
National Tsing Hua University ® copyright OIA National Tsing Hua University

CS 2351 Data Structures

Trees (I)

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Trees and their representation (Sec. 5.1)

 Binary trees (Sec. 5.2)

 Binary tree traversal and tree iterators (Sec. 5.3)

2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Nature Lover’s View of a Tree

root
branches

leaves

3

National Tsing Hua University ® copyright OIA National Tsing Hua University

Computer Scientist’s View

branches

leaves

root

nodes

4

National Tsing Hua University ® copyright OIA National Tsing Hua University

From Linear Lists to Trees

 Linear lists are useful for serially ordered data

– Days of week, students in a class, polynomial, sparse
matrix, stack, queue, …

 Trees are useful for hierarchically ordered data

– Employees of a corporation:
• President, managers, staffs, ...

– Classification of birds:
• 動物界 (Kingdom Animalia),
脊索動物門 (Phylum Chordata),
鳥綱 (Class Aves),
雞形目 (Order Galliformes),
雉科 (Family Phasianidae),
鷳屬 (Genus Lophura), 藍腹鷳 (Species L. swinhoii)

5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Tree Definition

 A tree is a finite set of one or more nodes

– A specially designated node called root

– Remaining nodes are partitioned into n ≥ 0 disjointed sets
T1, T2, … Tn, where each is a tree  recursive definition

– T1, T2, … Tn are called subtrees of the root

 A

D C B

H F E I G

J

root

T1 T2
T3

6

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Degree of a node

– The number of subtrees

– e.g. deg(A) =3; deg(C) =1

 Leaf or terminal nodes

– The node whose degree is 0

– e.g. E, F, G, J, I

 Nonterminals

 Degree of a tree

– The maximum degree of the nodes in the tree

– e.g. degree of the tree = 3

A

B C D

E F G H I

J

7

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Parent/children

 Sibling

– Children of the same parent

– e.g. E and F are siblings

 Ancestors

– All nodes along the path
from the root to that node

– e.g. ancestor of J  H, D, A

 Descendants

– All nodes in the subtrees

A

B C D

E F G H I

J

8

National Tsing Hua University ® copyright OIA National Tsing Hua University

Terminology

 Level of a node

– Level(root) = 1

– Level(node) = l + 1
if level of node’s parent is l

– e.g. level(G) = 3

 Height or depth of a tree

– Maximum level of any node in the tree

– e.g. height of the tree = 4

A

B C D

E F G H I

J

LEVEL

1

2

3

4

9

National Tsing Hua University ® copyright OIA National Tsing Hua University

List Representation

 Each tree node holds a data field and several link
fields pointing to subtrees

– However, the degree of each node might vary

– For a tree of degree k (k-ary tree), allocate k link fields for
each node

Data Child 1 Child 2 … Child k

10

National Tsing Hua University ® copyright OIA National Tsing Hua University

List Representation

 Disadvantage: waste memory!

– If T is a tree of degree k with n nodes

– The total # of link fields is n × k

– The total # of used link fields is n-1
• For each node (except root), there is one and only one pointer

points to it

– The # of zero link fields is n × k – (n – 1)

11

National Tsing Hua University ® copyright OIA National Tsing Hua University

Left Child-Right Sibling Representation

 Each node has exactly two link fields

– Left link (child): points to leftmost child node

– Right link (sibling): points to closest sibling node

A

B C D

E F G H I

J

12

National Tsing Hua University ® copyright OIA National Tsing Hua University

Left Child-Right Sibling Representation

 Rotate clockwise 45o

A

B C D

E F G H I

J

A

B

E C

F G D

H

J I

Degree-2 tree
Binary Tree

13

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Trees and their representation (Sec. 5.1)

 Binary trees (Sec. 5.2)

 Binary tree traversal and tree iterators (Sec. 5.3)

14

National Tsing Hua University ® copyright OIA National Tsing Hua University

Binary Tree

 Definition: a binary tree is a finite set of nodes that
either is empty or consists of a root and two disjoint
binary trees called the left subtree and the right
subtree.

