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Outline 

 Introduction to graphs (Sec. 6.1) 

– Definitions, terminologies 

– Representations 

 

 Elementary graph operations (Sec. 6.2) 

– Depth first search,  breadth first search, connected 
components, spanning trees 
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Konigsberg Bridge Problem (1736 AD) 

 Given 4 lands with 7 bridges 

 Problem: Starting at one land, is it possible to walk 
across all the bridges exactly once and returning to  
the starting land? 
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Konigsberg Bridge Problem 

 Leonhard Euler formulated the problem as a graph 

 

 

 

 

 Proved that the  
answer to the  
problem is possible  
iff the degree of  
each vertex is even 

A 

B 

C 

D 

4 

A 

B 

C 

D 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

 Find the shortest path from Taipei to Hsinchu 

Many Applications of Graphs 
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Many Applications of Graphs 

 Co-authorship 
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National Tsing Hua University ®  copyright OIA National Tsing Hua University 

Graph Definition 

 A graph, G = (V, E), consists of two sets, V and E 

– V : a set of vertices 

– E : a set of pairs of vertices called edges 

 Undirected graph (simply graph) 

– (u,v) and (v,u) represent the same edge 

 Directed graph (digraph) 

– <u,v> ≠ <v,u> 

– <u,v>: u is tail and v is head of edge 
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Examples 
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Undirected Graph 
V(G)={0, 1, 2, 3} 
E(G)={(0,1), (0,2), (0,3),  
           (1,2), (1,3), (2,3)} 

Undirected Graph 
V(G)={0, 1, 2, 3, 4, 5, 6} 
E(G)={(0,1), (0,2), (1,3),  
           (1,4), (2,5), (2,6)} 
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Directed Graph 
V(G)={0, 1, 2} 
E(G)={<0,1>, <1,0>, <1,2>)} 
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Restrictions 

 Self edges and self loops are not permitted! 

– Edges of the form (v, v) and <v, v> are not legal 

 A graph should not have multiple occurrences of the 
same edge (otherwise, it is called a multigraph) 
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Terminology 

 For a graph with n vertices, the max # of edges of: 

– Undirected graph is n(n-1)/2 

– Directed graph is n(n-1) 

 Vertices u and v are adjacent if (u,v)  E and edge 
(u,v) is incident on vertices u and v 

 For a direct edge <u,v>, u is adjacent to v and v is 
adjacent from u, and edge <u,v> is incident to 
vertices u and v 
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Terminology 

 Complete undirected 
graph 

– Graph with n vertices 
has exactly n(n-1)/2 
edges 

 Complete directed 
graph 

– Graph with n vertices 
has exactly n(n-1) edges 
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Terminology 

 Subgraph: 

– G’ is a subgraph of G if V(G’)  V(G) and E(G’)  E(G) 
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Terminology 

 Path: 

– A path from u to v represents a sequence of vertices u, i1, 
i2 , …, ik, v, such that (u, i1), (i1 ,i2), …, (ik ,v) are edges in the 
graph 

 Simple path: 

– A simple path is a path in which all vertices except possibly 
the first and the last are distinct 
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Yes                       No 
No                        No 
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Terminology 

 Cycle: 

– A cycle is a simple path in which the first and the last 
vertices are the same 

 Notes: if the graph is a directed graph, we usually 
add the prefix “directed” to the above terms: 

– Directed path 

– Directed simple path 

– Directed cycle 
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Terminology 

 Undirected graph G is said to be connected iff for 
every pair of distinct vertices u and v, there is a 
path from u to v in G  
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Terminology 

 A connected component, H, of an undirected graph 
is a maximal connected subgraph 

 

 

 

 

 

 Tree: 

– A connected acyclic graph 

– n vertex connected graph with n-1 edges 
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Graph with two connected components 

H1 H2 
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Terminology 

 Directed graph G is said to be strongly connected iff 
for every pair of distinct vertices u and v, there is a 
directed path from u to v and also from v to u in G.  
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Not a strongly connected digraph! 

