

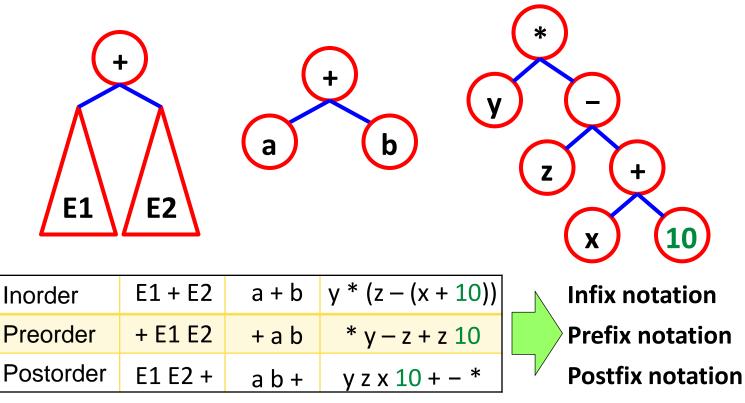
CS 2351 Data Structures

Trees (II)

Prof. Chung-Ta King Department of Computer Science National Tsing Hua University

Expression Tree

 Given a regular expression, put operands at leaf nodes and operators at nonterminal nodes



- Heap (Sec. 5.6)
 - Priority queues, max heap
- Binary search trees (Sec. 5.7)

National Tsing Hua University

請發揮愛心 禮讓老弱婦孺

Give priority to the elderly, the infirm, pregnant women and children in the Metro.

運公司

捷運、迅文化運動

Passengers are ordered according to a certain criteria, not just arrival time

Who Is Next in Line?

- Who has the next highest priority?
 - We care less who are the third, fourth, ..., in line

Priority Queue

- A queue that orders the elements by importance or priority
- The element to be processed/deleted is the one with the highest (or lowest) priority
- Operations
 - Get the element with the max/min priority
 - Insert an element to the priority queue
 - Delete an element with the max/min priority
 - Don't care which is the *n*-th highest priority

ADT of Priority Queue

```
template <class T>
class MaxPQ {
public:
   MaxPQ();
   ~MaxPQ();
    // Check if PQ is empty
    bool IsEmpty() const;
    // Return reference to the max element
    T& Top() const;
    // Add an element to the PQ
    void Push(const T&);
    // Delete element with the max priority
    void Pop();
private:
    // Data representation here
};
```

Implementing Priority Queue

- Unsorted linear list
 - Array, chain, ... \rightarrow no ordering
- Sorted linear list

− Sorted array, sorted chain, … → total ordering

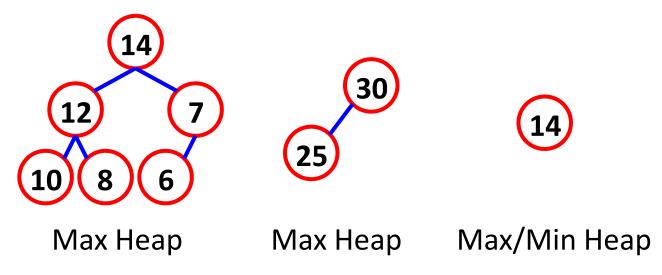
Heap → partial ordering

	Top() (Search)	Push() (Insert)	Pop() (Delete)
Unsorted linear list	O(n)	O(1)	O(n)
Sorted linear list	O(1)	O(n)	O(1)
Неар	O(1)	O(logn)	O(logn)

Parent-child ordering important Sibling ordering unimportant c.f. queue

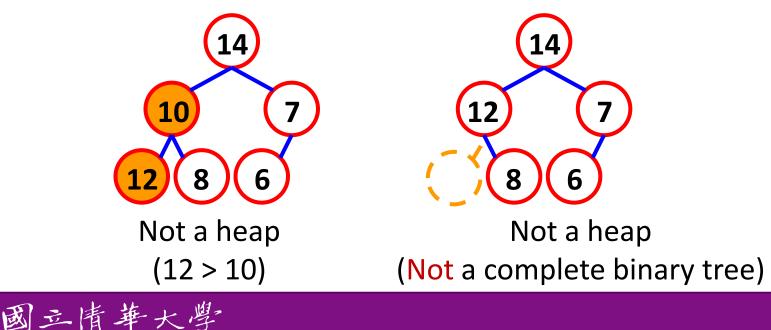
Max/Min Heap

- A max (min) tree is a tree in which the key value in each node is no smaller (larger) than the key values in its children (if any)
- A max (min) heap is a complete binary tree that is also a max (min) tree → root is the max (min)