 Binary tree ≠ Regular tree

Binary Tree Regular Tree

Has zero
nodes

YES NO

Order of
children

Important
Doesn’t
matter

A

B

A

B

Same trees but
different binary trees

15

National Tsing Hua University ® copyright OIA National Tsing Hua University

Properties of Binary Tree

 [Maximum number of nodes]

– The max. # of nodes on level i is 2(i-1)

– The max. # of nodes in a binary tree with depth k is 2k - 1

Level 1

Level 2

Level 3

20

21

22

Total # of node is 1 + 2 + 22 + 23 + … + 2(k-1) = 2k - 1

16

National Tsing Hua University ® copyright OIA National Tsing Hua University

Properties of Binary Tree

 [Relation between # of leaf nodes and degree-2
nodes]

– if n0 = number of leaf nodes and n2 = number of degree-2
nodes, then n0 = n2 + 1

 Proof:

– n = n0 + n1 + n2, where n1 is # of deg-1 nodes

– n = B + 1, where B is # of branches

– B = n1 + 2n2 (all branches stem from a node of degree 1 or
2)

– n0 + n1 + n2 = n1 + 2n2 + 1

– n0 = n2 + 1

 17

National Tsing Hua University ® copyright OIA National Tsing Hua University

Special Binary Tree

 Skewed tree

A

B

C

D

A

B

C

D

Skewed to the left Skewed to the right

18

National Tsing Hua University ® copyright OIA National Tsing Hua University

Special Binary Tree

 Full binary tree

– A binary tree of depth k which has 2k – 1 nodes

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

A full binary tree of depth 4

19

National Tsing Hua University ® copyright OIA National Tsing Hua University

Special Binary Tree

 Complete binary tree

– A binary tree of depth k with n node is called complete iff
its nodes correspond to the nodes numbered from 1 to n
in the full binary tree

1

2 3

4 5 6 7

8 9 10

A complete binary tree of depth 4 with 10 nodes

20

National Tsing Hua University ® copyright OIA National Tsing Hua University

Array Representation

 The numbering scheme suggests using a 1-D array to
store the nodes

A(1)

B(2) C(3)

D(4) E(5) F(6) G(7)

A B C D E F G

1 2 3 4 5 6 7

A(1)

B(2)

C(4)

D(8)

A B C

1 2 3 4 5 6 7

D

8

21

National Tsing Hua University ® copyright OIA National Tsing Hua University

Array Representation

 Advantages: Easy to determine the locations of the
parent, left child, and right child of any node

 Let node i be in position i (array[0] is empty)

– Parent(i) = i / 2 if i ≠ 1. If i=1, i is root and has no parent

– leftChild(i) = 2i if 2i ≤ n; if 2i > n, i has no left child

– rightChild(i) = 2i+1 if 2i+1 ≤ n; if 2i+1 > n, i has no right
child

 Disadvantages:

– Waste space for a skewed tree

– Insertion and deletion of nodes require moving a large
parts of existing nodes

22

National Tsing Hua University ® copyright OIA National Tsing Hua University

Linked Representation

 Similar to Chain structure in Chapter 4

 Each tree node consists of three fields

– Data, leftChild, rightChild

Data leftChild rightChild

Data

leftChild rightChild

23

National Tsing Hua University ® copyright OIA National Tsing Hua University

Linked Representation

A

B

C D

A

B

C D

NULL

NULL NULL NULL NULL

24

National Tsing Hua University ® copyright OIA National Tsing Hua University

ADT of Binary Tree

template <class T> class Tree; // Forward decl.

template <class T>

Class TreeNode {

friend class Tree <T>;

private:

 T data;

 TreeNode<T>* leftChild;

 TreeNode<T>* rightChild;

};
template <class T>

Class Tree {

public:

 // Constructor

 Tree(void) {root=NULL;}

 // Tree operations here…

private:

 TreeNode<T> *root;

};

25

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Trees and their representation (Sec. 5.1)

 Binary trees (Sec. 5.2)

 Binary tree traversal and tree iterators (Sec. 5.3)

26

National Tsing Hua University ® copyright OIA National Tsing Hua University

Binary Tree Traversal

 Visit each node in a tree exactly once

 Treat each node and its subtrees in the same fashion
 recursive

Every time we visit a node A:

Inorder: visit left -> root -> right

Preorder: visit root -> left -> right

Postorder: visit left -> right -> root

C B

A

27

National Tsing Hua University ® copyright OIA National Tsing Hua University

Binary Tree Traversal

 Visit each node in a tree exactly once

 Treat each node and its subtrees in the same fashion

Every time we visit a node A:

Inorder: visit left -> root -> right

Preorder: visit root -> left -> right

Postorder: visit left -> right -> root

A

B C

B A C

28

National Tsing Hua University ® copyright OIA National Tsing Hua University

Binary Tree Traversal

 Visit each node in a tree exactly once

 Treat each node and its subtrees in the same fashion

Every time we visit a node A:

Inorder: visit left -> root -> right

Preorder: visit root -> left -> right

Postorder: visit left -> right -> root

A

B C

B A C

A B C

29

National Tsing Hua University ® copyright OIA National Tsing Hua University

Binary Tree Traversal

 Visit each node in a tree exactly once

 Treat each node and its subtrees in the same fashion

Every time we visit a node A:

Inorder: visit left -> root -> right

Preorder: visit root -> left -> right

Postorder: visit left -> right -> root

A

B C

B A C

A B C

B C A

30

National Tsing Hua University ® copyright OIA National Tsing Hua University

Inorder Traversal

 Steps of traversal:

– Step1: Move down the tree toward the left until you can
go no farther

– Step2: Visit the node

– Step3: Move one node to the right and continue step1

 Use recursion to describe this traversal

31

National Tsing Hua University ® copyright OIA National Tsing Hua University

Inorder Traversal

template <class T>

void Tree<T>::Inorder()

{ // Start a recursive inorder traversal

 // a public member function of Tree

 Inorder(root);

}

template <class T>

void Tree<T>::Inorder(TreeNode<T>* currentNode)

{ // Recursive inorder traversal function

 // a private member function of Tree

 if(currentNode){

 Inorder(currentNode->leftChild);

 Visit(currentNode); // e.g., printout info.

 Inorder(currentNode->RightChild);

 }

}

32

National Tsing Hua University ® copyright OIA National Tsing Hua University

Preorder Traversal

template <class T>
void Tree<T>::Preorder()
{ // Start a recursive preorder traversal
 // a public member function of Tree
 Preorder(root);
}
template <class T>
void Tree<T>::Preorder(TreeNode<T>* currentNode)
{ // Recursive preorder traversal function
 // a private member function of Tree
 if(currentNode){
 Visit(currentNode); // e.g., printout info.
 Preorder(currentNode->leftChild);
 Preorder(currentNode->RightChild);
 }
}

33

National Tsing Hua University ® copyright OIA National Tsing Hua University

Postorder Traversal

template <class T>

void Tree<T>::Postorder()

{ // Start a recursive postorder traversal

 // a public member function of Tree

 Postorder(root);

}

template <class T>

void Tree<T>::Postorder(TreeNode<T>* currentNode)

{ // Recursive postorder traversal function

 // a private member function of Tree

 if(currentNode){

 Postorder(currentNode->leftChild);

 Postorder(currentNode->RightChild);

 Visit(currentNode); // e.g., printout info.

