CS 2351 Data Structures

Linked Lists

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University

National Tsing Hua University

Outline
e

® Singly linked lists and chains (Sec. 4.1)
® C++ representation of chains (Sec. 4.2)
® The template class chain (Sec. 4.3)

— C++ lterator

® Circular lists and doubly linked lists (Sec. 4.4, 4.10)

ational Tsing Hua University

Review of C-type Arrays

-
® \When you declare an array in C or C++
int L[100];
you conceptually envision a contiguous space of 100
integers, with each element stored next to another

— Ex.:layout of L ={a,b,c,d,e} in an array representation
L lalblcidie | |
— Actually, this is how the array is usually stored in the

computer memory (each block above is a memory
location)

ational Tsing Hua University

Contiguous Space for Storing Arrays
O

® Pros:
— Adequate for special data structures like stack and queue
— Efficient to insert/delete from the ends
— Suitable for random accesses

— Good for the types of data structures discussed in the
previous two chapters, e.g. polynomial addition, sparse
matrix transpose, stack, queue, etc.

® Cons:

— Difficult to insert/delete elements at arbitrary locations

ational Tsing Hua University

Insertion/Deletion in an Array
O

® Suppose we have an array that stores 3-letter words
in their alphabetic order

| BAT | CAT ‘ EAT ‘ FAT | HAT‘ JAT | LAT |MAT

1

GAT

® Given a new word “GAT”, we would certainly like it
to be inserted between “FAT” and “HAT”

— This would require shifting either “BAT” ... “FAT” left or
“HAT” ... “MAT” right; both are expensive operations

tional Tsing Hua University

Any Alternative?

® Linked list representation

NN

Lolel fal 1 ldl blc]
.

— List elements are stored in memory in an arbitrary order

— Explicit information (called a link) is used to go from one
element to the next

ational Tsing Hua University

Linked List Representation

® Nodes are no longer contiguous in the memory
® Each node stores address or location of the next one
® Singly Linked List (SLL)

— Each node has exactly one pointer (link) field

first Node

ra‘o ﬁ a, _>‘ a, T

T Data field Link field |
v
Chain

National Tsing Hua University

SLL Operation: Insertion

® Steps to do when we want to insert "EAT” in
between “CAT” and “FAT”

— Create a new node “a@” and set data field to “EAT”
— Set the link field of “a@” to “FAT” node

— Set the link field of “CAT” node to “a”
first

\< BAT "—>{ CAT \ FAT "'—>| HAT —> ...
a——>{ EAT T

You do not need to move or shift any node!

National Tsing Hua University

SLL Operation: Deletion

® Steps to do when we want to delete "EAT” from the
list
— Locate the node “a” precedes the “EAT” node
— Set the link field of “a” to the node next to “EAT” node
— Delete the “EAT” node

first

\ﬂBAT —>{ CAT ﬁ}%—» FAT —>
4 A
a

You do not need to move or shift any node!

tional Tsing Hua University

Outline
e

® Singly linked lists and chains (Sec. 4.1)
® C++ representation of chains (Sec. 4.2)
® The template class chain (Sec. 4.3)

— C++ lterator

® Circular lists and doubly linked lists (Sec. 4.4, 4.10)

ational Tsing Hua University

Conceptual Design
O

® Defining a “ChainNode” class
— Data field
— Link field
® Designing a “Chain” class
— A container class of ChainNodes
— Support various operations on ChainNodes

ational Tsing Hua University

ChainNode and Chain Classes

class ChainNode {
friend class Chain;]
public: ?lass Chain
// Constructor public:
ChainNode (int // Create a chain with two nodes
value=0, ChainNode* void Create2();
next=NULL) // Insert a node with data=50
{ void Insert50 (ChainNode *x) ;
d?ta = value; // Delete a node
link = next; void Delete (ChainNode *x,
} ChainNode *y) ;
p?ivate: private:
int data; ChainNode *first;
ChainNode *1link; };
};

National Tsing Hua University

Nested ChainNode and Chain Classes

® Alternative specification
class Chain {
public:
// chain manipulation operations

private:
class ChainNode {
public:
int data;
ChainNode *link;
}s

ChainNode *first;

ational Tsing Hua University

Pointer Manipulation in C++
=

® Declare pointer of object
— NodeA *al=NULL, *a2=NULL;
® Allocate memory for object

— al = new NodeA;
— a2 = new NodeA[1l0];

