copyright OIA National Tsing Hua University

Adjacency List

 Digraph: use a chain to represent each vertex and its
adjacent to-vertices

– Length of list = Out-degree of v

[0]

[1]

[2]

0

1

2

1 0

0 0 2

NULL

adjLists

23

Array Length = n
of chain nodes = e

National Tsing Hua University ® copyright OIA National Tsing Hua University

Inverse Adjacency Lists

 Digraph: use a chain to represent each vertex and its
adjacent from-vertices

– Length of list = In-degree of v

[0]

[1]

[2]

0

1

2

1 0

0 0

adjLists

1 0

24

National Tsing Hua University ® copyright OIA National Tsing Hua University

Weighted Edges

 Edges of a graph sometimes have weights associated
with them, e.g.,

– Distance from one vertex to another

– Cost of going from one vertex to an adjacent vertex

 We use additional field in each vertex to store the
weight

 A graph with weighted edges is called a network

25

National Tsing Hua University ® copyright OIA National Tsing Hua University

ADT of Graph

class Graph {

public:

 virtual ~Graph() {}

 bool IsEmpty() const{return n == 0};

 int NumberOfVertices() const{return n};

 int NumberOfEdges() const{return e};

 virtual int Degree(int u) const = 0;

 virtual bool ExistsEdge(int u, int v) const = 0;

 virtual void InsertVertex(int v) = 0;

 virtual void InsertEdge(int u, int v) = 0;

 virtual void DeleteVertex(int v) = 0;

 virtual void DeleteEdge(int u, int v) = 0;

protected:

 int n; // number of vertices

 int e; // number of edges

};

26

National Tsing Hua University ® copyright OIA National Tsing Hua University

Implementation Notes

To accommodate various types of graphs, we make the
following assumptions:

 Data type of edge weight is double (or you could use
template to abstract it)

 Operations which are independent of specific graph
representation are implemented inside graph class

 There is an iterator to visit adjacent vertices

Various graph classes can then inherit from the
abstract class of Graph

27

National Tsing Hua University ® copyright OIA National Tsing Hua University

A Possible Derivation Hierarchy

 2 types:

– Directed

– Undirected

 2 edge types

– Weighted

– Unweighted

28

Gragh

MatrixWDigraph

MatrixDigraphMatrixWDigraph

LinkedDigraphLinkedWDigraph

MatirxGraph

LinkedGraphLinkedWGraph

Note: The hierarchy shows only 2 representations

 4 representations:

– Adjacency matrix

– Adjacency list

– Sequential list

– Adjacent multilists

National Tsing Hua University ® copyright OIA National Tsing Hua University

Example: LinkedGraph

class LinkedGraph : public Graph {

public:

 // constructor

 LinkedGraph(const int vertices=0):n(vertices),e(0){

 adjLists = new Chain<int>[n]; };

 void foo(void) { ... }; // specialized foo()

 // more customized operations…

private:

 Chain<int> *adjLists; // adjacency lists

};

void Graph::foo(void){

 // use iterator to visit adjacent vertices of v

 for (each vertex w adjacent to v)…

}

29

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Introduction to graphs (Sec. 6.1)

– Definitions, terminologies

– Representations

 Elementary graph operations (Sec. 6.2)

– Depth first search, breadth first search, connected
components, spanning trees

30

National Tsing Hua University ® copyright OIA National Tsing Hua University

Graph Search Operation

 A vertex u is reachable from vertex v iff there is a
path from v to u

 A graph search operation starts at a given vertex v
and visits/marks every vertex reachable from v

 2
3

8

10

1

4
5

9

11

7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Graph Search Operation

 Many graph problems can be solved using a search
operation

– Path from one vertex to another

– Is the graph connected?

– Find a spanning tree

– ...

 Commonly used search methods:

– Depth-first search

– Breadth-first search

National Tsing Hua University ® copyright OIA National Tsing Hua University

Depth-First Search (DFS)

 Starting from a vertex v, visit all vertices in G that are
reachable from v, i.e., all vertices connected to v

– Visit the vertex v  DFS(v)

– For each vertex w adjacent to v, if w is not visited yet, then
visit w  DFS(w)

– If a vertex u is reached such that all its adjacent vertices
have been visited, we go back to the last visited vertex

 The search terminates when no unvisited vertex can
be reached from any of the visited vertices

– All vertices reachable from the start vertex (including the
start vertex) are visited

33

National Tsing Hua University ® copyright OIA National Tsing Hua University

Depth-First Search (DFS)

0

1

3

2

4 5 6

7

0 1 3 7

4 5 2 6

Note that there may have more
than one order, depending on

graph representation

34

What if G is a tree?

