
National Tsing Hua University ®  copyright OIA National Tsing Hua University 

CS 2351 Data Structures 

 
Graphs (I) 

Prof. Chung-Ta King 

Department of Computer Science 

National Tsing Hua University 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

Outline 

 Introduction to graphs (Sec. 6.1) 

– Definitions, terminologies 

– Representations 

 

 Elementary graph operations (Sec. 6.2) 

– Depth first search,  breadth first search, connected 
components, spanning trees 
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Konigsberg Bridge Problem (1736 AD) 

 Given 4 lands with 7 bridges 

 Problem: Starting at one land, is it possible to walk 
across all the bridges exactly once and returning to  
the starting land? 
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Konigsberg Bridge Problem 

 Leonhard Euler formulated the problem as a graph 

 

 

 

 

 Proved that the  
answer to the  
problem is possible  
iff the degree of  
each vertex is even 
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 Find the shortest path from Taipei to Hsinchu 

Many Applications of Graphs 
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Many Applications of Graphs 

 Co-authorship 
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http://www.public.asu.edu/~majansse/pubs/SupplementIHDP.htm 
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Graph Definition 

 A graph, G = (V, E), consists of two sets, V and E 

– V : a set of vertices 

– E : a set of pairs of vertices called edges 

 Undirected graph (simply graph) 

– (u,v) and (v,u) represent the same edge 

 Directed graph (digraph) 

– <u,v> ≠ <v,u> 

– <u,v>: u is tail and v is head of edge 
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Examples 
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Undirected Graph 
V(G)={0, 1, 2, 3} 
E(G)={(0,1), (0,2), (0,3),  
           (1,2), (1,3), (2,3)} 

Undirected Graph 
V(G)={0, 1, 2, 3, 4, 5, 6} 
E(G)={(0,1), (0,2), (1,3),  
           (1,4), (2,5), (2,6)} 
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Directed Graph 
V(G)={0, 1, 2} 
E(G)={<0,1>, <1,0>, <1,2>)} 
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Restrictions 

 Self edges and self loops are not permitted! 

– Edges of the form (v, v) and <v, v> are not legal 

 A graph should not have multiple occurrences of the 
same edge (otherwise, it is called a multigraph) 
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Terminology 

 For a graph with n vertices, the max # of edges of: 

– Undirected graph is n(n-1)/2 

– Directed graph is n(n-1) 

 Vertices u and v are adjacent if (u,v)  E and edge 
(u,v) is incident on vertices u and v 

 For a direct edge <u,v>, u is adjacent to v and v is 
adjacent from u, and edge <u,v> is incident to 
vertices u and v 
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Terminology 

 Complete undirected 
graph 

– Graph with n vertices 
has exactly n(n-1)/2 
edges 

 Complete directed 
graph 

– Graph with n vertices 
has exactly n(n-1) edges 
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Terminology 

 Subgraph: 

– G’ is a subgraph of G if V(G’)  V(G) and E(G’)  E(G) 
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Terminology 

 Path: 

– A path from u to v represents a sequence of vertices u, i1, 
i2 , …, ik, v, such that (u, i1), (i1 ,i2), …, (ik ,v) are edges in the 
graph 

 Simple path: 

– A simple path is a path in which all vertices except possibly 
the first and the last are distinct 
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Sequence Path? Simple path? 

0,1,3,2 

0,2,0,1 

0,3,2,1 

Yes                       Yes 

Yes                       No 
No                        No 
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Terminology 

 Cycle: 

– A cycle is a simple path in which the first and the last 
vertices are the same 

 Notes: if the graph is a directed graph, we usually 
add the prefix “directed” to the above terms: 

– Directed path 

– Directed simple path 

– Directed cycle 
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Terminology 

 Undirected graph G is said to be connected iff for 
every pair of distinct vertices u and v, there is a 
path from u to v in G  
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Terminology 

 A connected component, H, of an undirected graph 
is a maximal connected subgraph 

 

 

 

 

 

 Tree: 

– A connected acyclic graph 

– n vertex connected graph with n-1 edges 
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Graph with two connected components 

H1 H2 
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Terminology 

 Directed graph G is said to be strongly connected iff 
for every pair of distinct vertices u and v, there is a 
directed path from u to v and also from v to u in G.  
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Not a strongly connected digraph! 

