
National Tsing Hua University ® copyright OIA National Tsing Hua University

CS 2351 Data Structures

Graphs (I)

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Introduction to graphs (Sec. 6.1)

– Definitions, terminologies

– Representations

 Elementary graph operations (Sec. 6.2)

– Depth first search, breadth first search, connected
components, spanning trees

2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Konigsberg Bridge Problem (1736 AD)

 Given 4 lands with 7 bridges

 Problem: Starting at one land, is it possible to walk
across all the bridges exactly once and returning to
the starting land?

3

http://simonkneebone.com/2011/11/29/konigsberg-bridge-puzzle/

A

B

C

D

National Tsing Hua University ® copyright OIA National Tsing Hua University

Konigsberg Bridge Problem

 Leonhard Euler formulated the problem as a graph

 Proved that the
answer to the
problem is possible
iff the degree of
each vertex is even

A

B

C

D

4

A

B

C

D

National Tsing Hua University ® copyright OIA National Tsing Hua University

 Find the shortest path from Taipei to Hsinchu

Many Applications of Graphs

5

20

15

12
22

7

25

11

30

27

13 6
9

10

18

32

12

10
14

11

20
17 5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Many Applications of Graphs

 Co-authorship

6

http://www.public.asu.edu/~majansse/pubs/SupplementIHDP.htm

National Tsing Hua University ® copyright OIA National Tsing Hua University

Graph Definition

 A graph, G = (V, E), consists of two sets, V and E

– V : a set of vertices

– E : a set of pairs of vertices called edges

 Undirected graph (simply graph)

– (u,v) and (v,u) represent the same edge

 Directed graph (digraph)

– <u,v> ≠ <v,u>

– <u,v>: u is tail and v is head of edge

7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Examples

0

1

3

2

Undirected Graph
V(G)={0, 1, 2, 3}
E(G)={(0,1), (0,2), (0,3),
 (1,2), (1,3), (2,3)}

Undirected Graph
V(G)={0, 1, 2, 3, 4, 5, 6}
E(G)={(0,1), (0,2), (1,3),
 (1,4), (2,5), (2,6)}

0

1

3

2

4 5 6

0

1

2

Directed Graph
V(G)={0, 1, 2}
E(G)={<0,1>, <1,0>, <1,2>)}

8

tail

head

National Tsing Hua University ® copyright OIA National Tsing Hua University

Restrictions

 Self edges and self loops are not permitted!

– Edges of the form (v, v) and <v, v> are not legal

 A graph should not have multiple occurrences of the
same edge (otherwise, it is called a multigraph)

0

1

2

3

Graph with self edge

0

1

2

3

Multigraph

9

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 For a graph with n vertices, the max # of edges of:

– Undirected graph is n(n-1)/2

– Directed graph is n(n-1)

 Vertices u and v are adjacent if (u,v) E and edge
(u,v) is incident on vertices u and v

 For a direct edge <u,v>, u is adjacent to v and v is
adjacent from u, and edge <u,v> is incident to
vertices u and v

10

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Complete undirected
graph

– Graph with n vertices
has exactly n(n-1)/2
edges

 Complete directed
graph

– Graph with n vertices
has exactly n(n-1) edges

11

0

1

3

2

0

1 2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Subgraph:

– G’ is a subgraph of G if V(G’) V(G) and E(G’) E(G)

0

1

3

2

0

1

3

2 1

3

2

Graph Subgraph Subgraph

12

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Path:

– A path from u to v represents a sequence of vertices u, i1,
i2 , …, ik, v, such that (u, i1), (i1 ,i2), …, (ik ,v) are edges in the
graph

 Simple path:

– A simple path is a path in which all vertices except possibly
the first and the last are distinct

0

1

3

2

Sequence Path? Simple path?

0,1,3,2

0,2,0,1

0,3,2,1

Yes Yes

Yes No
No No

13

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Cycle:

– A cycle is a simple path in which the first and the last
vertices are the same

 Notes: if the graph is a directed graph, we usually
add the prefix “directed” to the above terms:

– Directed path

– Directed simple path

– Directed cycle

14

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Undirected graph G is said to be connected iff for
every pair of distinct vertices u and v, there is a
path from u to v in G

0

1

3

2

0

1

3

2

4

5

6

7

Connected graph Not a connected graph

15

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 A connected component, H, of an undirected graph
is a maximal connected subgraph

 Tree:

– A connected acyclic graph

– n vertex connected graph with n-1 edges

0

1

3

2

4

5

6

7

Graph with two connected components

H1 H2

16

A connected
subgraph, but
not a maximal
connected
subgraph

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Directed graph G is said to be strongly connected iff
for every pair of distinct vertices u and v, there is a
directed path from u to v and also from v to u in G.

0

1

2

Not a strongly connected digraph!

