
National Tsing Hua University ® copyright OIA National Tsing Hua University

CS 2351 Data Structures

Trees (II)

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIA National Tsing Hua University

 Given a regular expression, put operands at leaf
nodes and operators at nonterminal nodes

Expression Tree

E1 E2

+ +

a b

*

y -

z +

x 10

Inorder

Preorder

Postorder

E1 + E2

+ E1 E2

E1 E2 +

a + b

+ a b

a b +

y * (z – (x + 10))

* y – z + z 10

y z x 10 + - *

Infix notation

Prefix notation

Postfix notation

2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Heap (Sec. 5.6)

– Priority queues, max heap

 Binary search trees (Sec. 5.7)

3

National Tsing Hua University ® copyright OIA National Tsing Hua University

Priority Seat

4

Passengers are ordered according to a
certain criteria, not just arrival time

National Tsing Hua University ® copyright OIA National Tsing Hua University

Who Is Next in Line?

 Who has the next highest priority?

– We care less who are the third, fourth, …, in line

5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Priority Queue

 A queue that orders the elements by importance or
priority

 The element to be processed/deleted is the one with
the highest (or lowest) priority

 Operations

– Get the element with the max/min priority

– Insert an element to the priority queue

– Delete an element with the max/min priority

– Don’t care which is the n-th highest priority

6

National Tsing Hua University ® copyright OIA National Tsing Hua University

ADT of Priority Queue

template <class T>
class MaxPQ {
public:
 MaxPQ();
 ~MaxPQ();
 // Check if PQ is empty
 bool IsEmpty() const;
 // Return reference to the max element
 T& Top() const;
 // Add an element to the PQ
 void Push(const T&);
 // Delete element with the max priority
 void Pop();
private:
 // Data representation here
};

7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Implementing Priority Queue

 Unsorted linear list

– Array, chain, …  no ordering

 Sorted linear list

– Sorted array, sorted chain, …  total ordering

 Heap

Top()

(Search)

Push()

(Insert)

Pop()

(Delete)

Unsorted linear list O(1) O(n) O(n)

O(1) O(1) O(n)

O(1) O(logn) O(logn)

8

Sorted linear list

Heap

 partial ordering

National Tsing Hua University ® copyright OIA National Tsing Hua University

Heap

 A disorganized pile of things

9


partially ordered

The one at the top
is important

Parent-child ordering important
Sibling ordering unimportant

c.f. queue

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max/Min Heap

 A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

 A max (min) heap is a complete binary tree that is
also a max (min) tree  root is the max (min)

14

12 7

10 8 6

Max Heap

30

25

Max Heap

14

Max/Min Heap

10

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max/Min Heap

 A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

 A max (min) heap is a complete binary tree that is
also a max (min) tree  root is the max (min)

14

10 7

12 8 6

14

12 7

8 6

Not a heap
(12 > 10)

Not a heap
(Not a complete binary tree)

11

National Tsing Hua University ® copyright OIA National Tsing Hua University

Array Representation of Max Heap

 Since the heap is a complete binary tree, we could
adopt “Array Representation” as mentioned before!

 Let node i be in position i (array[0] is empty)

– Parent(i) = i / 2 if i ≠ 1;
if i=1, i is the root and has no parent

– leftChild(i) = 2i if 2i ≤ n;
if 2i > n, i has no left child

– rightChild(i) = 2i+1 if 2i+1 ≤ n;
if 2i+1 > n, i has no right child

12

A(1)

B(2) C(3)

D(4) E(5) F(6) G(7)

A B C D E F G

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

ADT of Priority Queue

template <class T>

class MaxPQ {

public:

 MaxPQ();

 ~MaxPQ();

 // Check if PQ is empty

 bool IsEmpty() const;

 // Return reference to the max element

 T& Top() const;

 // Add an element to the PQ

 void Push(const T&);

 // Delete element with the max priority

 void Pop();

private:

 T* heap // Element array

 int heapSize; // # of elements

 int capacity; // size of the array “heap”

};

13

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap in C++

template <class T> class MaxPQ;

template <class T> class MaxHeap;

template <class T> class Element {

friend class MaxPQ<T>;

friend class MaxHeap<T>;

public:

 Element(T k = 0) : key(k) {};

private:

 T key;

};

template <class T> class MaxPQ {

public:

 virtual Element<T> *Top() = 0;

 virtual void Push(const Element<T>&) = 0;

 virtual Element<T>* Pop(Element<T>&) = 0;

};

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap in C++

template <class T> class MaxHeap : public MaxPQ<T> {

public:

 MaxHeap(int sz = defaultHeapSize) {

 capacity = sz; heapSize = 0;

 heap = new Element<T> [capacity + 1]; };

 Element<T> *Top() {return &heap[1];}

 void Push(const Element<T>& x);