There is no directed path from 2 to 0 
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Terminology 

 A strongly connected component is a maximal 
subgraph that is strongly connected 
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Terminology 

 Degree of a vertex v: 

– The # of edges incident to v 

 In a directed graph: 

– In-degree of v: # of edges for which v is the head 

– Out-degree of v: # of edges for which v is the tail 

– Degree of v = in-degree + out-degree 

19 

0 

1 

2 

In-degree=1 
Out-degree=2 
Degree = 3 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

Outline 

 Introduction to graphs (Sec. 6.1) 

– Definitions, terminologies 

– Representations 

 

 Elementary graph operations (Sec. 6.2) 

– Depth first search,  breadth first search, connected 
components, spanning trees 
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Adjacency Matrix 

 A two dimensional array with the property that  
a[i][j] = 1 iff the edge (i,j) or <i,j> is in E(G) 

 

 

 

 

 

– Row sum = degree or out-degree; column sum = in-degree 

 Waste of memory & time, esp. when graph is sparse  

– Storage complexity = O(n2) 
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Adjacency List 

 Undirected graph: use a chain to represent each 
vertex and its adjacent vertices 
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Array Length = n 
# of chain nodes = 2e 
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Adjacency List 

 Digraph: use a chain to represent each vertex and its 
adjacent to-vertices 

– Length of list = Out-degree of v 

[0] 

[1] 

[2] 

0 

1 

2 

1 0 

0 0 2 

NULL 

adjLists 

23 

Array Length = n 
# of chain nodes = e 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

Inverse Adjacency Lists 

 Digraph: use a chain to represent each vertex and its 
adjacent from-vertices 

– Length of list = In-degree of v 
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Weighted Edges 

 Edges of a graph sometimes have weights associated 
with them, e.g., 

– Distance from one vertex to another 

– Cost of going from one vertex to an adjacent vertex 

 We use additional field in each vertex to store the 
weight 

 A graph with weighted edges is called a network 
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ADT of Graph 

class Graph { 

public: 

  virtual ~Graph() {} 

  bool IsEmpty() const{return n == 0}; 

  int NumberOfVertices() const{return n}; 

  int NumberOfEdges() const{return e}; 

  virtual int Degree(int u) const = 0;  

  virtual bool ExistsEdge(int u, int v) const = 0;  

  virtual void InsertVertex(int v) = 0; 

  virtual void InsertEdge(int u, int v) = 0; 

  virtual void DeleteVertex(int v) = 0; 

  virtual void DeleteEdge(int u, int v) = 0;  

protected: 

  int n; // number of vertices 

  int e; // number of edges 

}; 
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Implementation Notes 

To accommodate various types of graphs, we make the 
following assumptions: 

 Data type of edge weight is double (or you could use 
template to abstract it) 

 Operations which are independent of specific graph 
representation are implemented inside graph class 

 There is an iterator to visit adjacent vertices 

 

Various graph classes can then inherit from the 
abstract class of Graph 
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A Possible Derivation Hierarchy 

 2 types: 

– Directed 

– Undirected 

 2 edge types 

– Weighted  

– Unweighted 

28 

Gragh

MatrixWDigraph

MatrixDigraphMatrixWDigraph

LinkedDigraphLinkedWDigraph

MatirxGraph

LinkedGraphLinkedWGraph

Note: The hierarchy shows only 2 representations 

 4 representations: 

– Adjacency matrix 

– Adjacency list 

– Sequential list 

– Adjacent multilists 
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Example: LinkedGraph 

class LinkedGraph : public Graph { 

public: 

  // constructor 

  LinkedGraph(const int vertices=0):n(vertices),e(0){ 

     adjLists = new Chain<int>[n];  }; 

  void foo(void) { ... }; // specialized foo() 

  // more customized operations… 

private: 

  Chain<int> *adjLists; // adjacency lists 

}; 

void Graph::foo(void){ 

  // use iterator to visit adjacent vertices of v 

  for (each vertex w adjacent to v)… 

} 
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Outline 

 Introduction to graphs (Sec. 6.1) 

– Definitions, terminologies 

– Representations 

 

 Elementary graph operations (Sec. 6.2) 

– Depth first search,  breadth first search, connected 
components, spanning trees 
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Graph Search Operation 

 A vertex u is reachable from vertex v iff there is a 
path from v to u 

 A graph search operation starts at a given vertex v 
and visits/marks every vertex reachable from v 
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Graph Search Operation 

 Many graph problems can be solved using a search 
operation 

– Path from one vertex to another 

– Is the graph connected? 

