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 Given a regular expression, put operands at leaf 
nodes and operators at nonterminal nodes 

Expression Tree 
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Inorder 

Preorder 
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Outline 

 Heap (Sec. 5.6) 

– Priority queues, max heap 

 

 Binary search trees (Sec. 5.7) 
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Priority Seat 

4 

Passengers are ordered according to a 
certain criteria, not just arrival time 
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Who Is Next in Line? 

 Who has the next highest priority? 

– We care less who are the third, fourth, …, in line 
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Priority Queue 

 A queue that orders the elements by importance or 
priority 

 The element to be processed/deleted is the one with 
the highest (or lowest) priority 

 Operations 

– Get the element with the max/min priority 

– Insert an element to the priority queue 

– Delete an element with the max/min priority 

– Don’t care which is the n-th highest priority 
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ADT of Priority Queue 

template <class T> 
class MaxPQ { 
public: 
    MaxPQ(); 
   ~MaxPQ(); 
    // Check if PQ is empty 
    bool IsEmpty() const;  
    // Return reference to the max element 
    T& Top() const; 
    // Add an element to the PQ  
    void Push(const T&);  
    // Delete element with the max priority 
    void Pop(); 
private: 
    // Data representation here 
}; 
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Implementing Priority Queue 

 Unsorted linear list 

– Array, chain, …  no ordering 

 Sorted linear list 

– Sorted array, sorted chain, …  total ordering 

 Heap 

Top() 

(Search) 

Push() 

(Insert) 

Pop() 

(Delete) 

Unsorted linear list O(1) O(n) O(n) 

O(1) O(1) O(n) 

O(1) O(logn) O(logn) 
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Sorted linear list 

Heap 

 partial ordering 
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Heap 

 A disorganized pile of things  

9 

 
partially ordered 

The one at the top 
is important 

Parent-child ordering important 
Sibling ordering unimportant 

c.f. queue 
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Max/Min Heap 

 A max (min) tree is a tree in which the key value in 
each node is no smaller (larger) than the key values 
in its children (if any) 

 A max (min) heap is a complete binary tree that is 
also a max (min) tree  root is the max (min) 

14 
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Max Heap 

30 

25 

Max Heap 

14 

Max/Min Heap 
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Max/Min Heap 

 A max (min) tree is a tree in which the key value in 
each node is no smaller (larger) than the key values 
in its children (if any) 

 A max (min) heap is a complete binary tree that is 
also a max (min) tree  root is the max (min) 

14 

10 7 

12 8 6 

14 

12 7 

8 6 

Not a heap 
(12 > 10) 

Not a heap 
(Not a complete binary tree) 
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Array Representation of Max Heap 

 Since the heap is a complete binary tree, we could 
adopt “Array Representation” as mentioned before! 

 Let node i be in position i  (array[0] is empty) 

– Parent(i) =   i / 2   if i ≠ 1;  
if i=1, i is the root and has no parent 

– leftChild(i) = 2i if 2i ≤ n;  
if 2i > n, i has no left child 

– rightChild(i) = 2i+1 if 2i+1 ≤ n;  
if 2i+1 > n, i has no right child 
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ADT of Priority Queue 

template <class T> 

class MaxPQ { 

public: 

    MaxPQ(); 

   ~MaxPQ(); 

    // Check if PQ is empty 

    bool IsEmpty() const;  

    // Return reference to the max element 

    T& Top() const; 

    // Add an element to the PQ  

    void Push(const T&);  

    // Delete element with the max priority  

    void Pop(); 

private: 

    T* heap       // Element array 

    int heapSize; // # of elements 

    int capacity; // size of the array “heap” 

}; 
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Max Heap in C++ 

template <class T> class MaxPQ; 

template <class T> class MaxHeap; 

template <class T> class Element { 

friend class MaxPQ<T>; 

friend class MaxHeap<T>; 

public: 

    Element(T k = 0) : key(k) {}; 

private: 

    T key; 

}; 

template <class T> class MaxPQ { 

public: 

  virtual Element<T> *Top() = 0;  

  virtual void Push(const Element<T>&) = 0; 

  virtual Element<T>* Pop(Element<T>&) = 0; 

}; 
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Max Heap in C++ 

template <class T> class MaxHeap : public MaxPQ<T> { 

public: 

  MaxHeap(int sz = defaultHeapSize) { 

    capacity = sz; heapSize = 0; 

    heap = new Element<T> [capacity + 1]; }; 

  Element<T> *Top() {return &heap[1];} 

  void Push(const Element<T>& x); 

  Element<T> *Pop(Element<T>&); 

private: 

  Element<T> *heap; 

  int heapSize; // current size of MaxHeap 

  int capacity; // Maximum allowable size of MaxHeap 

  void HeapEmpty(){ cout << "Heap Empty" << "\n";}; 

  void HeapFull(){ cout << "Heap Full";}; 

}; 
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Max Heap: Insert 

 Insert (5) 

