CS 2351 Data Structures

Trees (l)

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University

National Tsing Hua University

Outline
e

® Trees and their representation (Sec. 5.1)

® Binary trees (Sec. 5.2)

® Binary tree traversal and tree iterators (Sec. 5.3)

ational Tsing Hua University

Nature Lover’s View of a Tree

— |eaves

branches
— root

ational Tsing Hua University

Computer Scientist’s View
T

root
nodes

branches

leaves

National Tsing Hua University

From Linear Lists to Trees

® Linear lists are useful for seriallv ordered data

- B3 * (Phylum Chor
E %% (Class Aves), 2 s
é’ﬁ” P (Order Galliformes 2 t‘; B ra
7271 (Family Phasianidae),” S¥@ig T8 =, 77 L 00
P8 /% (Genus Lophura), '*”"F!Q (Speues L. swinhoii)

B = F R G

National Tsing Hua University

Tree Definition

® A tree is a finite set of one or more nodes
— A specially designated node called root

— Remaining nodes are partitioned into n 2 0 disjointed sets
T, T, ... T,, where each is a tree =2 recursive definition

- T, T, .. T, are called subtrees of the root

ational Tsing Hua University

Terminology

® Degree of a node
— The number of subtrees

— e.g. deg(A) =3; deg(C) =1
® Leaf or terminal nodes

— The node whose degree is 0
—eg.EFGJI

® Nonterminals

® Degree of a tree
— The maximum degree of the nodes in the tree
— e.g. degree of the tree = 3

ational Tsing Hua University

Terminology

® Parent/children

® Sibling
— Children of the same parent
— e.g. Eand F are siblings

® Ancestors

— All nodes along the path
from the root to that node

— e.g. ancestorof] > H, D, A

® Descendants

— All nodes in the subtrees

ational Tsing Hua University

Terminology

® Level of a node
— Level(root) =1

— Level(node) =1+1
if level of node’s parent is |

— e.g. level(G) =3

® Height or depth of a tree
— Maximum level of any node in the tree [4

— e.g. height of the tree =4

tional Tsing Hua University

List Representation

® Each tree node holds a data field and several link
fields pointing to subtrees
— However, the degree of each node might vary

— For a tree of degree k (k-ary tree), allocate k link fields for
each node

| Data| Child 1| Child 2| ... | Child k |

National Tsing Hua University

List Representation
O
® Disadvantage: waste memory!
— If Tis a tree of degree k with n nodes
— The total # of link fields is n x k
— The total # of used link fields is n-1

e For each node (except root), there is one and only one pointer
points to it

— The # of zero link fields is n x k — (n — 1)

ational Tsing Hua University

Left Child-Right Sibling Representation

® Each node has exactly two link fields
— Left link (child): points to leftmost child node
— Right link (sibling): points to closest sibling node

National Tsing Hua University

Left Child-Right Sibling Representation

® Rotate clockwise 45°

Degree-2 tree
Binary Tree

National Tsing Hua University

Outline
e

® Trees and their representation (Sec. 5.1)

® Binary trees (Sec. 5.2)

® Binary tree traversal and tree iterators (Sec. 5.3)

ational Tsing Hua University

Binary Tree
=

® Definition: a binary tree is a finite set of nodes that
either is empty or consists of a root and two disjoint
binary trees called the left subtree and the right

subtree.

® Binary tree # Regular tree
Same trees but

Binary Tree Regular Tree ifferent binary trees
Has zero

odes YES NO Q Q
Order of e Doesn’t @ @

children matter

ational Tsing Hua University

Properties of Binary Tree

e [Maximum number of nodes]
— The max. # of nodes on level i is 2(-1)
— The max. # of nodes in a binary tree with depth kis 2¢-1

Level 1 20
Level 2 21
Level 3 22

Total #of nodeis1+2+22+23+ .. +2k1l)=2k_1

ational Tsing Hua University

Properties of Binary Tree
=

® [Relation between # of leaf nodes and degree-2
nodes]
— if np = number of leaf nodes and n, = number of degree-2
nodes, thenn,=n, +1
® Proof:
— n=ny+n;+n, wheren,is# of deg-1 nodes
— n=B+ 1, where B is # of branches

— B =n; +2n,(all branches stem from a node of degree 1 or
2)