® Delete object
— delete al;
— delete [] a2;

ational Tsing Hua University

Pointer Assighment

ChainNode *x, *y; X = y;
X —> 10 —> X 10 =—>
y —™> 20 —> 20 —>

ational Tsing Hua University

Chain Manipulation Operations
O

void Chain: :Create2 ()

{ // Create a chain of two nodes
// Create and set the fields of 2" node
ChainNode *second = new ChainNode (20,0) ;

// Create and set the fields of 15t node
first = new ChainNode (10, second) ;

first =>| 10 —> 20 0

ational Tsing Hua University

Chain Manipulation Operations

T
void Chain: :Insert50 (ChainNode *x)

{ // Insert a node with data=50

if (first) // Insert after x

x—2>1link = new ChainNode (50, x->1ink) ;
else // Insert into empty 1list

first = new ChainNode (50) ;

f/rst—# 10 —-ﬁ 20 —>- —>‘ 45 v

50

National Tsing Hua University

Chain Manipulation Operations

"""
void Chain: :Delete (ChainNode *x, ChainNode *y)

{ // x is the node to be deleted

// y is the node preceding x

1f (x==first) first = first->link;
else y->1link = x->link;

delete x;

National Tsing Hua University

Outline
e

® Singly linked lists and chains (Sec. 4.1)
® C++ representation of chains (Sec. 4.2)
® The template class chain (Sec. 4.3)

— C++ lterator

® Circular lists and doubly linked lists (Sec. 4.4, 4.10)

ational Tsing Hua University

Software Reuse
e

® There are urgent needs for reducing the cost of
developing software

® How to reduce the number of person-hours in
developing software without sacrificing quality?

- Software reuse

® \When initially design and develop software, do so to
make it possible to reuse software in the future

® How to enhance chain class so that it becomes more
reusable?

— Use templates, design iterators, decide operations, ...

ational Tsing Hua University

Implementing Chain Class with Template

"""
template <class T> class Chain; // Forward decl.
template <class T>
class ChainNode {
friend class Chain <T>;
private:
T data;
ChainNode<T>* link;

%emplate <class T>
class Chain {
public:
// Constructor
Chain (void) {first = last = NULL;}
// More chain operations here..

private:
ChainNode<T> *first; Please refer to the
ChainNode<T> *last: textbook for more
}i Chain operations

National Tsing Hua University

Container Class
T

® A container class is a class that represents a data
structure that contains a number of data objects
— e.g. Chain class that contains ChainNodes objects

® How to visit elements in a container object?
Suppose we have a chain L of Chain<int>
— Output all integersin L
— Find the maximum, minimum or mean of all integers in L

— Obtain the sum or product of all integersin L

® All operations require to visit every element in the
chain L

ational Tsing Hua University

Issue: How to Identify Individuals?

® How many birds are there?
® How to visit every bird once?

National Tsing Hua University

Issue: How to Identify Individuals?

® How many corals are there?

It requires an
expert!

® How to visit every coral once?

ational Tsing Hua University

It Is Easy to Iterate through an Array
O

for (int 1=0; i<n; i++) {

int currentItem = a[i];
// do something with currentItem;

}

® |t takes an “expert” to iterate through a linked list

for (ChainNode<int> *ptr=first; ptr!=0;
ptr=ptr->link) {

int currentItem = ptr->data;
// do something with currentItem;

ational Tsing Hua University

Towards a Generic “Expert”
O

® Which version is easier to generalize to other data
types?
for (int i1i=0; i<n; i++) {

int currentlItem = a[i];
// do something with currentItem;

for (int* ip = a; ip '= a+n; ip++) {

int currentItem = *ip;
// do something with currentItem;

ational Tsing Hua University

Towards a Generic “Expert”
-
® \We need some kind of pointer variables (objects)
that can point to and iterate through the elements in
a container class
— At least support deferencing (*ip), pre- or post- increment
(ip++), and equality (==, =)
® Such a pointer object is called an iterator of that
container class
void main () { /
for (Iterator y = begin; y !'= end; y++)
cout << *y << endl;

- Data type of iterator

} Container class should provide begin/end |

National Tsing Hua University

Iterators in C++ STL
e

® |terators defined in C++ Standard Template Library
(STL)
— All iterators support “==", “1=" and “*” operators
— Input iterator: read access, pre- and post- “++” operators
— Output iterator: write access, pre- /post- “++” operators
— Forward iterator: pre- and post- “++” operators