There is no directed path from 2 to 0 
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Terminology 

 A strongly connected component is a maximal 
subgraph that is strongly connected 
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Terminology 

 Degree of a vertex v: 

– The # of edges incident to v 

 In a directed graph: 

– In-degree of v: # of edges for which v is the head 

– Out-degree of v: # of edges for which v is the tail 

– Degree of v = in-degree + out-degree 
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Outline 

 Introduction to graphs (Sec. 6.1) 

– Definitions, terminologies 

– Representations 

 

 Elementary graph operations (Sec. 6.2) 

– Depth first search,  breadth first search, connected 
components, spanning trees 
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Adjacency Matrix 

 A two dimensional array with the property that  
a[i][j] = 1 iff the edge (i,j) or <i,j> is in E(G) 

 

 

 

 

 

– Row sum = degree or out-degree; column sum = in-degree 

 Waste of memory & time, esp. when graph is sparse  

– Storage complexity = O(n2) 
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Adjacency List 

 Undirected graph: use a chain to represent each 
vertex and its adjacent vertices 
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Adjacency List 

 Digraph: use a chain to represent each vertex and its 
adjacent to-vertices 

– Length of list = Out-degree of v 
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Inverse Adjacency Lists 

 Digraph: use a chain to represent each vertex and its 
adjacent from-vertices 

– Length of list = In-degree of v 
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Weighted Edges 

 Edges of a graph sometimes have weights associated 
with them, e.g., 

– Distance from one vertex to another 

– Cost of going from one vertex to an adjacent vertex 

 We use additional field in each vertex to store the 
weight 

 A graph with weighted edges is called a network 
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ADT of Graph 

class Graph { 

public: 

  virtual ~Graph() {} 

  bool IsEmpty() const{return n == 0}; 

  int NumberOfVertices() const{return n}; 

  int NumberOfEdges() const{return e}; 

  virtual int Degree(int u) const = 0;  

  virtual bool ExistsEdge(int u, int v) const = 0;  

  virtual void InsertVertex(int v) = 0; 

  virtual void InsertEdge(int u, int v) = 0; 

  virtual void DeleteVertex(int v) = 0; 

  virtual void DeleteEdge(int u, int v) = 0;  

protected: 

  int n; // number of vertices 

  int e; // number of edges 

}; 
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Implementation Notes 

To accommodate various types of graphs, we make the 
following assumptions: 

 Data type of edge weight is double (or you could use 
template to abstract it) 

 Operations which are independent of specific graph 
representation are implemented inside graph class 

 There is an iterator to visit adjacent vertices 

 

Various graph classes can then inherit from the 
abstract class of Graph 
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A Possible Derivation Hierarchy 

 2 types: 

– Directed 

– Undirected 

 2 edge types 

– Weighted  

– Unweighted 
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Gragh

MatrixWDigraph

MatrixDigraphMatrixWDigraph

LinkedDigraphLinkedWDigraph

MatirxGraph

LinkedGraphLinkedWGraph

Note: The hierarchy shows only 2 representations 

 4 representations: 

– Adjacency matrix 

– Adjacency list 

– Sequential list 

– Adjacent multilists 
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Example: LinkedGraph 

class LinkedGraph : public Graph { 

public: 

  // constructor 

  LinkedGraph(const int vertices=0):n(vertices),e(0){ 

     adjLists = new Chain<int>[n];  }; 

  void foo(void) { ... }; // specialized foo() 

  // more customized operations… 

private: 

  Chain<int> *adjLists; // adjacency lists 

}; 

void Graph::foo(void){ 

  // use iterator to visit adjacent vertices of v 

  for (each vertex w adjacent to v)… 

} 
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Outline 

 Introduction to graphs (Sec. 6.1) 

– Definitions, terminologies 

– Representations 

 

 Elementary graph operations (Sec. 6.2) 

– Depth first search,  breadth first search, connected 
components, spanning trees 
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Graph Search Operation 

 A vertex u is reachable from vertex v iff there is a 
path from v to u 

 A graph search operation starts at a given vertex v 
and visits/marks every vertex reachable from v 
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Graph Search Operation 

 Many graph problems can be solved using a search 
operation 

– Path from one vertex to another 

– Is the graph connected? 

– Find a spanning tree 

– ... 