Max/Min Heap

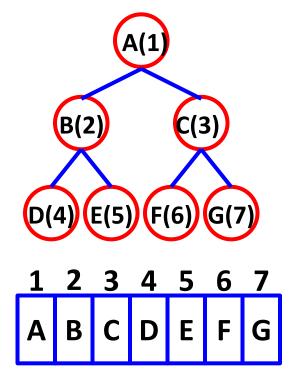
- A max (min) tree is a tree in which the key value in each node is no smaller (larger) than the key values in its children (if any)
- A max (min) heap is a complete binary tree that is also a max (min) tree → root is the max (min)



National Tsing Hua University

Array Representation of Max Heap

- Since the heap is a complete binary tree, we could adopt "Array Representation" as mentioned before!
- Let node i be in position i (array[0] is empty)
 - Parent(i) = [i / 2] if i ≠ 1; if i=1, i is the root and has no parent
 - leftChild(i) = 2i if 2i ≤ n; if 2i > n, i has no left child
 - rightChild(i) = 2i+1 if 2i+1 ≤ n; if 2i+1 > n, i has no right child



ADT of Priority Queue

```
template <class T>
class MaxPQ {
public:
   MaxPQ();
   ~MaxPQ();
    // Check if PQ is empty
   bool IsEmpty() const;
    // Return reference to the max element
    T& Top() const;
    // Add an element to the PQ
    void Push(const T&);
    // Delete element with the max priority
    void Pop();
private:
    T* heap // Element array
    int heapSize; // # of elements
    int capacity; // size of the array "heap"
};
```


Max Heap in C++

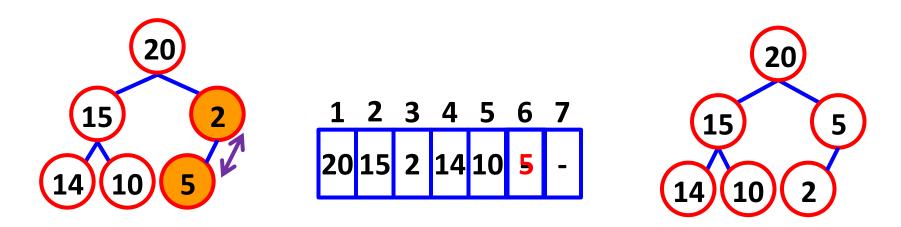
```
template <class T> class MaxPQ;
template <class T> class MaxHeap;
template <class T> class Element {
friend class MaxPQ<T>;
friend class MaxHeap<T>;
public:
    Element(T k = 0) : key(k) {};
private:
    T key;
};
template <class T> class MaxPQ {
public:
  virtual Element<T> *Top() = 0;
  virtual void Push(const Element<T>&) = 0;
  virtual Element<T>* Pop(Element<T>&) = 0;
};
```


Max Heap in C++

```
template <class T> class MaxHeap : public MaxPQ<T> {
public:
  MaxHeap(int sz = defaultHeapSize) {
    capacity = sz; heapSize = 0;
    heap = new Element<T> [capacity + 1]; };
  Element<T> *Top() {return &heap[1];}
  void Push(const Element<T>& x);
  Element<T> *Pop(Element<T>&);
private:
  Element<T> *heap;
  int heapSize; // current size of MaxHeap
  int capacity; // Maximum allowable size of MaxHeap
  void HeapEmpty() { cout << "Heap Empty" << "\n";};</pre>
  void HeapFull() { cout << "Heap Full"; };</pre>
};
```


Max Heap: Insert

- Insert (5)
- Make sure it is a complete binary tree
- Check if the new node is greater than its parent
- If so, swap the two nodes

