CS 2351 Data Structures

Trees (ll)

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University

National Tsing Hua University

Expression Tree

® Given a regular expression, put operands at leaf
nodes and operators at nonterminal nodes

El E2

Preorder +E1E2 +ab *y-z+2z10 Prefix notation

Postorder E1E2+ ab+ yzx10+-*%*

Inorder El1+E2 a+b y*(z—-(x+10)) fl>lnfix notation

Postfix notation

ational Tsing Hua University

Outline
e

® Heap (Sec. 5.6)

— Priority queues, max heap

® Binary search trees (Sec. 5.7)

ational Tsing Hua University

Priority Seat

maEE) EREIRE
Give priority to the elderly, the infirm,

pregnant women and children in the
Metro.

Tﬁig Priority Seat

Passengers are ordered according to a

i 4 BT 46 certain criteria, not just arrival time
ZA 20 TOHOFEENIPEAORE

ational Tsing Hua University

Who Is Next in Line?

® \Who has the next highest priority?
— We care less who are the third, fourth, ..., in line

National Tsing Hua University

Priority Queue
O

® A queue that orders the elements by importance or
priority

® The element to be processed/deleted is the one with
the highest (or lowest) priority

® Operations
— Get the element with the max/min priority
— Insert an element to the priority queue
— Delete an element with the max/min priority
— Don’t care which is the n-th highest priority

ational Tsing Hua University

ADT of Priority Queue

template <class T>
class MaxPQ {
public:
MaxPQ() ;
~MaxPQ() ;
// Check if PQ is empty
bool IsEmpty () const;
// Return reference to the max element
T& Top() const;
// Add an element to the PQ
void Push(const T&) ;
// Delete element with the max priority
void Pop() ;
private:
// Data representation here

ational Tsing Hua University

Implementing Priority Queue
=

® Unsorted linear list

— Array, chain, ... =2 no ordering
® Sorted linear list

— Sorted array, sorted chain, ... = total ordering

® Heap - partial ordering

Top() Push() Pop()
(Search) (Insert) (Delete)
Unsorted linear list O(n) O(1) O(n)
Sorted linear list O(1) O(n) O(1)
Heap O(1) O(logn) O(logn)

National Tsing Hua University

Heap

oA diso)(anized pile of things
partially ordered

The one at the top

isimportant T~

| Parent-child ordering important
.., Sibling ordering unimportant
c.f. queue

National Tsing Hua University

Max/Min Heap

® A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

® A max (min) heap is a complete binary tree that is
also a max (min) tree = root is the max (min)

2 @
& O
FOE

Max Heap Max Heap Max/Min Heap

National Tsing Hua University

Max/Min Heap

® A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

® A max (min) heap is a complete binary tree that is
also a max (min) tree = root is the max (min)

19 (19
©) @
©2)(8)(e 8)(e

Not a heap Not a heap
(12 > 10) (Not a complete binary tree)

National Tsing Hua University

Array Representation of Max Heap

® Since the heap is a complete binary tree, we could
adopt “Array Representation” as mentioned before!
® Let node i be in positioni (array[0] is empty)

— Parent(i) = [i/2]ifi#1; @

if i=1, i is the root and has no parent

_ leftChild(i) = 2i if 2i < n; @ @

if 2i > n, i has no left child
— rightChild(i) = 2i+1 if 2i+1 < n;

if 2i+1 > n, i has no right child @) @ @ @)
1 234567
A|B|CID|E|F|G

National Tsing Hua University

ADT of Priority Queue

template <class T>
class MaxPQ {
public:
MaxPQ () ;
~MaxPQ () ;
// Check if PQ is empty
bool IsEmpty () const;
// Return reference to the max element
T& Top() const;
// Add an element to the PQ
void Push (const T&) ;
// Delete element with the max priority
void Pop() ;
private:
T* heap // Element array
int heapSize; // # of elements
int capacity; // size of the array “heap”

National Tsing Hua University

Max Heap in C++

template <class T> class MaxPQ;
template <class T> class MaxHeap;
template <class T> class Element {
friend class MaxPQ<T>;
friend class MaxHeap<T>;
public:
Element (T k = 0) : key(k) {}:
private:
T key;,
};
template <class T> class MaxPQ {
public:
virtual Element<T> *Top() = O;
virtual void Push (const Element<T>&)
virtual Element<T>* Pop (Element<T>&)

National Tsing Hua University

Max Heap in C++
-

template <class T> class MaxHeap : public MaxPQ<T> ({
public:
MaxHeap (int sz = defaultHeapSize) {
capacity = sz; heapSize = 0;
heap = new Element<T> [capacity + 1], };
Element<T> *Top() {return &heap[l];}
void Push (const Element<T>& x);
Element<T> *Pop (Element<T>&) ;
private:
Element<T> *heap;
int heapSize; // current size of MaxHeap
int capacity; // Maximum allowable size of MaxHeap
void HeapEmpty () { cout << "Heap Empty" << "\n";};
void HeapFull () { cout << "Heap Full";};

National Tsing Hua University

Max Heap: Insert

® Insert (5)

® Make sure it is a complete binary tree

® Check if the new node is greater than its parent
® If so, swap the two nodes

1234567

20‘15 2114 10E|:

National Tsing Hua University

Max Heap: Insert
=

template <class T>
void MaxPQ<T>: :Push (const T& e)
{ // Insert e into max heap
// Make sure the array has enough space here..