 Element<T> *Pop(Element<T>&);

private:

 Element<T> *heap;

 int heapSize; // current size of MaxHeap

 int capacity; // Maximum allowable size of MaxHeap

 void HeapEmpty(){ cout << "Heap Empty" << "\n";};

 void HeapFull(){ cout << "Heap Full";};

};

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Insert

 Insert (5)

 Make sure it is a complete binary tree

 Check if the new node is greater than its parent

 If so, swap the two nodes

20

2

10 14

15

5

20

2 10 14

15 5

16

20 15 2 14 10 - -

1 2 3 4 5 6 7

5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Insert

template <class T>

void MaxPQ<T>::Push(const T& e)

{ // Insert e into max heap

 // Make sure the array has enough space here…

 // …

 int currentNode = ++heapSize;

 while(currentNode != 1 && heap[currentNode/2] < e)

 { // Swap with parent node

 heap[currentNode]=heap[currentNode/2];

 currentNode /= 2; // currentNode points to parent

 }

 heap[currentNode]=e;

}

Time complexity: Visit at most the height of the tree  O(log n)

17

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

8

20

16 15

12

18

16 15 12

1 2 3 4 5 6 7

20 8 8

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

3. Swap with larger and largest
child (if any)

16 15

12

8

19

8 16 15 12

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

3. Swap with larger and largest
child (if any)

4. Continue step 3 until the max
heap is maintained (trickle
down)

15

12

16

8

20

16 8 15 12

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

3. Swap with larger and largest
child (if any)

4. Continue step 3 until the max
heap is maintained (trickle
down)

15

16

12

8

21

16 12 15 8

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

template <class T> void MaxPQ<T>::Pop() { //Delete max
 if (IsEmpty()) throw “Heap is empty”;
 heap[1].~T(); // delete max (always the root!)
 // Remove last element from heap and trickle down
 T lastE = heap[heapSize--];
 int currentNode = 1; // root
 int child = 2; // A child of currentNode
 while(child <= heapSize) {
 // Set child to larger child of currentNode
 if (child<heapSize && heap[child]<heap[child+1])
 child++;
 // Can we put lastE in currentNode?
 if (lastE >= heap[child]) break; // Yes!
 // No!
 heap[currentNode]=heap[child]; // Move child up
 currentNode=child; child *=2; // Move down a level
 }
 heap[currentNode] = lastE;
}

Time Complexity = Height of tree = O(log n)

22

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Heap (Sec. 5.6)

– Priority queues, max heap

 Binary search trees (Sec. 5.7)

23

National Tsing Hua University ® copyright OIA National Tsing Hua University

Recall Binary Search through Sorted Array

 Search for x=9 in array A[0], …, A[7]:

 1st iteration:

 2nd iteration:

 3rd iteration:

24

1 3 5 8 9 17 32 50

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A

8 < x

17 > x

9 17 32 50

A[4] A[5] A[6] A[7]

A

9 == x

9 17

A[4] A[5]

A

Search in O(log n) time, but insertion/deletion in ? time

National Tsing Hua University ® copyright OIA National Tsing Hua University

How to Improve on Insertion/Deletion?

 Use a tree!

1 3 5 9 17 32 50

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A 8

1

3

5 9

17

32

50

8

National Tsing Hua University ® copyright OIA National Tsing Hua University

Binary Search Tree

 A binary search tree (BST) is a binary tree that:

– Every element has a a (key, value) pair and no two
elements have the same key

– The keys (if any) in the left subtree are smaller than the
key in the root

– The keys (if any) in the right subtree are larger than the
key in the root

– The left and right subtrees are also BST

26

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Examples

20

15

12 10 22

25

30

5

2 42

40

39

NO! YES!

Inorder traversal?

Inorder traversal of a BST will result in a sorted list

27

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Operations

 Search an element in a BST

 Search for the rth smallest element in a BST

 Insert an element into a BST

 Delete min from a BST

 Delete an arbitrary element from a BST

28

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Search an Element

Search for key 7

 Start from root

 Compare the key with root

– ‘<’ search the left subtree

– ‘>’ search the right subtree

 Repeat step 3 until the key is
found or a leaf is visited

60

5

2 7

29

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Recursive Search

template <class K, class E>

pair<K,E>* BST<K,E>::Get(const K& k)

{ // Search the BST for a pair with key k

 // If found, return its pointer; otherwise return 0

 return Get(root, k);

}

template <class K, class E>

pair<K,E>* BST<K,E>::Get(TreeNode<pair<K,E>>* p,

 const K& k){

 if(!p) return 0;

 if(k < p->data.first) return Get(p->leftChild, k);

 if(k > p->data.first) return Get(p->rightChild, k);

 return &p->data;

}

Can you write a non-recursive version?

