
National Tsing Hua University ® copyright OIA National Tsing Hua University

CS 2351 Data Structures

Linked Lists

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Review of C-type Arrays

 When you declare an array in C or C++
 int L[100];
you conceptually envision a contiguous space of 100
integers, with each element stored next to another

– Ex.: layout of L = {a,b,c,d,e} in an array representation

– Actually, this is how the array is usually stored in the
computer memory (each block above is a memory
location)

a b c d e L

3

National Tsing Hua University ® copyright OIA National Tsing Hua University

Contiguous Space for Storing Arrays

 Pros:

– Adequate for special data structures like stack and queue

– Efficient to insert/delete from the ends

– Suitable for random accesses

– Good for the types of data structures discussed in the
previous two chapters, e.g. polynomial addition, sparse
matrix transpose, stack, queue, etc.

 Cons:

– Difficult to insert/delete elements at arbitrary locations

4

National Tsing Hua University ® copyright OIA National Tsing Hua University

Insertion/Deletion in an Array

 Suppose we have an array that stores 3-letter words
in their alphabetic order

 Given a new word “GAT”, we would certainly like it
to be inserted between “FAT” and “HAT”

– This would require shifting either “BAT” … “FAT” left or
“HAT” … “MAT” right; both are expensive operations

BAT CAT EAT FAT HAT JAT LAT MAT

GAT

5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Any Alternative?

 Linked list representation

– List elements are stored in memory in an arbitrary order

– Explicit information (called a link) is used to go from one
element to the next

6

e a d b c L

National Tsing Hua University ® copyright OIA National Tsing Hua University

 Nodes are no longer contiguous in the memory

 Each node stores address or location of the next one

 Singly Linked List (SLL)

– Each node has exactly one pointer (link) field

a1

Linked List Representation

a0 … a2

Data field

Node

Link field

Chain

7

first

National Tsing Hua University ® copyright OIA National Tsing Hua University

SLL Operation: Insertion

 Steps to do when we want to insert ”EAT” in
between “CAT” and “FAT”

– Create a new node “a” and set data field to “EAT”

– Set the link field of “a” to “FAT” node

– Set the link field of “CAT” node to “a”

BAT CAT FAT HAT …

first

EAT
a

You do not need to move or shift any node!

8

National Tsing Hua University ® copyright OIA National Tsing Hua University

SLL Operation: Deletion

 Steps to do when we want to delete ”EAT” from the
list

– Locate the node “a” precedes the “EAT” node

– Set the link field of “a” to the node next to “EAT” node

– Delete the “EAT” node

BAT CAT EAT FAT …

first

You do not need to move or shift any node!

a

9

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

10

National Tsing Hua University ® copyright OIA National Tsing Hua University

Conceptual Design

 Defining a “ChainNode” class

– Data field

– Link field

 Designing a “Chain” class

– A container class of ChainNodes

– Support various operations on ChainNodes

BAT CAT EAT FAT first

ChainNode

…

Chain

11

National Tsing Hua University ® copyright OIA National Tsing Hua University

ChainNode and Chain Classes

class ChainNode {

friend class Chain;

public:

 // Constructor

 ChainNode(int

 value=0, ChainNode*

 next=NULL)

 {

 data = value;

 link = next;

 }

private:

 int data;

 ChainNode *link;

};

class Chain
{
public:
 // Create a chain with two nodes
 void Create2();

 // Insert a node with data=50
 void Insert50(ChainNode *x);

 // Delete a node
 void Delete(ChainNode *x,
 ChainNode *y);

private:
 ChainNode *first;
};

12

National Tsing Hua University ® copyright OIA National Tsing Hua University

Nested ChainNode and Chain Classes

 Alternative specification

13

class Chain {

 public:

 // chain manipulation operations

 ...

 private:

 class ChainNode {

 public:

 int data;

 ChainNode *link;

 };

 ChainNode *first;

};

National Tsing Hua University ® copyright OIA National Tsing Hua University

Pointer Manipulation in C++

 Declare pointer of object
– NodeA *a1=NULL, *a2=NULL;

 Allocate memory for object
– a1 = new NodeA;

– a2 = new NodeA[10];

 Delete object
– delete a1;

– delete [] a2;

14

National Tsing Hua University ® copyright OIA National Tsing Hua University

Pointer Assignment

ChainNode *x, *y;

10 x

20 y

x = y;

10 x

20 y

*x = *y;