// ..
int currentNode = ++heapSize;
while (currentNode '= 1 && heap[currentNode/2] < e)

{ // Swap with parent node
heap[currentNode]=heap[currentNode/2] ;

currentNode /= 2; // currentNode points to parent

}

heap [currentNode]=e;

}
Time complexity: Visit at most the height of the tree = O(log n)

National Tsing Hua University

Max Heap: Delete

1 2 3456 7

1. Always delete the root
B)‘IG 15{12| 8

2. Move the last element to the
root (maintain a complete

binary tree) @

1) 1 (5
(12)(&

National Tsing Hua University

Max Heap: Delete

1 2 3456 7

1. Always delete the root
8 116]15|12
2. Move the last element to the
root (maintain a complete
binary tree) G
3. Swap with larger and largest @ @

child (if any)

(12

National Tsing Hua University

Max Heap: Delete

1 2 3456 7
16| 8 |15|12

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

3. Swap with larger and largest
child (if any)

4. Continue step 3 until the max
heap is maintained (trickle
down)

National Tsing Hua University

Max Heap: Delete

1 2 3456 7

1. Always delete the root
16|12|15| 8
2. Move the last element to the
root (maintain a complete
binary tree) @
3. Swap with larger and largest @ @

child (if any)

4. Continue step 3 until the max 9
heap is maintained (trickle
down)

National Tsing Hua University

Max Heap: Delete

O
template <class T> void MaxPQ<T>: :Pop() { //Delete max

if (IsEmpty()) throw “Heap is empty”;
heap[1l] .~T(); // delete max (always the root!)
// Remove last element from heap and trickle down
T lastE = heap[heapSize--];
int currentNode = 1; // root
int child = 2; // A child of currentNode
while (child <= heapSize) {
// Set child to larger child of currentNode
if (child<heapSize && heap[child]<heap[child+1l])
child++;
// Can we put lastE in currentNode?
if (lastE >= heap[child]) break; // Yes!
// No!
heap[currentNode]=heap[child]; // Move child up
currentNode=child; child *=2; // Move down a level

}

heap[currentNode] = lastE;

} f

Time Complexity = Height of tree = O(log n)

National Tsing Hua University

Outline
e

® Heap (Sec. 5.6)

— Priority queues, max heap

® Binary search trees (Sec. 5.7)

ational Tsing Hua University

Recall Binary Search through Sorted Array

® Search for x=9 in array A[O], ..., A[7]:

A[O] A[1] A[2] A[3] A[4] A[5] A[6] A[7]
1st iteration: Al1 M5 819117132150
1

8<x
A[4] A[5] Al6] A/]
2nd iteration: Al 117 ﬂ
17 > x
A[4] A[5]
3rd iteration: A Lg 17
9==x

Search in O(log n) time, but insertion/deletion in ? time

National Tsing Hua University

How to Improve on Insertion/Deletion?

A[O] A[1] A[2] @] A[4] A[5] Al6] A[7]
Al11|3|5]8]9(17(32|50

® Use a tree!

National Tsing Hua University

Binary Search Tree
O

® A binary search tree (BST) is a binary tree that:

— Every element has a a (key, value) pair and no two
elements have the same key

— The keys (if any) in the left subtree are smaller than the
key in the root

— The keys (if any) in the right subtree are larger than the
key in the root

— The left and right subtrees are also BST

ational Tsing Hua University

BST: Examples

20 30
15 @ 5) (49
W W @ @ 6 @

NO! YES!

Inorder traversal?

Inorder traversal of a BST will result in a sorted list

ational Tsing Hua University

BST: Operations

e
® Search an element in a BST

® Search for the rth smallest element in a BST
® Insert an element into a BST

® Delete min from a BST

® Delete an arbitrary element from a BST

ational Tsing Hua University

BST: Search an Element

Search for key 7
® Start from root
® Compare the key with root

— ‘<’ search the left subtree @
— >’ search the right subtree 4
® Repeat step 3 until the key is G\

found or a leaf is visited 9 a

ational Tsing Hua University

BST: Recursive Search

-
template <class K, class E>
pair<K,E>* BST<K,E>: :Get (const K& k)
{ // Search the BST for a pair with key k
// If found, return its pointer; otherwise return 0

} return Get(root, k); {p->data.first = key]

template <class K, class E> p->data.second = element
pair<K,E>* BST<K,6E>::Get (TreeNode{pair<K,6 E>>* p,
const K& k) {

if('p) return O;
if (k < p->data.first) return Get (p->leftChild, k),
if(k > p->data.first) return Get (p->rightChild, k);
return &p->data;

Can you write a non-recursive version?