– Find a spanning tree 

– ... 

 Commonly used search methods: 

– Depth-first search 

– Breadth-first search 
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Depth-First Search (DFS) 

 Starting from a vertex v, visit all vertices in G that are 
reachable from v, i.e., all vertices connected to v 

– Visit the vertex v  DFS(v) 

– For each vertex w adjacent to v, if w is not visited yet, then 
visit w  DFS(w) 

– If a vertex u is reached such that all its adjacent vertices 
have been visited, we go back to the last visited vertex 

 The search terminates when no unvisited vertex can 
be reached from any of the visited vertices 

– All vertices reachable from the start vertex (including the 
start vertex) are visited 
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Depth-First Search (DFS) 
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Note that there may have more 
than one order, depending on 

graph representation 
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What if G is a tree? 

Can use a stack 
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Recursive DFS Using Adjacency Lists 

void Graph::DFS() { // public driver  

   visited = new bool[n]; // data member of Graph 

   fill(visited, visited + n, false); 

   DFS(0); // start search at vertex 0 

   delete [] visited; 

} 

void Graph::DFS(const int v){ // private worker 

   // visit all previously unvisited vertices 

   // that are reachable from v 

   visited[v]=true; 

   for(each vertex w adjacent to v) 

     if(!visited[w]) DFS(w);  

} 

35 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

Non-Recursive DFS 

void Graph::DFS(int v){ 

   visited = new bool[n]; // data member of Graph 

   fill(visited, visited + n, false); 

   Stack<int> s; 

   s.Push(v); 

   while(!s.IsEmpty()){ 

      u = s.Pop(); 

      if(!visited[u]){ 

         visited[u]=true; 

         for(each vertex w adjacent to u) 

           if(!visited[w]) s.Push(w); 

      } 

   } 

} 
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DFS Complexity 

 Adjacency matrix 

– Time to determine all adjacent vertices to v: O(n) 

– At most n vertices are visited: O(n×n) = O(n2) 

 Adjacency list 

– There are n+2e chain nodes 

– Each node in the adjacency list is examined at most once 
 time complexity = O(e) 
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Breadth-First Search (BFS) 

 Starting from a vertex v 

– Visit the vertex v 

– Visit all unvisited vertices adjacent to v 

– Unvisited vertices adjacent to these newly visited vertices 
are then visited and so on 

 Can use a queue to track the vertices 
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Breadth-First Search (BFS) 
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Note that there may be more 
than one order depending on 

the graph representation 
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Non-Recursive BFS 

void Graph::BFS(int v){ 

   visited = new bool[n]; // data member of Graph 

   fill(visited, visited+n, false); 

   Queue<int> q;   q.Push(v); 

   visited[v]=true; 

   while(!q.IsEmpty()){ 

      v = q.Front();    q.Pop(); 

      for(each vertex w adjacent to v){ 

         if(!visited[w]){ 

           q.Push(w);   visited[w]=true; } 

      } 

   } 

   delete [] visited; 

} 
Time complexity is the same as DFS 
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Finding a Path from Vertex v to Vertex u 

 Start a depth-first search at vertex v 

 Terminate when vertex u is visited or when DFS ends 
(whichever occurs first) 

 Time complexity: 

– O(n2) when adjacency matrix used 

– O(n+e) when adjacency lists used (e is number of edges) 
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Connected Components 

 How to determine whether a graph is connected or 
not? 

– Call DFS or BFS once and check if there is any unvisited 
vertices; if Yes, then the graph is not connected 

 How to identify connected components 

– Make a repeated calls to DFS or BFS 

– Each call will output a connected component 

– Start next call at an unvisited vertex 
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Spanning Trees 

 Definition: any tree consisting solely of edges in E(G) 
and including all vertices of V(G) 

 # of tree edges is n-1 

 Add a non-tree edge will create a cycle 
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DFS Spanning Tree 

 Tree edges are those edges met during DFS traversal 
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BFS Spanning Tree 

 Tree edges are those edges met during BFS traversal 
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Summary 

 Graphs are very important data structures 

– Terminologies and representations 

 There are many operations associated with graphs 

– Depth first search,  breadth first search, finding connected 
components, finding spanning trees 

 Self-study topics 

– Graph representations: sequential  
lists, adjacency multilists 

– Graph operations: biconnected  
components 
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