 Commonly used search methods: 

– Depth-first search 

– Breadth-first search 
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Depth-First Search (DFS) 

 Starting from a vertex v, visit all vertices in G that are 
reachable from v, i.e., all vertices connected to v 

– Visit the vertex v  DFS(v) 

– For each vertex w adjacent to v, if w is not visited yet, then 
visit w  DFS(w) 

– If a vertex u is reached such that all its adjacent vertices 
have been visited, we go back to the last visited vertex 

 The search terminates when no unvisited vertex can 
be reached from any of the visited vertices 

– All vertices reachable from the start vertex (including the 
start vertex) are visited 
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Depth-First Search (DFS) 
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Note that there may have more 
than one order, depending on 

graph representation 
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What if G is a tree? 
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Recursive DFS Using Adjacency Lists 

void Graph::DFS() { // public driver  

   visited = new bool[n]; // data member of Graph 

   fill(visited, visited + n, false); 

   DFS(0); // start search at vertex 0 

   delete [] visited; 

} 

void Graph::DFS(const int v){ // private worker 

   // visit all previously unvisited vertices 

   // that are reachable from v 

   visited[v]=true; 

   for(each vertex w adjacent to v) 

     if(!visited[w]) DFS(w);  

} 
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Non-Recursive DFS 

void Graph::DFS(int v){ 

   visited = new bool[n]; // data member of Graph 

   fill(visited, visited + n, false); 

   Stack<int> s; 

   s.Push(v); 

   while(!s.IsEmpty()){ 

      u = s.Pop(); 

      if(!visited[u]){ 

         visited[u]=true; 

         for(each vertex w adjacent to u) 

           if(!visited[w]) s.Push(w); 

      } 

   } 

} 
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DFS Complexity 

 Adjacency matrix 

– Time to determine all adjacent vertices to v: O(n) 

– At most n vertices are visited: O(n×n) = O(n2) 

 Adjacency list 

– There are n+2e chain nodes 

– Each node in the adjacency list is examined at most once 
 time complexity = O(e) 
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Breadth-First Search (BFS) 

 Starting from a vertex v 

– Visit the vertex v 

– Visit all unvisited vertices adjacent to v 

– Unvisited vertices adjacent to these newly visited vertices 
are then visited and so on 

 Can use a queue to track the vertices 
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Breadth-First Search (BFS) 
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Note that there may be more 
than one order depending on 

the graph representation 
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Non-Recursive BFS 

void Graph::BFS(int v){ 

   visited = new bool[n]; // data member of Graph 

   fill(visited, visited+n, false); 

   Queue<int> q;   q.Push(v); 

   visited[v]=true; 

   while(!q.IsEmpty()){ 

      v = q.Front();    q.Pop(); 

      for(each vertex w adjacent to v){ 

         if(!visited[w]){ 

           q.Push(w);   visited[w]=true; } 

      } 

   } 

   delete [] visited; 

} 
Time complexity is the same as DFS 
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Finding a Path from Vertex v to Vertex u 

 Start a depth-first search at vertex v 

 Terminate when vertex u is visited or when DFS ends 
(whichever occurs first) 

 Time complexity: 

– O(n2) when adjacency matrix used 

– O(n+e) when adjacency lists used (e is number of edges) 
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Connected Components 

 How to determine whether a graph is connected or 
not? 

– Call DFS or BFS once and check if there is any unvisited 
vertices; if Yes, then the graph is not connected 

 How to identify connected components 

– Make a repeated calls to DFS or BFS 

– Each call will output a connected component 

– Start next call at an unvisited vertex 
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Spanning Trees 

 Definition: any tree consisting solely of edges in E(G) 
and including all vertices of V(G) 

 # of tree edges is n-1 

 Add a non-tree edge will create a cycle 
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DFS Spanning Tree 

 Tree edges are those edges met during DFS traversal 
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BFS Spanning Tree 

 Tree edges are those edges met during BFS traversal 
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Summary 

 Graphs are very important data structures 

– Terminologies and representations 

 There are many operations associated with graphs 

– Depth first search,  breadth first search, finding connected 
components, finding spanning trees 

 Self-study topics 

– Graph representations: sequential  
lists, adjacency multilists 

– Graph operations: biconnected  
components 
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