20 x

20 y

15

National Tsing Hua University ® copyright OIA National Tsing Hua University

Chain Manipulation Operations

void Chain::Create2()

{ // Create a chain of two nodes

 // Create and set the fields of 2nd node

 ChainNode *second = new ChainNode(20,0);

 // Create and set the fields of 1st node

 first = new ChainNode(10,second);

}

10 first 20 0

16

National Tsing Hua University ® copyright OIA National Tsing Hua University

Chain Manipulation Operations

void Chain::Insert50(ChainNode *x)

{ // Insert a node with data=50

 if (first) // Insert after x

 xlink = new ChainNode(50, x->link);

 else // Insert into empty list

 first = new ChainNode(50);

}

10 first 20 45 3
… …

x

50

17

National Tsing Hua University ® copyright OIA National Tsing Hua University

Chain Manipulation Operations

void Chain::Delete(ChainNode *x, ChainNode *y)

{ // x is the node to be deleted

 // y is the node preceding x

 if(x==first) first = first->link;

 else y->link = x->link;

 delete x;

}

10 first 20 45 3
… …

x

18

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

19

National Tsing Hua University ® copyright OIA National Tsing Hua University

Software Reuse

 There are urgent needs for reducing the cost of
developing software

 How to reduce the number of person-hours in
developing software without sacrificing quality?

  Software reuse

 When initially design and develop software, do so to
make it possible to reuse software in the future

 How to enhance chain class so that it becomes more
reusable?

– Use templates, design iterators, decide operations, ...

20

National Tsing Hua University ® copyright OIA National Tsing Hua University

Implementing Chain Class with Template

template <class T> class Chain; // Forward decl.

template <class T>

class ChainNode {

 friend class Chain <T>;

 private:

 T data;

 ChainNode<T>* link;

};
template <class T>

class Chain {

 public:

 // Constructor

 Chain(void) {first = last = NULL;}

 // More chain operations here…

 private:

 ChainNode<T> *first;

 ChainNode<T> *last;

};

Please refer to the
textbook for more
Chain operations

21

National Tsing Hua University ® copyright OIA National Tsing Hua University

Container Class

 A container class is a class that represents a data
structure that contains a number of data objects
– e.g. Chain class that contains ChainNodes objects

 How to visit elements in a container object?
Suppose we have a chain L of Chain<int>

– Output all integers in L

– Find the maximum, minimum or mean of all integers in L

– Obtain the sum or product of all integers in L

 All operations require to visit every element in the
chain L

22

National Tsing Hua University ® copyright OIA National Tsing Hua University

Issue: How to Identify Individuals?

 How many birds are there?

 How to visit every bird once?

23

National Tsing Hua University ® copyright OIA National Tsing Hua University

Issue: How to Identify Individuals?

 How many corals are there?

 How to visit every coral once?

24

It requires an
expert!

National Tsing Hua University ® copyright OIA National Tsing Hua University

 for (int i=0; i<n; i++) {

 int currentItem = a[i];

 // do something with currentItem;

 }

It Is Easy to Iterate through an Array

 It takes an “expert” to iterate through a linked list

25

for (ChainNode<int> *ptr=first; ptr!=0;

 ptr=ptr->link) {

 int currentItem = ptr->data;

 // do something with currentItem;

}

National Tsing Hua University ® copyright OIA National Tsing Hua University

Towards a Generic “Expert”

 Which version is easier to generalize to other data
types?

26

 for (int i=0; i<n; i++) {

 int currentItem = a[i];

 // do something with currentItem;

 }

 for (int* ip = a; ip != a+n; ip++) {

 int currentItem = *ip;

 // do something with currentItem;

 }

National Tsing Hua University ® copyright OIA National Tsing Hua University

Towards a Generic “Expert”

 We need some kind of pointer variables (objects)
that can point to and iterate through the elements in
a container class

– At least support deferencing (*ip), pre- or post- increment
(ip++), and equality (==, !=)

 Such a pointer object is called an iterator of that
container class

27

void main() {

 for (Iterator y = begin; y != end; y++)

 cout << *y << endl;

}

Data type of iterator

Container class should provide begin/end

National Tsing Hua University ® copyright OIA National Tsing Hua University

Iterators in C++ STL

 Iterators defined in C++ Standard Template Library
(STL)

