
National Tsing Hua University ® copyright OIA National Tsing Hua University

CS 2351 Data Structures

Trees (II)

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIA National Tsing Hua University

 Given a regular expression, put operands at leaf
nodes and operators at nonterminal nodes

Expression Tree

E1 E2

+ +

a b

*

y -

z +

x 10

Inorder

Preorder

Postorder

E1 + E2

+ E1 E2

E1 E2 +

a + b

+ a b

a b +

y * (z – (x + 10))

* y – z + z 10

y z x 10 + - *

Infix notation

Prefix notation

Postfix notation

2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Heap (Sec. 5.6)

– Priority queues, max heap

 Binary search trees (Sec. 5.7)

3

National Tsing Hua University ® copyright OIA National Tsing Hua University

Priority Seat

4

Passengers are ordered according to a
certain criteria, not just arrival time

National Tsing Hua University ® copyright OIA National Tsing Hua University

Who Is Next in Line?

 Who has the next highest priority?

– We care less who are the third, fourth, …, in line

5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Priority Queue

 A queue that orders the elements by importance or
priority

 The element to be processed/deleted is the one with
the highest (or lowest) priority

 Operations

– Get the element with the max/min priority

– Insert an element to the priority queue

– Delete an element with the max/min priority

– Don’t care which is the n-th highest priority

6

National Tsing Hua University ® copyright OIA National Tsing Hua University

ADT of Priority Queue

template <class T>
class MaxPQ {
public:
 MaxPQ();
 ~MaxPQ();
 // Check if PQ is empty
 bool IsEmpty() const;
 // Return reference to the max element
 T& Top() const;
 // Add an element to the PQ
 void Push(const T&);
 // Delete element with the max priority
 void Pop();
private:
 // Data representation here
};

7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Implementing Priority Queue

 Unsorted linear list

– Array, chain, … no ordering

 Sorted linear list

– Sorted array, sorted chain, … total ordering

 Heap

Top()

(Search)

Push()

(Insert)

Pop()

(Delete)

Unsorted linear list O(1) O(n) O(n)

O(1) O(1) O(n)

O(1) O(logn) O(logn)

8

Sorted linear list

Heap

 partial ordering

National Tsing Hua University ® copyright OIA National Tsing Hua University

Heap

 A disorganized pile of things

9

partially ordered

The one at the top
is important

Parent-child ordering important
Sibling ordering unimportant

c.f. queue

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max/Min Heap

 A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

 A max (min) heap is a complete binary tree that is
also a max (min) tree root is the max (min)

14

12 7

10 8 6

Max Heap

30

25

Max Heap

14

Max/Min Heap

10

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max/Min Heap

 A max (min) tree is a tree in which the key value in
each node is no smaller (larger) than the key values
in its children (if any)

 A max (min) heap is a complete binary tree that is
also a max (min) tree root is the max (min)

14

10 7

12 8 6

14

12 7

8 6

Not a heap
(12 > 10)

Not a heap
(Not a complete binary tree)

11

National Tsing Hua University ® copyright OIA National Tsing Hua University

Array Representation of Max Heap

 Since the heap is a complete binary tree, we could
adopt “Array Representation” as mentioned before!

 Let node i be in position i (array[0] is empty)

– Parent(i) = i / 2 if i ≠ 1;
if i=1, i is the root and has no parent

– leftChild(i) = 2i if 2i ≤ n;
if 2i > n, i has no left child

– rightChild(i) = 2i+1 if 2i+1 ≤ n;
if 2i+1 > n, i has no right child

12

A(1)

B(2) C(3)

D(4) E(5) F(6) G(7)

A B C D E F G

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

ADT of Priority Queue

template <class T>

class MaxPQ {

public:

 MaxPQ();

 ~MaxPQ();

 // Check if PQ is empty

 bool IsEmpty() const;

 // Return reference to the max element

 T& Top() const;

 // Add an element to the PQ

 void Push(const T&);

 // Delete element with the max priority

 void Pop();

private:

 T* heap // Element array

 int heapSize; // # of elements

 int capacity; // size of the array “heap”

};

13

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap in C++

template <class T> class MaxPQ;

template <class T> class MaxHeap;

template <class T> class Element {

friend class MaxPQ<T>;

friend class MaxHeap<T>;

public:

 Element(T k = 0) : key(k) {};

private:

 T key;

};

template <class T> class MaxPQ {

public:

 virtual Element<T> *Top() = 0;

 virtual void Push(const Element<T>&) = 0;

 virtual Element<T>* Pop(Element<T>&) = 0;

};

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap in C++

template <class T> class MaxHeap : public MaxPQ<T> {

public:

 MaxHeap(int sz = defaultHeapSize) {

 capacity = sz; heapSize = 0;

 heap = new Element<T> [capacity + 1]; };

 Element<T> *Top() {return &heap[1];}

 void Push(const Element<T>& x);

 Element<T> *Pop(Element<T>&);

private:

 Element<T> *heap;

 int heapSize; // current size of MaxHeap

 int capacity; // Maximum allowable size of MaxHeap

 void HeapEmpty(){ cout << "Heap Empty" << "\n";};

 void HeapFull(){ cout << "Heap Full";};

};

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Insert

 Insert (5)

 Make sure it is a complete binary tree

 Check if the new node is greater than its parent

 If so, swap the two nodes

20

2

10 14

15

5

20

2 10 14

15 5

16

20 15 2 14 10 - -

1 2 3 4 5 6 7

5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Insert

template <class T>

void MaxPQ<T>::Push(const T& e)

{ // Insert e into max heap

 // Make sure the array has enough space here…

 // …

 int currentNode = ++heapSize;

 while(currentNode != 1 && heap[currentNode/2] < e)

 { // Swap with parent node

 heap[currentNode]=heap[currentNode/2];

 currentNode /= 2; // currentNode points to parent

 }

 heap[currentNode]=e;

}

Time complexity: Visit at most the height of the tree O(log n)

17

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

8

20

16 15

12

18

16 15 12

1 2 3 4 5 6 7

20 8 8

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

3. Swap with larger and largest
child (if any)

16 15

12

8

19

8 16 15 12

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

3. Swap with larger and largest
child (if any)

4. Continue step 3 until the max
heap is maintained (trickle
down)

15

12

16

8

20

16 8 15 12

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

1. Always delete the root

2. Move the last element to the
root (maintain a complete
binary tree)

3. Swap with larger and largest
child (if any)

4. Continue step 3 until the max
heap is maintained (trickle
down)

15

16

12

8

21

16 12 15 8

1 2 3 4 5 6 7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Max Heap: Delete

template <class T> void MaxPQ<T>::Pop() { //Delete max
 if (IsEmpty()) throw “Heap is empty”;
 heap[1].~T(); // delete max (always the root!)
 // Remove last element from heap and trickle down
 T lastE = heap[heapSize--];
 int currentNode = 1; // root
 int child = 2; // A child of currentNode
 while(child <= heapSize) {
 // Set child to larger child of currentNode
 if (child<heapSize && heap[child]<heap[child+1])
 child++;
 // Can we put lastE in currentNode?
 if (lastE >= heap[child]) break; // Yes!
 // No!
 heap[currentNode]=heap[child]; // Move child up
 currentNode=child; child *=2; // Move down a level
 }
 heap[currentNode] = lastE;
}

Time Complexity = Height of tree = O(log n)

22

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Heap (Sec. 5.6)

– Priority queues, max heap

 Binary search trees (Sec. 5.7)

23

National Tsing Hua University ® copyright OIA National Tsing Hua University

Recall Binary Search through Sorted Array

 Search for x=9 in array A[0], …, A[7]:

 1st iteration:

 2nd iteration:

 3rd iteration:

24

1 3 5 8 9 17 32 50

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A

8 < x

17 > x

9 17 32 50

A[4] A[5] A[6] A[7]

A

9 == x

9 17

A[4] A[5]

A

Search in O(log n) time, but insertion/deletion in ? time

National Tsing Hua University ® copyright OIA National Tsing Hua University

How to Improve on Insertion/Deletion?

 Use a tree!

1 3 5 9 17 32 50

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A 8

1

3

5 9

17

32

50

8

National Tsing Hua University ® copyright OIA National Tsing Hua University

Binary Search Tree

 A binary search tree (BST) is a binary tree that:

– Every element has a a (key, value) pair and no two
elements have the same key

– The keys (if any) in the left subtree are smaller than the
key in the root

– The keys (if any) in the right subtree are larger than the
key in the root

– The left and right subtrees are also BST

26

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Examples

20

15

12 10 22

25

30

5

2 42

40

39

NO! YES!

Inorder traversal?

Inorder traversal of a BST will result in a sorted list

27

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Operations

 Search an element in a BST

 Search for the rth smallest element in a BST

 Insert an element into a BST

 Delete min from a BST

 Delete an arbitrary element from a BST

28

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Search an Element

Search for key 7

 Start from root

 Compare the key with root

– ‘<’ search the left subtree

– ‘>’ search the right subtree

 Repeat step 3 until the key is
found or a leaf is visited

60

5

2 7

29

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Recursive Search

template <class K, class E>

pair<K,E>* BST<K,E>::Get(const K& k)

{ // Search the BST for a pair with key k

 // If found, return its pointer; otherwise return 0

 return Get(root, k);

}

template <class K, class E>

pair<K,E>* BST<K,E>::Get(TreeNode<pair<K,E>>* p,

 const K& k){

 if(!p) return 0;

 if(k < p->data.first) return Get(p->leftChild, k);

 if(k > p->data.first) return Get(p->rightChild, k);

 return &p->data;

}

Can you write a non-recursive version?