— Ng+n;+n,=n;+2n,+1

- Ng=n,+1

ational Tsing Hua University

Special Binary Tree

® Skewed tree

Skewed to the left Skewed to the right

ational Tsing Hua University

Special Binary Tree

® Full binary tree
— A binary tree of depth k which has 2¢— 1 nodes

1001213

National Tsing Hua University

Special Binary Tree

® Complete binary tree

— A binary tree of depth k with n node is called complete iff
its nodes correspond to the nodes numbered from 1 to n
in the full binary tree

ational Tsing Hua University

Array Representation

® The numbering scheme suggests using a 1-D array to
store the nodes

)
b))
1) Ets) (o) <7

1 234567 1 23456 738
A|B|C|D|E|F|G A|B C D

National Tsing Hua University

Array Representation
=

® Advantages: Easy to determine the locations of the
parent, left child, and right child of any node

® Let node i be in positioni (array[0] is empty)
— Parent(i) =| i/2|ifi# 1.1fi=1, iis root and has no parent
— leftChild(i) = 2i if 2i < n; if 2i > n, i has no left child
— rightChild(i) = 2i+1 if 2i+1 < n; if 2i+1 > n, i has no right
child
® Disadvantages:
— Waste space for a skewed tree

— Insertion and deletion of nodes require moving a large
parts of existing nodes

National Tsing Hua University

Linked Representation

® Similar to Chain structure in Chapter 4

® Each tree node consists of three fields
— Data, leftChild, rightChild

r

leftChild

Data

rightChild

-

leftChild

National Tsing Hua University

rightChild

Linked Representation

NULL NULL NULL NULL

National Tsing Hua University

ADT of Binary Tree
TV T
// Forward decl.

template <class T> class Tree;
template <class T>

Class TreeNode {

friend class Tree <T>;
private:

T data;
TreeNode<T>* leftChild;

TreeNode<T>* rightChild;

};
template <class T>

Class Tree {
public:
// Constructor
Tree (void) {root=NULL; }

// Tree operations here..

private:
TreeNode<T> *root;

National Tsing Hua University

Outline
e

® Trees and their representation (Sec. 5.1)

® Binary trees (Sec. 5.2)

® Binary tree traversal and tree iterators (Sec. 5.3)

ational Tsing Hua University

Binary Tree Traversal

® \/isit each node in a tree exactly once

® Treat each node and its subtrees in the same fashion
- recursive Q

Every time we visit a node A: 9 G

Inorder: visit left -> root -> right
Preorder: Vvisit root -> left -> right
Postorder: visit left -> right -> root

ational Tsing Hua University

Binary Tree Traversal

® \/isit each node in a tree exactly once
® Treat each node and its subtrees in the same fashion

(A,
Every time we visit a node A: G G

Inorder: visit left -> root -> right BAC
Preorder: visit root -> left -> right
Postorder: visit left -> right -> root

ational Tsing Hua University

Binary Tree Traversal

® \/isit each node in a tree exactly once
® Treat each node and its subtrees in the same fashion

Every time we visit a node A:
Inorder: visit left -> root -> right BAC
Preorder: visit root -> left -> right ABC
Postorder: visit left -> right -> root

ational Tsing Hua University

Binary Tree Traversal

® \/isit each node in a tree exactly once
® Treat each node and its subtrees in the same fashion

Every time we visit a node A:

Inorder: visit left -> root -> right BAC
Preorder: visit root -> left -> right ABC
Postorder: visit left -> right -> root BCA

ational Tsing Hua University

Inorder Traversal
T

® Steps of traversal:

— Stepl: Move down the tree toward the left until you can
go no farther

— Step2: Visit the node
— Step3: Move one node to the right and continue stepl

® Use recursion to describe this traversal

ational Tsing Hua University

Inorder Traversal

template <class T>

void Tree<T>: :Inorder ()

{ // Start a recursive inorder traversal
// a public member function of Tree
Inorder (root) ;

}
template <class T>

void Tree<T>: :Inorder (TreeNode<T>* currentNode)
{ // Recursive inorder traversal function
// a private member function of Tree
1f (currentNode) {
Inorder (currentNode->leftChild) ;
Visit (currentNode); // e.g., printout info.
Inorder (currentNode->RightChild) ;

ational Tsing Hua University

Preorder Traversal
R

template <class T>

void Tree<T>: :Preorder ()

{ // Start a recursive preorder traversal
// a public member function of Tree
Preorder (root) ;