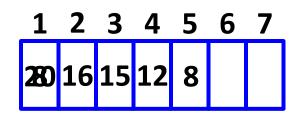


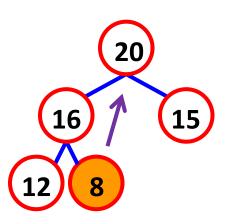
Max Heap: Insert

```
template <class T>
void MaxPQ<T>::Push(const T& e)
{ // Insert e into max heap
  // Make sure the array has enough space here...
  // ...
  int currentNode = ++heapSize;
  while(currentNode != 1 && heap[currentNode/2] < e)</pre>
  { // Swap with parent node
    heap[currentNode]=heap[currentNode/2];
    currentNode /= 2; // currentNode points to parent
  }
  heap[currentNode]=e;
```

Time complexity: Visit at most the height of the tree \rightarrow O(log n)

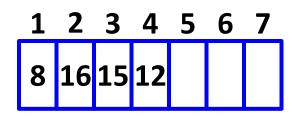
- 1. Always delete the root
- Move the last element to the root (maintain a complete binary tree)

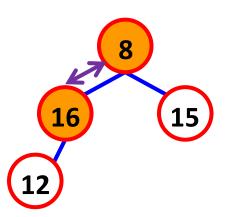




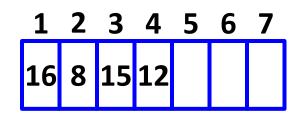
National Tsing Hua University

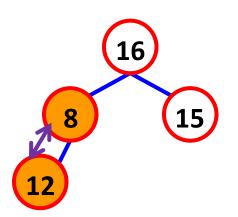
- 1. Always delete the root
- Move the last element to the root (maintain a complete binary tree)
- Swap with larger and largest child (if any)



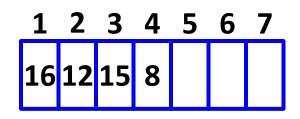


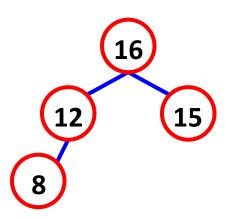
- Always delete the root 1.
- Move the last element to the 2. root (maintain a complete binary tree)
- Swap with larger and largest 3. child (if any)
- 4. Continue step 3 until the max heap is maintained (*trickle* down)





- 1. Always delete the root
- Move the last element to the root (maintain a complete binary tree)
- Swap with larger and largest child (if any)
- 4. Continue step 3 until the max heap is maintained (*trickle down*)





National Tsing Hua University

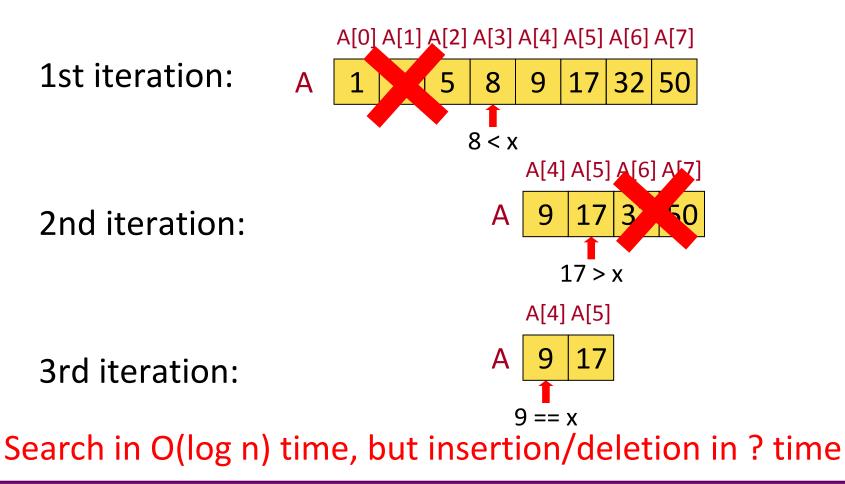
```
template <class T> void MaxPQ<T>::Pop() { //Delete max
  if (IsEmpty()) throw "Heap is empty";
 heap[1].~T(); // delete max (always the root!)
  // Remove last element from heap and trickle down
 T lastE = heap[heapSize--];
  int currentNode = 1; // root
  int child = 2; // A child of currentNode
 while(child <= heapSize) {</pre>
    // Set child to larger child of currentNode
    if (child<heapSize && heap[child]<heap[child+1])</pre>
         child++;
    // Can we put lastE in currentNode?
    if (lastE >= heap[child]) break; // Yes!
    // No!
   heap[currentNode]=heap[child]; // Move child up
    currentNode=child; child *=2; // Move down a level
 heap[currentNode] = lastE;
                  Time Complexity = Height of tree = O(log n)
  國立清華大學
```