National Tsing Hua University

std::pair in STL
-
® A struct that provides for the ability to treat two
objects as a single object

— pair<T1l,T2>is a heterogeneous pair: it holds one
object of type T1 and one of type T2

— The individual values can be accessed through its public
members £irst and second
® Example:
pair<bool, double> result = foo();

1f (result.first)
do something more (result.second);

pair <int,char> elementl(30,’x’);

ational Tsing Hua University

Can Also Search by Rank

® Definition of rank:
— A rank of a node is its position in inorder traversal

30
O
2

Inorder traversal: 2 2 5 - 30 2 40
Rank: 1 2 3 4

[Thus, the rth smallest element is the node with rank r]

ational Tsing Hua University

BST: Search by Rank

® For each node, we store an additional data “leftSize”, which is

1 + (# of nodes in the left subtree)

template <class K, class E>

pair<K,E>* BST<K,E>: :RankGet (int r)

{ // Search BST for the rth smallest pair
TreeNode<pair<K,E>>* currentNode = root;
while (currentNode) {

if(r < currentNode->leftSize)

currentNode = currentNode->leftChild;
else if(r > currentNode->leftSize) {

r —-= currentNode->leftSize;

currentNode = currentNode->rigthChild; }
else return ¤tNode->data;

}

return 0O;

National Tsing Hua University

BST: Insert

To insert an element with key 80
® First we search for the existence of the element

® |f the search is unsuccessful, then the element is
inserted at the point the search terminates

ational Tsing Hua University

BST: Insert
T

template <class K, class E>
void BST<K,E>: :Insert (const pair<K,E>& thePair)
{ // Search for key “thePair.first”, pp is parent of p
TreeNode<pair<K,E>>* p = root, *pp = O;
while (p) {
PP = P
if (thePair.first < p->data.first) p=p->leftChild;
else if (thePair.first>p->data.first) p=p->rightChild;
else // Duplicate, update the value of element
{ p—->data.second = thePair.second; return; }

}

// Perform the insertion

p = new pair<K,E>(thePair) ;

if (root) // tree is not empty
if (thePair.first < pp->data.first) pp->leftChild = p;
else pp->rightChild = p;

else root = p;

National Tsing Hua University

BST: Delete

® Min (Max) element is at the leftmost (rightmost) of
the tree

® Min or max are not always terminal nodes
® Min or max has at most one child

ational Tsing Hua University

BST: Delete

e
To delete an element with key k

® Search for the key k

® |f the search is successful, we have to deal with three
scenarios
— The element is a leaf node

— The element is a non-leaf node with one child
— The element is a non-leaf node with two children

ational Tsing Hua University

BST: Delete

® Scenario 1: The element is a leaf node

® The child field of the parent node is set to NULL
® Dispose the node

ational Tsing Hua University

BST: Delete

® Scenario 2: The element is a non-leaf node with one
child

To delete 5

® Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

® Dispose the node 5

National Tsing Hua University

BST: Delete

® Scenario 2: The element is a non-leaf node with one
child

To delete 5

® Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

® Dispose the node 5

National Tsing Hua University

BST: Delete

® Scenario 3: The element is a non-leaf node with two
children
@ To delete 30

The smallest element
in right subtree

® The deleted element is replaced by either
— the largest element in left subtree or
— the smallest element in right subtree

ational Tsing Hua University

BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

® Delete the node

— Itis a leaf node -> apply scenario 1!

ational Tsing Hua University

BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

The largest element in
left subtree

® The deleted element is replaced by either
— the largest element in left subtree or
— the smallest element in right subtree

ational Tsing Hua University

BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

® Delete the node

— Itis a non-leaf node with one child = apply scenario 2

ational Tsing Hua University

BST: Delete

® Scenario 3: The element is a non-leaf node with two
children

® Delete the node

— It is a non-leaf node with one child = apply scenario 2!

ational Tsing Hua University

BST: Time Complexity

® Search, insertion, or deletion takes O(h)
® h = Height of a BST

Worst case h=n Best case h=log(n)
— Insert keys: 1,2, 3, ... — Insert keys: 4, 2,6,1,3,5,7

National Tsing Hua University

Summary
=

® Priority queue orders elements according to priority

— Often queried for next highest priority element
- more concerned with partial ordering

® PQ may be implemented efficiently using heap

— Max/min heap can be implemented in turn using arrays

® O(log n) search/insertion/deletion of elements can
be accomplished using binary search tree

ational Tsing Hua University