p->data.first = key
p->data.second = element

30

National Tsing Hua University ® copyright OIA National Tsing Hua University

std::pair in STL

 A struct that provides for the ability to treat two
objects as a single object
– pair<T1,T2> is a heterogeneous pair: it holds one

object of type T1 and one of type T2

– The individual values can be accessed through its public
members first and second

 Example:
pair<bool, double> result = foo();

if (result.first)

do_something_more(result.second);

pair <int,char> element1(30,’x’);

31

National Tsing Hua University ® copyright OIA National Tsing Hua University

Can Also Search by Rank

 Definition of rank:

– A rank of a node is its position in inorder traversal

30

5

2

40

Inorder traversal: 2 5 30 40

 Rank: 1 2 3 4

Thus, the rth smallest element is the node with rank r

32

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Search by Rank

 For each node, we store an additional data “leftSize”, which is
1 + (# of nodes in the left subtree)

template <class K, class E>

pair<K,E>* BST<K,E>::RankGet(int r)

{ // Search BST for the rth smallest pair

 TreeNode<pair<K,E>>* currentNode = root;

 while(currentNode){

 if(r < currentNode->leftSize)

 currentNode = currentNode->leftChild;

 else if(r > currentNode->leftSize) {

 r -= currentNode->leftSize;

 currentNode = currentNode->rigthChild; }

 else return ¤tNode->data;

 }

 return 0;

}

33

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Insert

To insert an element with key 80

 First we search for the existence of the element

 If the search is unsuccessful, then the element is
inserted at the point the search terminates

40

80

30

5

2

34

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Insert

template <class K, class E>
void BST<K,E>::Insert(const pair<K,E>& thePair)
{ // Search for key “thePair.first”, pp is parent of p
 TreeNode<pair<K,E>>* p = root, *pp = 0;
 while(p){
 pp = p;
 if(thePair.first < p->data.first) p=p->leftChild;
 else if(thePair.first>p->data.first) p=p->rightChild;
 else // Duplicate, update the value of element
 { p->data.second = thePair.second; return; }
 }
 // Perform the insertion
 p = new pair<K,E>(thePair);
 if(root) // tree is not empty
 if(thePair.first < pp->data.first) pp->leftChild = p;
 else pp->rightChild = p;
 else root = p;
}

35

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Min (Max) element is at the leftmost (rightmost) of
the tree

 Min or max are not always terminal nodes

 Min or max has at most one child

4

5

2

1 3

4

7

5

2

1

3 7
Min

Max

6

Min

Max

36

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

To delete an element with key k

 Search for the key k

 If the search is successful, we have to deal with three
scenarios

– The element is a leaf node

– The element is a non-leaf node with one child

– The element is a non-leaf node with two children

37

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 1: The element is a leaf node

 The child field of the parent node is set to NULL

 Dispose the node

80

30

5

2

40

35

1 3

To delete 35

38

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 2: The element is a non-leaf node with one
child

 Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

 Dispose the node 5

30

5

2 80

40

3 1

To delete 5

39

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 2: The element is a non-leaf node with one
child

 Simply change the pointer from parent node (node
with key 30) to single-child node (node with key 2)

 Dispose the node 5

To delete 5

30

2

80

40

1 3

40

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 The deleted element is replaced by either

– the largest element in left subtree or

– the smallest element in right subtree

30

5

41

40

35 7

6 The smallest element
in right subtree

To delete 30

41

National Tsing Hua University ® copyright OIA National Tsing Hua University

35

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 Delete the node

– It is a leaf node -> apply scenario 1!

5

41

40

35 7

6

To delete 30

42

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 The deleted element is replaced by either

– the largest element in left subtree or

– the smallest element in right subtree

30

5

41

40

35 7

6

The largest element in
left subtree

To delete 30

43

National Tsing Hua University ® copyright OIA National Tsing Hua University

7

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 Delete the node

– It is a non-leaf node with one child apply scenario 2

5

41

40

35 7

6

To delete 30

44

National Tsing Hua University ® copyright OIA National Tsing Hua University

6

7

BST: Delete

 Scenario 3: The element is a non-leaf node with two
children

 Delete the node

– It is a non-leaf node with one child apply scenario 2!

5

41

40

35

To delete 30

45

National Tsing Hua University ® copyright OIA National Tsing Hua University

BST: Time Complexity

 Search, insertion, or deletion takes O(h)

 h = Height of a BST

1

2

3

n

1, 2, 3, …

Worst case h=n

– Insert keys:

Best case h=log(n)

– Insert keys: 4, 2, 6, 1, 3, 5, 7

4

2

1 3 7

6

5

46

National Tsing Hua University ® copyright OIA National Tsing Hua University

Summary

 Priority queue orders elements according to priority

– Often queried for next highest priority element
 more concerned with partial ordering

 PQ may be implemented efficiently using heap

– Max/min heap can be implemented in turn using arrays

 O(log n) search/insertion/deletion of elements can
be accomplished using binary search tree

47