 }

}

34

National Tsing Hua University ® copyright OIA National Tsing Hua University

D

B

Running Example

Traversal Output ordered list

Inorder

Preorder

Postorder

A

C

E F G

35

National Tsing Hua University ® copyright OIA National Tsing Hua University

Running Example

Traversal Output ordered list

Inorder

Preorder

Postorder

A

B C

D E F G

D B E A F C G

D B E A F C G
D B E A F C G

36

National Tsing Hua University ® copyright OIA National Tsing Hua University 37

 Consider the example expression from Chapter 3
 A/B – C + D*E – A*C

 A possible tree representation is as follows:

Expression Evaluation and Tree Traversal

+



C /

B A



*

C A

*

E D

Inorder traversal
 infix rep.

Postorder traversal
 postfix rep.

National Tsing Hua University ® copyright OIA National Tsing Hua University

Tree Iterator

 We would like to visit nodes in a fashion like using
iterator to visit elements in a container

 Recursive traversal is no long suitable

 We need an iterative version, but how?

– Using stack to store non-visited nodes!

38

National Tsing Hua University ® copyright OIA National Tsing Hua University

Non-Recursive Inorder Traversal

template <class T>

void Tree<T>::NonrecInorder()

{ // Non-recursive inorder traversal using stack

 Stack<TreeNode<T>*> s;

 TreeNode<T>* currentNode = root;

 while(1){

 while(currentNode){ // move down leftChild

 s.Push(currentNode); // add to stack

 currentNode = currentNode->leftChild; }

 if(s.IsEmpty()) return; // all nodes visited

 currentNode = s.Top(); s.Pop();

 Visit(currentNode); // e.g. print out info.

 currentNode = currentNode->rightNode;

 }

} We only need this part to develop tree iterator

39

National Tsing Hua University ® copyright OIA National Tsing Hua University

Inorder Iterator

Template class<T> class Tree {

friend class InorderIterator;

private:

 TreeNode<T> *root;

public:

 class InorderIterator { // nested class

 public:

 InorderIterator(Tree<t> tree) :t(tree)

 {currentNode = t.root;}

 T* Next();

 private:

 Tree<T> t;

 Stack<TreeNode<T>*> s;

 TreeNode<T>* currentNode;

 };

 void inorder();

};

40

National Tsing Hua University ® copyright OIA National Tsing Hua University

Inorder Iterator

template <class T> T* InorderIterator::Next() {

 while(currentNode){ // Move down leftChild

 s.Push(currentNode); // Add to stack

 currentNode = currentNode->leftChild; }

 if(s.IsEmpty()) return; // All nodes visited

 currentNode = s.Top(); s.Pop();

 T& temp = currentNode->data;

 currentNode = currentNode->rightNode;

 return &temp;

}

main() {

 Tree<char> t;

 Tree<char>::InorderIterator it(t);

 char *next = it.Next();

 while (next) { ...*next ...; next = it.Next();}

}

41

National Tsing Hua University ® copyright OIA National Tsing Hua University

Level-Order Traversal

 Visit nodes in a top down, left to right manner

A

B C

E F G

D H

A B C E F G D H

LEVEL

1

2

3

4

Preorder Inorder Postorder

Stack Stack Stack

Level-
Order
Queue

42

National Tsing Hua University ® copyright OIA National Tsing Hua University

Level-Order Traversal

template <class T>

void Tree<T>::LevelOrder()

{ // Traverse the binary tree in level order

 Queue<TreeNode<T>*> q;

 TreeNode<T>* currentNode = root;

 while(currentNode){

 Visit(currentNode);

 if(currentNode->leftChild)

 q.Push(currentNode->leftChild);

 if(currentNode->rightChild)

 q.Push(currentNode->rightChild);

 if(q.IsEmpty()) return;

 currentNode = q.Front(); q.Pop();

 }

}

43

National Tsing Hua University ® copyright OIA National Tsing Hua University

Summary

 Trees, terminologies of trees, tree representation

 Binary trees, properties of binary trees, array and
linked representation

 Binary tree traversal: inorder, preorder, postorder

 Binary tree iterators

 Self-study topics

– Binary tree operations:
copying binary trees,
testing equality

44