There is no directed path from 2 to 0

17

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 A strongly connected component is a maximal
subgraph that is strongly connected

0

1

2

0

1

2

Two strongly connected components

H1 H2

18

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Degree of a vertex v:

– The # of edges incident to v

 In a directed graph:

– In-degree of v: # of edges for which v is the head

– Out-degree of v: # of edges for which v is the tail

– Degree of v = in-degree + out-degree

19

0

1

2

In-degree=1
Out-degree=2
Degree = 3

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Introduction to graphs (Sec. 6.1)

– Definitions, terminologies

– Representations

 Elementary graph operations (Sec. 6.2)

– Depth first search, breadth first search, connected
components, spanning trees

20

National Tsing Hua University ® copyright OIA National Tsing Hua University

Adjacency Matrix

 A two dimensional array with the property that
a[i][j] = 1 iff the edge (i,j) or <i,j> is in E(G)

– Row sum = degree or out-degree; column sum = in-degree

 Waste of memory & time, esp. when graph is sparse

– Storage complexity = O(n2)

0

1

3

2

0

1

2

21

Symmetric

National Tsing Hua University ® copyright OIA National Tsing Hua University

Adjacency List

 Undirected graph: use a chain to represent each
vertex and its adjacent vertices

0

1

3

2

2 0 1 3

0 0 3 2

0 0 3 1

[0]

[1]

[2]

[3] 2 0 1 0

adjLists

22

Array Length = n
of chain nodes = 2e

National Tsing Hua University ® copyright OIA National Tsing Hua University

Adjacency List

 Digraph: use a chain to represent each vertex and its
adjacent to-vertices

– Length of list = Out-degree of v

[0]

[1]

[2]

0

1

2

1 0

0 0 2

NULL

adjLists

23

Array Length = n
of chain nodes = e

National Tsing Hua University ® copyright OIA National Tsing Hua University

Inverse Adjacency Lists

 Digraph: use a chain to represent each vertex and its
adjacent from-vertices

– Length of list = In-degree of v

[0]

[1]

[2]

0

1

2

1 0

0 0

adjLists

1 0

24

National Tsing Hua University ® copyright OIA National Tsing Hua University

Weighted Edges

 Edges of a graph sometimes have weights associated
with them, e.g.,

– Distance from one vertex to another

– Cost of going from one vertex to an adjacent vertex

 We use additional field in each vertex to store the
weight

 A graph with weighted edges is called a network

25

National Tsing Hua University ® copyright OIA National Tsing Hua University

ADT of Graph

class Graph {

public:

 virtual ~Graph() {}

 bool IsEmpty() const{return n == 0};

 int NumberOfVertices() const{return n};

 int NumberOfEdges() const{return e};

 virtual int Degree(int u) const = 0;

 virtual bool ExistsEdge(int u, int v) const = 0;

 virtual void InsertVertex(int v) = 0;

 virtual void InsertEdge(int u, int v) = 0;

 virtual void DeleteVertex(int v) = 0;

 virtual void DeleteEdge(int u, int v) = 0;

protected:

 int n; // number of vertices

 int e; // number of edges

};

26

National Tsing Hua University ® copyright OIA National Tsing Hua University

Implementation Notes

To accommodate various types of graphs, we make the
following assumptions:

 Data type of edge weight is double (or you could use
template to abstract it)

 Operations which are independent of specific graph
representation are implemented inside graph class

 There is an iterator to visit adjacent vertices

Various graph classes can then inherit from the
abstract class of Graph

27

National Tsing Hua University ® copyright OIA National Tsing Hua University

A Possible Derivation Hierarchy

 2 types:

– Directed

– Undirected

 2 edge types

– Weighted

– Unweighted

28

Gragh

MatrixWDigraph

MatrixDigraphMatrixWDigraph

LinkedDigraphLinkedWDigraph

MatirxGraph

LinkedGraphLinkedWGraph

Note: The hierarchy shows only 2 representations

 4 representations:

– Adjacency matrix

– Adjacency list

– Sequential list

– Adjacent multilists

National Tsing Hua University ® copyright OIA National Tsing Hua University

Example: LinkedGraph

class LinkedGraph : public Graph {

public:

 // constructor

 LinkedGraph(const int vertices=0):n(vertices),e(0){

 adjLists = new Chain<int>[n]; };

 void foo(void) { ... }; // specialized foo()

 // more customized operations…

private:

 Chain<int> *adjLists; // adjacency lists

};

void Graph::foo(void){

 // use iterator to visit adjacent vertices of v

 for (each vertex w adjacent to v)…

}

29

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Introduction to graphs (Sec. 6.1)

– Definitions, terminologies

– Representations

 Elementary graph operations (Sec. 6.2)

– Depth first search, breadth first search, connected
components, spanning trees

30

National Tsing Hua University ® copyright OIA National Tsing Hua University

Graph Search Operation

 A vertex u is reachable from vertex v iff there is a
path from v to u

 A graph search operation starts at a given vertex v
and visits/marks every vertex reachable from v

 2
3

8

10

1

4
5

9

11

7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Graph Search Operation

 Many graph problems can be solved using a search
operation

– Path from one vertex to another

– Is the graph connected?

– Find a spanning tree

– ...

