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Expression Tree

® Given a regular expression, put operands at leaf
nodes and operators at nonterminal nodes

El E2

Preorder +E1E2 +ab *y-z+2z10 Prefix notation

Postorder E1E2+ ab+ yzx10+-*%*

Inorder El1+E2 a+b y*(z—-(x+10)) fl>lnfix notation

Postfix notation

ational Tsing Hua University



Outline
e

® Heap (Sec. 5.6)

— Priority queues, max heap

® Binary search trees (Sec. 5.7)
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Priority Seat

maEE) EREIRE
Give priority to the elderly, the infirm,

pregnant women and children in the
Metro.

Tﬁig Priority Seat

Passengers are ordered according to a

i 4 BT 46 certain criteria, not just arrival time
ZA 20 TOHOFEENIPEAORE
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Who Is Next in Line?

® \Who has the next highest priority?
— We care less who are the third, fourth, ..., in line
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Priority Queue
O

® A queue that orders the elements by importance or
priority

® The element to be processed/deleted is the one with
the highest (or lowest) priority

® Operations
— Get the element with the max/min priority
— Insert an element to the priority queue
— Delete an element with the max/min priority
— Don’t care which is the n-th highest priority
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ADT of Priority Queue

template <class T>
class MaxPQ {
public:
MaxPQ() ;
~MaxPQ() ;
// Check if PQ is empty
bool IsEmpty () const;
// Return reference to the max element
T& Top() const;
// Add an element to the PQ
void Push(const T&) ;
// Delete element with the max priority
void Pop() ;
private:
// Data representation here
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Implementing Priority Queue
=

® Unsorted linear list

— Array, chain, ... =2 no ordering
® Sorted linear list

— Sorted array, sorted chain, ... = total ordering

® Heap - partial ordering

Top() Push() Pop()
(Search) (Insert) (Delete)
Unsorted linear list O(n) O(1) O(n)
Sorted linear list O(1) O(n) O(1)
Heap O(1) O(logn) O(logn)
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Heap

oA diso)(anized pile of things
partially ordered

The one at the top

isimportant T~

| Parent-child ordering important
.., Sibling ordering unimportant
c.f. queue
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Max/Min Heap

® A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

® A max (min) heap is a complete binary tree that is
also a max (min) tree = root is the max (min)

2 @
& O
FOE

Max Heap Max Heap Max/Min Heap
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Max/Min Heap

® A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

® A max (min) heap is a complete binary tree that is
also a max (min) tree = root is the max (min)

19 (19
© ) @
©2)(8)(e 8)(e

Not a heap Not a heap
(12 > 10) (Not a complete binary tree)
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Array Representation of Max Heap

® Since the heap is a complete binary tree, we could
adopt “Array Representation” as mentioned before!
® Let node i be in positioni (array[0] is empty)

— Parent(i) = [i/2]ifi#1; @

if i=1, i is the root and has no parent

_ leftChild(i) = 2i if 2i < n; @ @

if 2i > n, i has no left child
— rightChild(i) = 2i+1 if 2i+1 < n;

if 2i+1 > n, i has no right child @) @ @ @)
1 234567
A|B|CID|E|F|G
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ADT of Priority Queue

template <class T>
class MaxPQ {
public:
MaxPQ () ;
~MaxPQ () ;
// Check if PQ is empty
bool IsEmpty () const;
// Return reference to the max element
T& Top() const;
// Add an element to the PQ
void Push (const T&) ;
// Delete element with the max priority
void Pop() ;
private:
T* heap // Element array
int heapSize; // # of elements
int capacity; // size of the array “heap”
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Max Heap in C++

template <class T> class MaxPQ;
template <class T> class MaxHeap;
template <class T> class Element {
friend class MaxPQ<T>;
friend class MaxHeap<T>;
public:
Element (T k = 0) : key(k) {}:
private:
T key;,
};
template <class T> class MaxPQ {
public:
virtual Element<T> *Top() = O;
virtual void Push (const Element<T>&)
virtual Element<T>* Pop (Element<T>&)
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Max Heap in C++
-

template <class T> class MaxHeap : public MaxPQ<T> ({
public:
MaxHeap (int sz = defaultHeapSize) {
capacity = sz; heapSize = 0;
heap = new Element<T> [capacity + 1], };
Element<T> *Top() {return &heap[l];}
void Push (const Element<T>& x);
Element<T> *Pop (Element<T>&) ;
private:
Element<T> *heap;
int heapSize; // current size of MaxHeap
int capacity; // Maximum allowable size of MaxHeap
void HeapEmpty () { cout << "Heap Empty" << "\n";};
void HeapFull () { cout << "Heap Full";};
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Max Heap: Insert

® Insert (5)

® Make sure it is a complete binary tree

® Check if the new node is greater than its parent
® If so, swap the two nodes

1234567

20‘15 2114 10E|:
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Max Heap: Insert
=

template <class T>
void MaxPQ<T>: :Push (const T& e)
{ // Insert e into max heap
// Make sure the array has enough space here..