— Bidirectional iterator: pre- and post- “++” and “--”
operators

— Random access iterator: permit pointer jumps by arbitrary
amounts

ational Tsing Hua University

Forward Iterator for Chain

template <class T>
class Chain {
public:
// Constructor
Chain(void) {first = last = NULL;}
// Iterator to Chain
class Chainlterator({..};
// Get the first element
ChainIterator begin() {return ChainIterator (first) ;}
// Get the end of the list
ChainIterator end() {return ChainIterator (last);}
private:
ChainNode<T> *first;
ChainNode<T> *last;

National Tsing Hua University

Usage of Forward Iterator for Chain

"""
void main () {

Chain<int> myChain;
// do operations on myChain here..
// print out every element in myChain
Chain<int>: :ChainIterator my it;
for (my it = myChain.begin();
my it !'= myChain.end(); ++my it)
cout << *my it << endl;
// more operations

for (ChainNode<int> *ptr=first; ptr!=0;
ptr=ptr->link) {
cout << ptr->data << endl;

ational Tsing Hua University

Forward Iterator for Chain

T
Class ChainIterator{ // nested class within Chain

public:
// Constructor
ChainIterator (ChainNode<T>* startNode = 0)
{current = startNode;}
// Dereferencing operator
T& operator* () const {return current->data;}
T* operator->() const {return ¤t->data;}
// Increment operator
ChainIterator& operator++() // pre-"++"
{ current = current->link ; return *this; }
ChainIterator operator++ (int) { // post- “++”
ChainIterator old = *this;
current = current->link;
return old;

ational Tsing Hua University

Forward Iterator for Chain
T

// Equality operators
bool operator!=(const ChainIterator right) const

{ return current !'= right.current; }
bool operator==(const ChainIterator right) const
{ return current == right.current;}

private:

ChainNode<T>* current;

};

ational Tsing Hua University

Outline
e

® Singly linked lists and chains (Sec. 4.1)
® C++ representation of chains (Sec. 4.2)
® The template class chain (Sec. 4.3)

— C++ lterator

® Circular lists and doubly linked lists (Sec. 4.4, 4.10)

ational Tsing Hua University

Circular Lists

A singly-linked circular list
® The link field of the last node points to the first node

irst

® Check for the last node
— If (current->link == first)

® Can visit a node from any position

ational Tsing Hua University

Circular Lists: Insert
e

® Suppose we want to insert a new node at the front
of the list

® Set link field of new node to first and set first to new
node

® Go to the last node and set the link field to new node

first first
F Xnew

ational Tsing Hua University

Circular Lists
e

® Instead of using a pointer to store the first node, it is
more convenient to store the last node of a circular
list

® We could always access the first node via
last->link

I->{ X, —->{ X ->—>| X |<—Iast

ational Tsing Hua University

Circular Lists: Insert at Front
TR

Template<class T>
void CircularList<T>: :InsertFront(const T& e)

{
ChainNode<T>* newNode = new ChainNode<T> (e) ;

if (last) { // nonempty list
newNode->1link = last->1link;
last->1ink = newNode;

}
else { // empty list

last = newNode;
newNode->1ink = newNode;

ational Tsing Hua University

Double Linked Lists

® Each node has TWO link fields

® Could move in TWO directions to visit nodes
Node

Leftlinkfield<—" a, =2 Right link field

first |
Circularlist\Tl X1 Ljr = -<_>—_<>JFT Xn

ational Tsing Hua University

Double Linked Lists: Delete

first X
\TO) i%‘i X3 -?__ﬁr. X, 0

X->left->right = x->right; x->right->left = x->left;
first | ¥
—>
\TO X11<-L X2 —ﬂl 5 e TR X 0
delete x;

first
ﬁo Xl* \Il' X3 -<_>—_<)Jr X, O

tional Tsing Hua University

Double Linked Lists: Insert

first X
\TO X, —ﬁr X, -_(_)J_ X -2)__()-*. X, 0
P

| Xnew

p->left = x; p->right=x->right

" Yo 2 el T2 e
ho

x->right->left = p; = x->right = p;

new

ational Tsing Hua University

Summary
=

® Linked lists need not store data in contiguous space

® Some C++ supports for software reuse: template,
iterator

® Circular lists and doubly linked lists

® Self-study topics
— Polynomial using linked lists
— Sparse matrix using linked lists
— Linked stacks and queues

ational Tsing Hua University