p->data.first = key
p->data.second = element

30

National Tsing Hua University ® copyright OIA National Tsing Hua University

std::pair in STL

 A struct that provides for the ability to treat two
objects as a single object
– pair<T1,T2> is a heterogeneous pair: it holds one

object of type T1 and one of type T2

– The individual values can be accessed through its public
members first and second

 Example:
pair<bool, double> result = foo();

if (result.first)

do_something_more(result.second);

pair <int,char> element1(30,’x’);

31

National Tsing Hua University ® copyright OIA National Tsing Hua University

Can Also Search by Rank

 Definition of rank:

– A rank of a node is its position in inorder traversal

30

5

2

40

Inorder traversal: 2  5  30  40

 Rank: 1 2 3 4

Thus, the rth smallest element is the node with rank r

32

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Search by Rank

 For each node, we store an additional data “leftSize”, which is
1 + (# of nodes in the left subtree)

template <class K, class E>

pair<K,E>* BST<K,E>::RankGet(int r)

{ // Search BST for the rth smallest pair

 TreeNode<pair<K,E>>* currentNode = root;

 while(currentNode){

 if(r < currentNode->leftSize)

 currentNode = currentNode->leftChild;

 else if(r > currentNode->leftSize) {

 r -= currentNode->leftSize;

 currentNode = currentNode->rigthChild; }

 else return ¤tNode->data;

 }

 return 0;

}

33

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Insert

To insert an element with key 80

 First we search for the existence of the element

 If the search is unsuccessful, then the element is
inserted at the point the search terminates

40

80

30

5

2

34

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Insert

template <class K, class E>
void BST<K,E>::Insert(const pair<K,E>& thePair)
{ // Search for key “thePair.first”, pp is parent of p
 TreeNode<pair<K,E>>* p = root, *pp = 0;
 while(p){
 pp = p;
 if(thePair.first < p->data.first) p=p->leftChild;
 else if(thePair.first>p->data.first) p=p->rightChild;
 else // Duplicate, update the value of element
 { p->data.second = thePair.second; return; }
 }
 // Perform the insertion
 p = new pair<K,E>(thePair);
 if(root) // tree is not empty
 if(thePair.first < pp->data.first) pp->leftChild = p;
 else pp->rightChild = p;
 else root = p;
}

35

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Min (Max) element is at the leftmost (rightmost) of
the tree

 Min or max are not always terminal nodes

 Min or max has at most one child

4

5

2

1 3

4

7

5

2

1

3 7
Min

Max

6

Min

Max

36

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

To delete an element with key k

 Search for the key k

 If the search is successful, we have to deal with three
scenarios

– The element is a leaf node

– The element is a non-leaf node with one child

– The element is a non-leaf node with two children

37

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 1: The element is a leaf node

 The child field of the parent node is set to NULL

 Dispose the node

80

30

5

2

40

35

1 3

To delete 35

38

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 2: The element is a non-leaf node with one
child

 Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

 Dispose the node 5

30

5

2 80

40

3 1

To delete 5

39

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 2: The element is a non-leaf node with one
child

 Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

 Dispose the node 5

To delete 5

30

2

80

40

1 3

40

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 The deleted element is replaced by either

– the largest element in left subtree or

– the smallest element in right subtree

30

5

41

40

35 7

6 The smallest element
in right subtree

To delete 30

41

National Tsing Hua University ® copyright OIA National Tsing Hua University

35

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 Delete the node

– It is a leaf node -> apply scenario 1!

5

41

40

35 7

6

To delete 30

42

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 The deleted element is replaced by either

– the largest element in left subtree or

– the smallest element in right subtree

30

5

41

40

35 7

6

The largest element in
left subtree

To delete 30

43

National Tsing Hua University ® copyright OIA National Tsing Hua University

7

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 Delete the node

– It is a non-leaf node with one child  apply scenario 2

5

41

40

35 7

6

To delete 30

44

National Tsing Hua University ® copyright OIA National Tsing Hua University

6

7

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 Delete the node

– It is a non-leaf node with one child  apply scenario 2!

5

41

40

35

To delete 30

45

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Time Complexity

 Search, insertion, or deletion takes O(h)

 h = Height of a BST

1

2

3

n

1, 2, 3, …

Worst case h=n

– Insert keys:

Best case h=log(n)

– Insert keys: 4, 2, 6, 1, 3, 5, 7

4

2

1 3 7

6

5

46

National Tsing Hua University ® copyright OIA National Tsing Hua University

Summary

 Priority queue orders elements according to priority

– Often queried for next highest priority element
 more concerned with partial ordering

 PQ may be implemented efficiently using heap

– Max/min heap can be implemented in turn using arrays

 O(log n) search/insertion/deletion of elements can
be accomplished using binary search tree

47