// ..
int currentNode = ++heapSize;
while (currentNode '= 1 && heap[currentNode/2] < e)

{ // Swap with parent node
heap[currentNode]=heap[currentNode/2] ;

currentNode /= 2; // currentNode points to parent

}

heap [currentNode]=e;

}
Time complexity: Visit at most the height of the tree = O(log n)
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Max Heap: Delete

1 2 3456 7

1. Always delete the root
B)‘IG 15{12| 8

2. Move the last element to the
root ( maintain a complete

binary tree ) @

1) 1 (5
(12)(&

National Tsing Hua University



Max Heap: Delete

1 2 3456 7

1. Always delete the root
8 116]15|12
2. Move the last element to the
root ( maintain a complete
binary tree ) G
3. Swap with larger and largest @ @

child (if any)

(12
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Max Heap: Delete

1 2 3456 7
16| 8 |15|12

1. Always delete the root

2. Move the last element to the
root ( maintain a complete
binary tree )

3. Swap with larger and largest
child (if any)

4. Continue step 3 until the max
heap is maintained (trickle
down)
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Max Heap: Delete

1 2 3456 7

1. Always delete the root
16|12|15| 8
2. Move the last element to the
root ( maintain a complete
binary tree ) @
3. Swap with larger and largest @ @

child (if any)

4. Continue step 3 until the max 9
heap is maintained (trickle
down)
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Max Heap: Delete

O
template <class T> void MaxPQ<T>: :Pop() { //Delete max

if (IsEmpty()) throw “Heap is empty”;
heap[1l] .~T(); // delete max (always the root!)
// Remove last element from heap and trickle down
T lastE = heap[heapSize--];
int currentNode = 1; // root
int child = 2; // A child of currentNode
while (child <= heapSize) {
// Set child to larger child of currentNode
if (child<heapSize && heap[child]<heap[child+1l])
child++;
// Can we put lastE in currentNode?
if (lastE >= heap[child]) break; // Yes!
// No!
heap[currentNode]=heap[child]; // Move child up
currentNode=child; child *=2; // Move down a level

}

heap[currentNode] = lastE;

} f

Time Complexity = Height of tree = O(log n)
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Outline
e

® Heap (Sec. 5.6)

— Priority queues, max heap

® Binary search trees (Sec. 5.7)
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Recall Binary Search through Sorted Array

® Search for x=9 in array A[O], ..., A[7]:

A[O] A[1] A[2] A[3] A[4] A[5] A[6] A[7]
1st iteration: Al1 M5 819117132150
1

8<x
A[4] A[5] Al6] A/ ]
2nd iteration: Al 117 ﬂ
17 > x
A[4] A[5]
3rd iteration: A Lg 17
9==x

Search in O(log n) time, but insertion/deletion in ? time
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How to Improve on Insertion/Deletion?

A[O] A[1] A[2] @] A[4] A[5] Al6] A[7]
Al11|3|5]8]9(17(32|50

® Use a tree!
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Binary Search Tree
O

® A binary search tree (BST) is a binary tree that:

— Every element has a a (key, value) pair and no two
elements have the same key

— The keys (if any) in the left subtree are smaller than the
key in the root

— The keys (if any) in the right subtree are larger than the
key in the root

— The left and right subtrees are also BST
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BST: Examples

20 30
15 @ 5) (49
W W @ @ 6 @

NO! YES!

Inorder traversal?