 Make sure it is a complete binary tree 

 Check if the new node is greater than its parent 

 If so, swap the two nodes 
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Max Heap: Insert 

template <class T> 

void MaxPQ<T>::Push(const T& e) 

{ // Insert e into max heap 

  // Make sure the array has enough space here… 

  // … 

  int currentNode = ++heapSize; 

  while(currentNode != 1 && heap[currentNode/2] < e) 

  { // Swap with parent node 

    heap[currentNode]=heap[currentNode/2]; 

    currentNode /= 2; // currentNode points to parent 

  } 

  heap[currentNode]=e; 

}  

Time complexity: Visit at most the height of the tree  O(log n) 
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Max Heap: Delete 

1. Always delete the root 

2. Move the last element to the 
root ( maintain a complete 
binary tree ) 
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Max Heap: Delete 

1. Always delete the root 

2. Move the last element to the 
root ( maintain a complete 
binary tree ) 

3. Swap with larger and largest 
child (if any) 
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Max Heap: Delete 

1. Always delete the root 

2. Move the last element to the 
root ( maintain a complete 
binary tree ) 

3. Swap with larger and largest 
child (if any) 

4. Continue step 3 until the max 
heap is maintained (trickle 
down) 
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Max Heap: Delete 

1. Always delete the root 

2. Move the last element to the 
root ( maintain a complete 
binary tree ) 

3. Swap with larger and largest 
child (if any) 

4. Continue step 3 until the max 
heap is maintained (trickle 
down) 
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Max Heap: Delete 

template <class T> void MaxPQ<T>::Pop() { //Delete max 
  if (IsEmpty()) throw “Heap is empty”; 
  heap[1].~T(); // delete max (always the root!) 
  // Remove last element from heap and trickle down 
  T lastE = heap[heapSize--]; 
  int currentNode = 1; // root 
  int child = 2; // A child of currentNode 
  while(child <= heapSize) { 
    // Set child to larger child of currentNode 
    if (child<heapSize && heap[child]<heap[child+1]) 
         child++; 
    // Can we put lastE in currentNode? 
    if (lastE >= heap[child]) break; // Yes! 
    // No! 
    heap[currentNode]=heap[child]; // Move child up 
    currentNode=child; child *=2; // Move down a level 
  }  
  heap[currentNode] = lastE; 
} 

Time Complexity = Height of tree =  O(log n) 
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Outline 

 Heap (Sec. 5.6) 

– Priority queues, max heap 

 

 Binary search trees (Sec. 5.7) 

23 
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Recall Binary Search through Sorted Array 

 Search for x=9 in array A[0], …, A[7]: 

  

 1st iteration:             

 

 

 2nd iteration: 

     

 

 3rd iteration: 

     

24 
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A 

9 == x 

9 17 

A[4] A[5] 

A 

Search in O(log n) time, but insertion/deletion in ? time 
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How to Improve on Insertion/Deletion? 

 

 

 

 Use a tree! 

1 3 5 9 17 32 50 
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Binary Search Tree 

 A binary search tree (BST) is a binary tree that: 

– Every element has a a (key, value) pair and no two 
elements have the same key 

– The keys (if any) in the left subtree are smaller than the 
key in the root 

– The keys (if any) in the right subtree are larger than the 
key in the root 

– The left and right subtrees are also BST 
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BST: Examples 

20 
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12 10 22 
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2 42 
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39 

NO! YES! 

Inorder traversal? 

Inorder traversal of a BST will result in a sorted list 
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BST: Operations 

 Search an element in a BST 

 Search for the rth smallest element in a BST 

 Insert an element into a BST 

 Delete min from a BST 

 Delete an arbitrary element from a BST 
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BST: Search an Element 

Search for key 7 

 Start from root 

 Compare the key with root 

– ‘<’ search the left subtree 

– ‘>’ search the right subtree 

 Repeat step 3 until the key is  
found or a leaf is visited 

 

60 

5 

2 7 

29 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

BST: Recursive Search 

template <class K, class E> 

pair<K,E>* BST<K,E>::Get(const K& k) 

{ // Search the BST for a pair with key k 

  // If found, return its pointer; otherwise return 0 

  return Get(root, k); 

} 

template <class K, class E> 

pair<K,E>* BST<K,E>::Get(TreeNode<pair<K,E>>* p,  

                                      const K& k){  

  if(!p) return 0; 

  if(k < p->data.first) return Get(p->leftChild, k); 

  if(k > p->data.first) return Get(p->rightChild, k); 

  return &p->data; 

}  

Can you write a non-recursive version? 

p->data.first = key 
p->data.second = element 
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std::pair in STL 

 A struct that provides for the ability to treat two 
objects as a single object 
– pair<T1,T2> is a heterogeneous pair: it holds one 

object of type T1 and one of type T2 

– The individual values can be accessed through its public 
members first and second    

 Example: 
pair<bool, double> result = foo();  

if (result.first) 

do_something_more(result.second);  

pair <int,char> element1(30,’x’); 