}
template <class T>

void Tree<T>: :Preorder (TreeNode<T>* currentNode)
{ // Recursive preorder traversal function
// a private member function of Tree
1f (currentNode) {
Visit (currentNode); // e.g., printout info.
Preorder (currentNode->leftChild) ;
Preorder (currentNode->RightChild) ;

National Tsing Hua University

Postorder Traversal

template <class T>

void Tree<T>: :Postorder ()

{ // Start a recursive postorder traversal
// a public member function of Tree
Postorder (root) ;

}
template <class T>

void Tree<T>: :Postorder (TreeNode<T>* currentNode)
{ // Recursive postorder traversal function
// a private member function of Tree
i1f (currentNode) {
Postorder (currentNode->leftChild) ;
Postorder (currentNode->RightChild) ;
Visit(currentNode); // e.g., printout info.

ational Tsing Hua University

Running Example

(A
ORe
o ©®E @

Traversal Output ordered list
Inorder

Preorder

Postorder

ational Tsing Hua University

Running Example

(A
ONe
o ®E

Traversal Output ordered list
Inorder DBEAFCAG

Preorder ABDEC CEFG
Postorder D E B F G C A

National Tsing Hua University

Expression Evaluation and Tree Traversal

® Consider the example expression from Chapter 3
A/B—-C+ D*E - A*C
® A possible tree representation is as follows:

b) Inorder traversal
/ T~ - infix rep.
J/ \ / _ Postorder traversal

- postfix rep.

National Tsing Hua University

Tree lterator
S

® \We would like to visit nodes in a fashion like using
iterator to visit elements in a container

® Recursive traversal is no long suitable
® \We need an iterative version, but how?

— Using stack to store non-visited nodes!

ational Tsing Hua University

Non-Recursive Inorder Traversal

T
template <class T>

void Tree<T>: :NonreclInorder ()
{ // Non-recursive inorder traversal using stack
Stack<TreeNode<T>*> s;
TreeNode<T>* currentNode = root;
while (1) {
while (currentNode) { // move down leftChild
s .Push (currentNode); // add to stack
currentNode = currentNode->leftChild; }
if (s.IsEmpty()) return; // all nodes visited
currentNode = s.Top() ; s.Pop () ;
Visit (currentNode) ; // e.g. print out info.
currentNode = currentNode->rightNode;

} We only need this part to develop tree iterator

ational Tsing Hua University

Inorder Iterator
L

Template class<T> class Tree ({
friend class InorderIterator;
private:
TreeNode<T> *root;
public:
class InorderIterator { // nested class
public:
InorderIterator (Tree<t> tree) :t(tree)
{currentNode = t.root;}
T* Next () ;
private:
Tree<T> t;
Stack<TreeNode<T>*> s;
TreeNode<T>* currentNode;
}i

void inorder () ;

National Tsing Hua University

Inorder Iterator

ITIITTITIITIITTTTR
template <class T> T* InorderIterator::Next() ({

while (currentNode){ // Move down leftChild
s .Push (currentNode); // Add to stack
currentNode = currentNode->leftChild; }
if(s.IsEmpty()) return; // All nodes visited
currentNode = s.Top() ; s.Pop() ;
T& temp = currentNode->data;
currentNode = currentNode->rightNode;
return &temp;

}

main () {
Tree<char> t;
Tree<char>: :InorderIterator it (t);
char *next = it.Next()
while (next) { ...*next ..., next = it.Next();}

National Tsing Hua University

Level-Order Traversal

® Visit nodes in a top down, left to right manner
LEVEL

17> Q

2 (& C

3) (6
. @ @

Preorder Inorder | Postorder Level-

ABCEFGDH

Stack Stack Stack Queue

National Tsing Hua University

Level-Order Traversal

T
template <class T>

void Tree<T>: :LevelOrder ()
{ // Traverse the binary tree in level order
Queue<TreeNode<T>*> q;
TreeNode<T>* currentNode = root;
while (currentNode) {
Visit (currentNode) ;
i1f (currentNode->leftChild)
q.Push (currentNode->leftChild) ;
if (currentNode->rightChild)
q.Push (currentNode->rightChild) ;
if (g.IsEmpty()) return;
currentNode = qgq.Front() ; qg.Pop() ;

ational Tsing Hua University

Summary
=

® Trees, terminologies of trees, tree representation

® Binary trees, properties of binary trees, array and
linked representation

® Binary tree traversal: inorder, preorder, postorder
® Binary tree iterators
® Self-study topics

— Binary tree operations:
copying binary trees,
testing equality

ational Tsing Hua University