- Heap (Sec. 5.6)
 - Priority queues, max heap
- Binary search trees (Sec. 5.7)

National Tsing Hua University

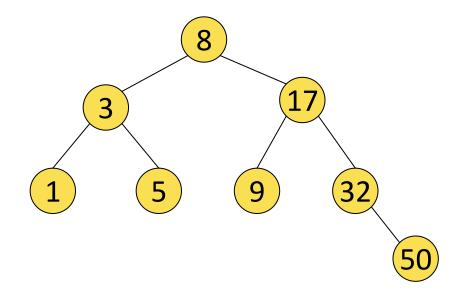
Recall Binary Search through Sorted Array

• Search for x=9 in array A[0], ..., A[7]:



How to Improve on Insertion/Deletion?

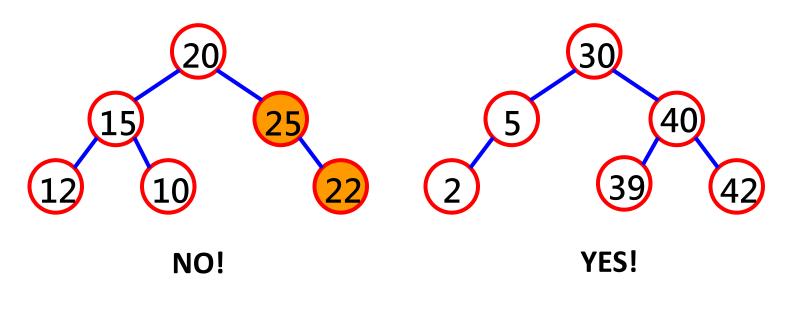
• Use a tree!



Binary Search Tree

• A *binary search tree (BST)* is a binary tree that:

- Every element has a a (key, value) pair and no two elements have the same key
- The keys (if any) in the left subtree are smaller than the key in the root
- The keys (if any) in the **right subtree** are **larger** than the key in the root
- The left and right subtrees are also BST



Inorder traversal?

Inorder traversal of a BST will result in a sorted list

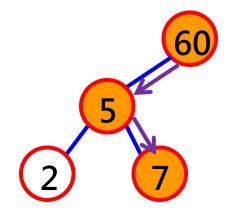
BST: Operations

- Search an element in a BST
- Search for the rth smallest element in a BST
- Insert an element into a BST
- Delete min from a BST
- Delete an arbitrary element from a BST

BST: Search an Element

Search for key 7

- Start from root
- Compare the key with root
 - '<' search the left subtree</p>
 - '>' search the right subtree
- Repeat step 3 until the key is found or a leaf is visited



BST: Recursive Search

```
template <class K, class E>
pair<K,E>* BST<K,E>::Get(const K& k)
{ // Search the BST for a pair with key k
  // If found, return its pointer; otherwise return 0
  return Get(root, k);
                            p->data.first = key
template <class K, class E> p->data.second = element
pair<K,E>* BST<K,E>::Get(TreeNode<pair<K,E>>* p,
                                       const K& k) {
  if(!p) return 0;
  if(k < p->data.first) return Get(p->leftChild, k);
  if(k > p->data.first) return Get(p->rightChild, k);
  return &p->data;
```

Can you write a non-recursive version?

National Tsing Hua University

std::pair in STL

- A struct that provides for the ability to treat two objects as a single object
 - pair<T1,T2> is a heterogeneous pair: it holds one object of type T1 and one of type T2
 - The individual values can be accessed through its public members first and second
- Example:

```
pair<bool, double> result = foo();
```

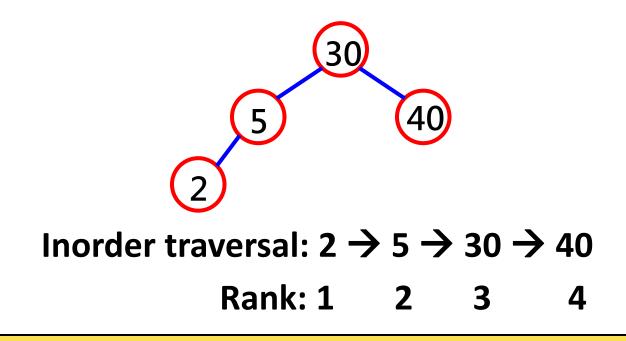
if (result.first)

do_something_more(result.second);

pair <int,char> element1(30,'x');