– All iterators support “==”, “!=” and “*” operators

– Input iterator: read access, pre- and post- “++” operators

– Output iterator: write access, pre- /post- “++” operators

– Forward iterator: pre- and post- “++” operators

– Bidirectional iterator: pre- and post- “++” and “--”
operators

– Random access iterator: permit pointer jumps by arbitrary
amounts

28

National Tsing Hua University ® copyright OIA National Tsing Hua University

Forward Iterator for Chain

template <class T>

class Chain {

public:

 // Constructor

 Chain(void) {first = last = NULL;}

 // Iterator to Chain

 class ChainIterator{…};

 // Get the first element

 ChainIterator begin() {return ChainIterator(first);}

 // Get the end of the list

 ChainIterator end() {return ChainIterator(last);}

private:

 ChainNode<T> *first;

 ChainNode<T> *last;

};

29

National Tsing Hua University ® copyright OIA National Tsing Hua University

Usage of Forward Iterator for Chain

30

void main() {

 Chain<int> myChain;

 // do operations on myChain here…

 // print out every element in myChain

 Chain<int>::ChainIterator my_it;

 for (my_it = myChain.begin();

 my_it != myChain.end(); ++my_it)

 cout << *my_it << endl;

 // more operations

}
for (ChainNode<int> *ptr=first; ptr!=0;

 ptr=ptr->link) {

 cout << ptr->data << endl;

}

National Tsing Hua University ® copyright OIA National Tsing Hua University

Forward Iterator for Chain

Class ChainIterator{ // nested class within Chain

public:

 // Constructor

 ChainIterator(ChainNode<T>* startNode = 0)

 {current = startNode;}

 // Dereferencing operator

 T& operator*() const {return current->data;}

 T* operator->() const {return ¤t->data;}

 // Increment operator

 ChainIterator& operator++() // pre-”++”

 { current = current->link ; return *this; }

 ChainIterator operator++(int) { // post- “++”

 ChainIterator old = *this;

 current = current->link;

 return old;

 }

31

National Tsing Hua University ® copyright OIA National Tsing Hua University

Forward Iterator for Chain

 // Equality operators

 bool operator!=(const ChainIterator right) const

 { return current != right.current; }

 bool operator==(const ChainIterator right) const

 { return current == right.current;}

private:

 ChainNode<T>* current;

};

32

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

33

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists

A singly-linked circular list

 The link field of the last node points to the first node

 Check for the last node
– If (current->link == first)

 Can visit a node from any position

x1

first x2 xn
…

34

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists: Insert

 Suppose we want to insert a new node at the front
of the list

 Set link field of new node to first and set first to new
node

 Go to the last node and set the link field to new node

x1

first

x2 xn
… xnew

first

35

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists

 Instead of using a pointer to store the first node, it is
more convenient to store the last node of a circular
list

 We could always access the first node via
last->link

x1 last x2 xn
…

36

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists: Insert at Front

Template<class T>

void CircularList<T>::InsertFront(const T& e)

{

 ChainNode<T>* newNode = new ChainNode<T>(e);

 if (last) { // nonempty list

 newNode->link = last->link;

 last->link = newNode;

 }

 else { // empty list

 last = newNode;

 newNode->link = newNode;

 }

}

37

National Tsing Hua University ® copyright OIA National Tsing Hua University

Double Linked Lists

 Each node has TWO link fields

 Could move in TWO directions to visit nodes

a0

Node

Left link field Right link field

x1 x2 xn
…

first

0
0 Linear list

x1 x2 xn
…

first

Circular list

38

National Tsing Hua University ® copyright OIA National Tsing Hua University

Double Linked Lists: Delete

x1 x2 xn
…

first

0
0 x3

x

x->left->right = x->right; x->right->left = x->left;

x1 x2 xn
…

first

0
0 x3

delete x;

x1 xn
…

first

0
0 x3

39

National Tsing Hua University ® copyright OIA National Tsing Hua University

Double Linked Lists: Insert

x1 x2 xn
…

first

0
0 x3

xnew

x

p

p->left = x; p->right=x->right

x1 x2 xn
…

first

0
0 x3

xnew

x

p

x->right->left = p; x->right = p;

40

National Tsing Hua University ® copyright OIA National Tsing Hua University

Summary

 Linked lists need not store data in contiguous space

 Some C++ supports for software reuse: template,
iterator

 Circular lists and doubly linked lists

 Self-study topics

– Polynomial using linked lists

– Sparse matrix using linked lists

– Linked stacks and queues

41