 Commonly used search methods:

– Depth-first search

– Breadth-first search

National Tsing Hua University ® copyright OIA National Tsing Hua University

Depth-First Search (DFS)

 Starting from a vertex v, visit all vertices in G that are
reachable from v, i.e., all vertices connected to v

– Visit the vertex v DFS(v)

– For each vertex w adjacent to v, if w is not visited yet, then
visit w DFS(w)

– If a vertex u is reached such that all its adjacent vertices
have been visited, we go back to the last visited vertex

 The search terminates when no unvisited vertex can
be reached from any of the visited vertices

– All vertices reachable from the start vertex (including the
start vertex) are visited

33

National Tsing Hua University ® copyright OIA National Tsing Hua University

Depth-First Search (DFS)

0

1

3

2

4 5 6

7

0 1 3 7

4 5 2 6

Note that there may have more
than one order, depending on

graph representation

34

What if G is a tree?

Can use a stack

National Tsing Hua University ® copyright OIA National Tsing Hua University

Recursive DFS Using Adjacency Lists

void Graph::DFS() { // public driver

 visited = new bool[n]; // data member of Graph

 fill(visited, visited + n, false);

 DFS(0); // start search at vertex 0

 delete [] visited;

}

void Graph::DFS(const int v){ // private worker

 // visit all previously unvisited vertices

 // that are reachable from v

 visited[v]=true;

 for(each vertex w adjacent to v)

 if(!visited[w]) DFS(w);

}

35

National Tsing Hua University ® copyright OIA National Tsing Hua University

Non-Recursive DFS

void Graph::DFS(int v){

 visited = new bool[n]; // data member of Graph

 fill(visited, visited + n, false);

 Stack<int> s;

 s.Push(v);

 while(!s.IsEmpty()){

 u = s.Pop();

 if(!visited[u]){

 visited[u]=true;

 for(each vertex w adjacent to u)

 if(!visited[w]) s.Push(w);

 }

 }

}

36

National Tsing Hua University ® copyright OIA National Tsing Hua University

DFS Complexity

 Adjacency matrix

– Time to determine all adjacent vertices to v: O(n)

– At most n vertices are visited: O(n×n) = O(n2)

 Adjacency list

– There are n+2e chain nodes

– Each node in the adjacency list is examined at most once
 time complexity = O(e)

37

National Tsing Hua University ® copyright OIA National Tsing Hua University

Breadth-First Search (BFS)

 Starting from a vertex v

– Visit the vertex v

– Visit all unvisited vertices adjacent to v

– Unvisited vertices adjacent to these newly visited vertices
are then visited and so on

 Can use a queue to track the vertices

38

National Tsing Hua University ® copyright OIA National Tsing Hua University

Breadth-First Search (BFS)

0

1

3

2

4 5 6

7

0 1 2 3

4 5 6 7

Note that there may be more
than one order depending on

the graph representation

39

What if G is a tree?

National Tsing Hua University ® copyright OIA National Tsing Hua University

Non-Recursive BFS

void Graph::BFS(int v){

 visited = new bool[n]; // data member of Graph

 fill(visited, visited+n, false);

 Queue<int> q; q.Push(v);

 visited[v]=true;

 while(!q.IsEmpty()){

 v = q.Front(); q.Pop();

 for(each vertex w adjacent to v){

 if(!visited[w]){

 q.Push(w); visited[w]=true; }

 }

 }

 delete [] visited;

}
Time complexity is the same as DFS

40

National Tsing Hua University ® copyright OIA National Tsing Hua University

Finding a Path from Vertex v to Vertex u

 Start a depth-first search at vertex v

 Terminate when vertex u is visited or when DFS ends
(whichever occurs first)

 Time complexity:

– O(n2) when adjacency matrix used

– O(n+e) when adjacency lists used (e is number of edges)

National Tsing Hua University ® copyright OIA National Tsing Hua University

Connected Components

 How to determine whether a graph is connected or
not?

– Call DFS or BFS once and check if there is any unvisited
vertices; if Yes, then the graph is not connected

 How to identify connected components

– Make a repeated calls to DFS or BFS

– Each call will output a connected component

– Start next call at an unvisited vertex

42

National Tsing Hua University ® copyright OIA National Tsing Hua University

Spanning Trees

 Definition: any tree consisting solely of edges in E(G)
and including all vertices of V(G)

 # of tree edges is n-1

 Add a non-tree edge will create a cycle

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

Complete graph Possible spanning trees

43

National Tsing Hua University ® copyright OIA National Tsing Hua University

DFS Spanning Tree

 Tree edges are those edges met during DFS traversal

0

1

3

2

4 5 6

7

0

1

3

2

4 5 6

7

0 1 3 7

4 5 2 6

DFS

44

Time complexity?

National Tsing Hua University ® copyright OIA National Tsing Hua University

0

1

3

2

4 5 6

7

BFS Spanning Tree

 Tree edges are those edges met during BFS traversal

0

1

3

2

4 5 6

7

0 1 2 3

4 5 6 7

BFS

45

National Tsing Hua University ® copyright OIA National Tsing Hua University

Summary

 Graphs are very important data structures

– Terminologies and representations

 There are many operations associated with graphs

– Depth first search, breadth first search, finding connected
components, finding spanning trees

 Self-study topics

– Graph representations: sequential
lists, adjacency multilists

– Graph operations: biconnected
components

46