Can use a stack

National Tsing Hua University ® copyright OIA National Tsing Hua University

Recursive DFS Using Adjacency Lists

void Graph::DFS() { // public driver

 visited = new bool[n]; // data member of Graph

 fill(visited, visited + n, false);

 DFS(0); // start search at vertex 0

 delete [] visited;

}

void Graph::DFS(const int v){ // private worker

 // visit all previously unvisited vertices

 // that are reachable from v

 visited[v]=true;

 for(each vertex w adjacent to v)

 if(!visited[w]) DFS(w);

}

35

National Tsing Hua University ® copyright OIA National Tsing Hua University

Non-Recursive DFS

void Graph::DFS(int v){

 visited = new bool[n]; // data member of Graph

 fill(visited, visited + n, false);

 Stack<int> s;

 s.Push(v);

 while(!s.IsEmpty()){

 u = s.Pop();

 if(!visited[u]){

 visited[u]=true;

 for(each vertex w adjacent to u)

 if(!visited[w]) s.Push(w);

 }

 }

}

36

National Tsing Hua University ® copyright OIA National Tsing Hua University

DFS Complexity

 Adjacency matrix

– Time to determine all adjacent vertices to v: O(n)

– At most n vertices are visited: O(n×n) = O(n2)

 Adjacency list

– There are n+2e chain nodes

– Each node in the adjacency list is examined at most once
 time complexity = O(e)

37

National Tsing Hua University ® copyright OIA National Tsing Hua University

Breadth-First Search (BFS)

 Starting from a vertex v

– Visit the vertex v

– Visit all unvisited vertices adjacent to v

– Unvisited vertices adjacent to these newly visited vertices
are then visited and so on

 Can use a queue to track the vertices

38

National Tsing Hua University ® copyright OIA National Tsing Hua University

Breadth-First Search (BFS)

0

1

3

2

4 5 6

7

0 1 2 3

4 5 6 7

Note that there may be more
than one order depending on

the graph representation

39

What if G is a tree?

National Tsing Hua University ® copyright OIA National Tsing Hua University

Non-Recursive BFS

void Graph::BFS(int v){

 visited = new bool[n]; // data member of Graph

 fill(visited, visited+n, false);

 Queue<int> q; q.Push(v);

 visited[v]=true;

 while(!q.IsEmpty()){

 v = q.Front(); q.Pop();

 for(each vertex w adjacent to v){

 if(!visited[w]){

 q.Push(w); visited[w]=true; }

 }

 }

 delete [] visited;

}
Time complexity is the same as DFS

40

National Tsing Hua University ® copyright OIA National Tsing Hua University

Finding a Path from Vertex v to Vertex u

 Start a depth-first search at vertex v

 Terminate when vertex u is visited or when DFS ends
(whichever occurs first)

 Time complexity:

– O(n2) when adjacency matrix used

– O(n+e) when adjacency lists used (e is number of edges)

National Tsing Hua University ® copyright OIA National Tsing Hua University

Connected Components

 How to determine whether a graph is connected or
not?

– Call DFS or BFS once and check if there is any unvisited
vertices; if Yes, then the graph is not connected

 How to identify connected components

– Make a repeated calls to DFS or BFS

– Each call will output a connected component

– Start next call at an unvisited vertex

42

National Tsing Hua University ® copyright OIA National Tsing Hua University

Spanning Trees

 Definition: any tree consisting solely of edges in E(G)
and including all vertices of V(G)

 # of tree edges is n-1

 Add a non-tree edge will create a cycle

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

Complete graph Possible spanning trees

43

National Tsing Hua University ® copyright OIA National Tsing Hua University

DFS Spanning Tree

 Tree edges are those edges met during DFS traversal

0

1

3

2

4 5 6

7

0

1

3

2

4 5 6

7

0 1 3 7

4 5 2 6

DFS

44

Time complexity?

National Tsing Hua University ® copyright OIA National Tsing Hua University

0

1

3

2

4 5 6

7

BFS Spanning Tree

 Tree edges are those edges met during BFS traversal

0

1

3

2

4 5 6

7

0 1 2 3

4 5 6 7

BFS

45

National Tsing Hua University ® copyright OIA National Tsing Hua University

Summary

 Graphs are very important data structures

– Terminologies and representations

 There are many operations associated with graphs

– Depth first search, breadth first search, finding connected
components, finding spanning trees

 Self-study topics

– Graph representations: sequential
lists, adjacency multilists

– Graph operations: biconnected
components

46