Can Also Search by Rank

- Definition of **rank**:
 - A rank of a node is its position in inorder traversal



Thus, the rth smallest element is the node with rank r

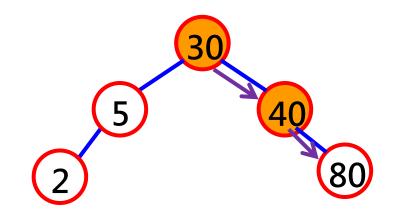
BST: Search by Rank

 For each node, we store an additional data "leftSize", which is 1 + (# of nodes in the left subtree)

```
template <class K, class E>
pair<K,E>* BST<K,E>::RankGet(int r)
{ // Search BST for the rth smallest pair
  TreeNode<pair<K,E>>* currentNode = root;
  while(currentNode) {
    if(r < currentNode->leftSize)
      currentNode = currentNode->leftChild;
    else if(r > currentNode->leftSize) {
      r -= currentNode->leftSize;
      currentNode = currentNode->rigthChild; }
    else return & currentNode->data;
  return 0;
```


To insert an element with key 80

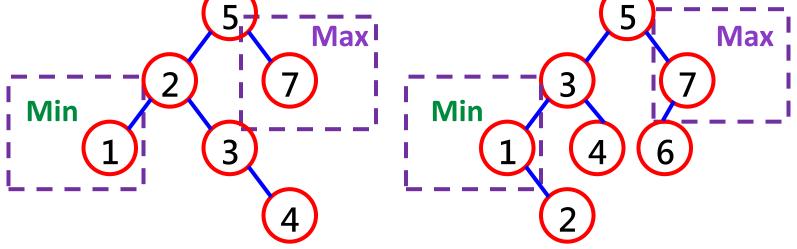
- First we search for the existence of the element
- If the search is unsuccessful, then the element is inserted at the point the search terminates



BST: Insert

```
template <class K, class E>
void BST<K,E>::Insert(const pair<K,E>& thePair)
{ // Search for key "thePair.first", pp is parent of p
  TreeNode<pair<K,E>>* p = root, *pp = 0;
 while(p) {
   pp = p;
    if (the Pair.first < p->data.first) p=p->leftChild;
    else if(thePair.first>p->data.first) p=p->rightChild;
    else // Duplicate, update the value of element
    { p->data.second = thePair.second; return; }
  // Perform the insertion
  p = new pair<K,E>(thePair);
  if (root) // tree is not empty
    if(thePair.first < pp->data.first) pp->leftChild = p;
    else pp->rightChild = p;
  else root = p;
```


Min (Max) element is at the leftmost (rightmost) of the tree

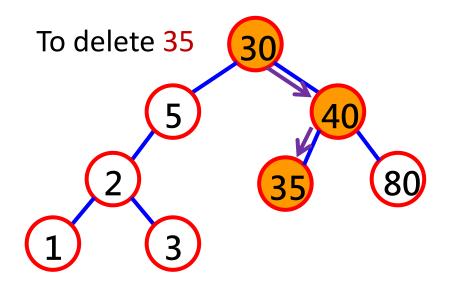


- Min or max are not always terminal nodes
- Min or max has at most one child

To delete an element with key k

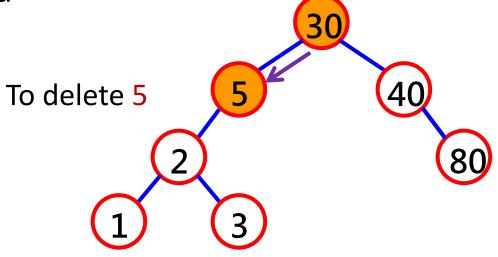
- Search for the key k
- If the search is successful, we have to deal with three scenarios
 - The element is a leaf node
 - The element is a non-leaf node with one child
 - The element is a non-leaf node with two children