31 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

Can Also Search by Rank 

 Definition of rank: 

– A rank of a node is its position in inorder traversal 

 
30 

5 

2 

40 

Inorder traversal: 2  5  30  40 

                     Rank: 1       2       3         4 

Thus, the rth smallest element is the node with rank r 
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BST: Search by Rank 

 For each node, we store an additional data “leftSize”, which is 
1 + (# of nodes in the left subtree) 

template <class K, class E> 

pair<K,E>* BST<K,E>::RankGet(int r) 

{ // Search BST for the rth smallest pair 

  TreeNode<pair<K,E>>* currentNode = root; 

  while(currentNode){ 

    if(r < currentNode->leftSize)  

      currentNode = currentNode->leftChild; 

    else if(r > currentNode->leftSize) {    

      r -= currentNode->leftSize; 

      currentNode = currentNode->rigthChild; } 

    else return &currentNode->data; 

  } 

  return 0; 

} 
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BST: Insert 

To insert an element with key 80 

 First we search for the existence of the element 

 If the search is unsuccessful, then the element is 
inserted at the point the search terminates 
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BST: Insert 

template <class K, class E> 
void BST<K,E>::Insert(const pair<K,E>& thePair) 
{ // Search for key “thePair.first”, pp is parent of p 
  TreeNode<pair<K,E>>* p = root, *pp = 0; 
  while(p){ 
    pp = p; 
    if(thePair.first < p->data.first) p=p->leftChild; 
    else if(thePair.first>p->data.first) p=p->rightChild; 
    else // Duplicate, update the value of element 
    { p->data.second = thePair.second; return; } 
  } 
  // Perform the insertion   
  p = new pair<K,E>(thePair); 
  if(root) // tree is not empty 
    if(thePair.first < pp->data.first) pp->leftChild = p; 
    else pp->rightChild = p; 
  else root = p; 
} 
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BST: Delete 

 Min (Max) element is at the leftmost (rightmost) of 
the tree 

 

 

 

 

 

 Min or max are not always terminal nodes 

 Min or max has at most one child 
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BST: Delete 

To delete an element with key k 

 Search for the key k 

 If the search is successful, we have to deal with three 
scenarios 

– The element is a leaf node 

– The element is a non-leaf node with one child 

– The element is a non-leaf node with two children 
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BST: Delete 

 Scenario 1: The element is a leaf node 

 

 

 

 

 

 

 The child field of the parent node is set to NULL 

 Dispose the node 
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To delete 35 
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BST: Delete 

 Scenario 2: The element is a non-leaf node with one 
child 

 

 

 

 

 

 Simply change the pointer from parent node (node 
with key 30) to single-child node (node with key 2) 

 Dispose the node 5 
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To delete 5 
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BST: Delete 

 Scenario 2: The element is a non-leaf node with one 
child 

 

 

 

 

 

 Simply change the pointer from parent node (node 
with key 30) to single-child node (node with key 2) 

 Dispose the node 5 

 

To delete 5 
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2 
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40 

1 3 

40 
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BST: Delete 

 Scenario 3: The element is a non-leaf node with two 
children 

 

 

 

 

 

 The deleted element is replaced by either  

– the largest element in left subtree or  

– the smallest element in right subtree 

30 
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41 
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35 7 

6 The smallest element 
in right subtree 

To delete 30 

41 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

35 

BST: Delete 

 Scenario 3: The element is a non-leaf node with two 
children 

 

 

 

 

 

 Delete the node 

– It is a leaf node -> apply scenario 1! 
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To delete 30 
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BST: Delete 

 Scenario 3: The element is a non-leaf node with two 
children 

 

 

 

 

 

 The deleted element is replaced by either  

– the largest element in left subtree or  

– the smallest element in right subtree 
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The largest element in 
left subtree 

To delete 30 
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7 

BST: Delete 

 Scenario 3: The element is a non-leaf node with two 
children 

 

 

 

 

 

 Delete the node 

– It is a non-leaf node with one child  apply scenario 2 
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6 

7 

BST: Delete 

 Scenario 3: The element is a non-leaf node with two 
children 

 

 

 

 

 

 Delete the node 

– It is a non-leaf node with one child  apply scenario 2! 
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BST: Time Complexity 

 Search, insertion, or deletion takes O(h) 

 h = Height of a BST 

1 

2 

3 

n 

1, 2, 3, … 

Worst case h=n 

– Insert keys: 

Best case h=log(n) 

– Insert keys: 4, 2, 6, 1, 3, 5, 7 

4 

2 

1 3 7 

6 

5 

46 



National Tsing Hua University ®  copyright OIA National Tsing Hua University 

Summary 

 Priority queue orders elements according to priority  

– Often queried for next highest priority element 
 more concerned with partial ordering 

 PQ may be implemented efficiently using heap 

– Max/min heap can be implemented in turn using arrays 

 O(log n) search/insertion/deletion of elements can 
be accomplished using binary search tree 
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