Inorder traversal of a BST will result in a sorted list
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BST: Operations

e
® Search an element in a BST

® Search for the rth smallest element in a BST
® Insert an element into a BST

® Delete min from a BST

® Delete an arbitrary element from a BST
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BST: Search an Element

Search for key 7
® Start from root
® Compare the key with root

— ‘<’ search the left subtree @
— >’ search the right subtree 4
® Repeat step 3 until the key is G\

found or a leaf is visited 9 a
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BST: Recursive Search

-
template <class K, class E>
pair<K,E>* BST<K,E>: :Get (const K& k)
{ // Search the BST for a pair with key k
// If found, return its pointer; otherwise return 0

} return Get(root, k); {p->data.first = key ]

template <class K, class E> p->data.second = element
pair<K,E>* BST<K,6E>::Get (TreeNode{pair<K,6 E>>* p,
const K& k) {

if('p) return O;
if (k < p->data.first) return Get (p->leftChild, k),
if(k > p->data.first) return Get (p->rightChild, k);
return &p->data;

Can you write a non-recursive version?
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std::pair in STL
-
® A struct that provides for the ability to treat two
objects as a single object

— pair<T1l,T2>is a heterogeneous pair: it holds one
object of type T1 and one of type T2

— The individual values can be accessed through its public
members £irst and second
® Example:
pair<bool, double> result = foo();

1f (result.first)
do something more (result.second);

pair <int,char> elementl(30,’x’);
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Can Also Search by Rank

® Definition of rank:
— A rank of a node is its position in inorder traversal

30
O
2

Inorder traversal: 2 2 5 - 30 2 40
Rank: 1 2 3 4

[ Thus, the rth smallest element is the node with rank r ]
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BST: Search by Rank

® For each node, we store an additional data “leftSize”, which is

1 + (# of nodes in the left subtree)

template <class K, class E>

pair<K,E>* BST<K,E>: :RankGet (int r)

{ // Search BST for the rth smallest pair
TreeNode<pair<K,E>>* currentNode = root;
while (currentNode) {

if(r < currentNode->leftSize)

currentNode = currentNode->leftChild;
else if(r > currentNode->leftSize) {

r —-= currentNode->leftSize;

currentNode = currentNode->rigthChild; }
else return &currentNode->data;

}

return 0O;
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BST: Insert

To insert an element with key 80
® First we search for the existence of the element

® |f the search is unsuccessful, then the element is
inserted at the point the search terminates
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BST: Insert
T

template <class K, class E>
void BST<K,E>: :Insert (const pair<K,E>& thePair)
{ // Search for key “thePair.first”, pp is parent of p
TreeNode<pair<K,E>>* p = root, *pp = O;
while (p) {
PP = P
if (thePair.first < p->data.first) p=p->leftChild;
else if (thePair.first>p->data.first) p=p->rightChild;
else // Duplicate, update the value of element
{ p—->data.second = thePair.second; return; }

}

// Perform the insertion

p = new pair<K,E>(thePair) ;

if (root) // tree is not empty
if (thePair.first < pp->data.first) pp->leftChild = p;
else pp->rightChild = p;

else root = p;

National Tsing Hua University



BST: Delete

® Min (Max) element is at the leftmost (rightmost) of
the tree

® Min or max are not always terminal nodes
® Min or max has at most one child
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BST: Delete

e
To delete an element with key k

® Search for the key k

® |f the search is successful, we have to deal with three
scenarios
— The element is a leaf node

— The element is a non-leaf node with one child
— The element is a non-leaf node with two children

ational Tsing Hua University



BST: Delete

® Scenario 1: The element is a leaf node

® The child field of the parent node is set to NULL
® Dispose the node
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BST: Delete

® Scenario 2: The element is a non-leaf node with one
child

To delete 5

® Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

® Dispose the node 5

National Tsing Hua University



BST: Delete

® Scenario 2: The element is a non-leaf node with one
child

To delete 5

® Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

® Dispose the node 5
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BST: Delete

® Scenario 3: The element is a non-leaf node with two
children
@ To delete 30

The smallest element
in right subtree

® The deleted element is replaced by either
— the largest element in left subtree or
— the smallest element in right subtree
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BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

® Delete the node

— Itis a leaf node -> apply scenario 1!
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BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

The largest element in
left subtree

® The deleted element is replaced by either
— the largest element in left subtree or
— the smallest element in right subtree
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BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

® Delete the node

— Itis a non-leaf node with one child = apply scenario 2
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BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

® Delete the node

— It is a non-leaf node with one child = apply scenario 2!
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BST: Time Complexity

® Search, insertion, or deletion takes O(h)
® h = Height of a BST

Worst case h=n Best case h=log(n)
— Insert keys: 1,2, 3, ... — Insert keys: 4, 2,6,1,3,5,7
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Summary
=

® Priority queue orders elements according to priority

— Often queried for next highest priority element
- more concerned with partial ordering

® PQ may be implemented efficiently using heap

— Max/min heap can be implemented in turn using arrays

® O(log n) search/insertion/deletion of elements can
be accomplished using binary search tree
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