Scenario 1: The element is a leaf node

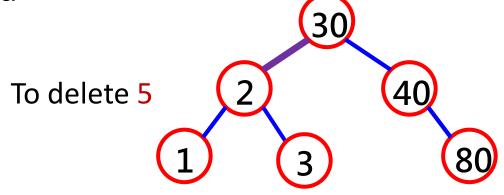


• The child field of the parent node is set to NULL

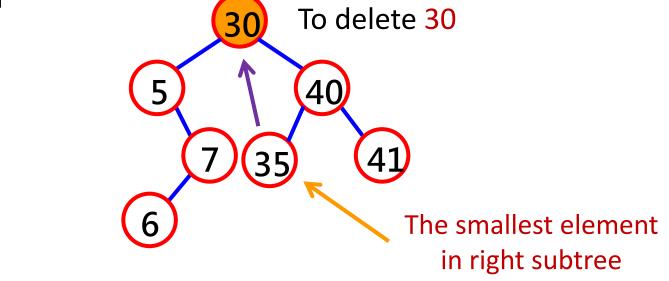
• Dispose the node



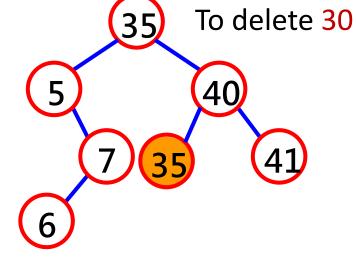
- Simply change the pointer from parent node (node with key 30) to single-child node (node with key 2)
- Dispose the node 5



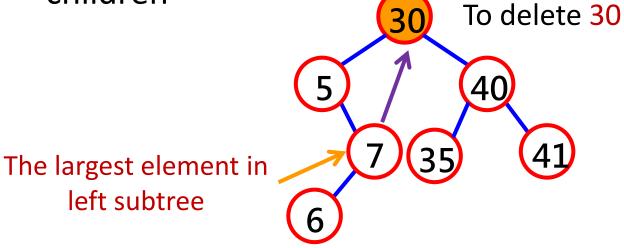
- Simply change the pointer from parent node (node with key 30) to single-child node (node with key 2)
- Dispose the node 5



- The deleted element is replaced by either
 - the largest element in left subtree or
 - the smallest element in right subtree

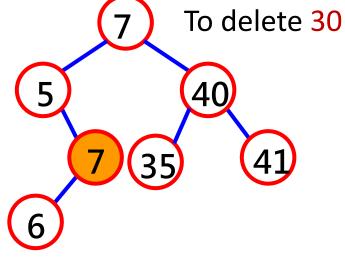


- Delete the node
 - It is a leaf node -> apply scenario 1!

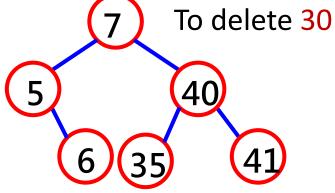


• The deleted element is replaced by either

- the largest element in left subtree or
- the smallest element in right subtree



- Delete the node
 - It is a non-leaf node with one child \rightarrow apply scenario 2



- Delete the node
 - It is a non-leaf node with one child \rightarrow apply scenario 2!

BST: Time Complexity

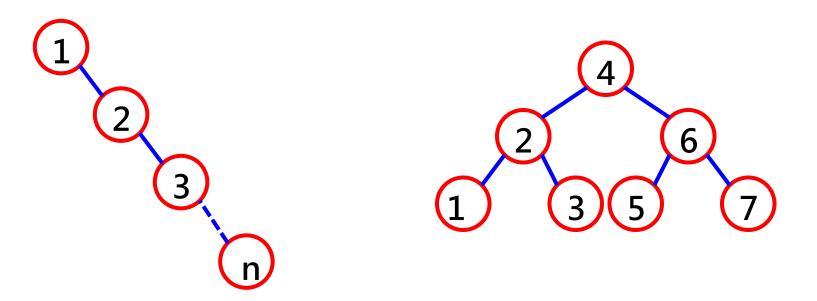
- Search, insertion, or deletion takes O(h)
- h = Height of a BST

Worst case h=n

- Insert keys: 1, 2, 3, ...

Best case h=log(n)

- Insert keys: 4, 2, 6, 1, 3, 5, 7



Priority queue orders elements according to priority

- Often queried for next highest priority element
 - \rightarrow more concerned with partial ordering
- PQ may be implemented efficiently using heap
 - Max/min heap can be implemented in turn using arrays
- O(log n) search/insertion/deletion of elements can be accomplished using binary search tree

