
National Tsing Hua University ® copyright OIA National Tsing Hua University

CS 2351 Data Structures

Linked Lists

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

2

National Tsing Hua University ® copyright OIA National Tsing Hua University

Review of C-type Arrays

 When you declare an array in C or C++
 int L[100];
you conceptually envision a contiguous space of 100
integers, with each element stored next to another

– Ex.: layout of L = {a,b,c,d,e} in an array representation

– Actually, this is how the array is usually stored in the
computer memory (each block above is a memory
location)

a b c d e L

3

National Tsing Hua University ® copyright OIA National Tsing Hua University

Contiguous Space for Storing Arrays

 Pros:

– Adequate for special data structures like stack and queue

– Efficient to insert/delete from the ends

– Suitable for random accesses

– Good for the types of data structures discussed in the
previous two chapters, e.g. polynomial addition, sparse
matrix transpose, stack, queue, etc.

 Cons:

– Difficult to insert/delete elements at arbitrary locations

4

National Tsing Hua University ® copyright OIA National Tsing Hua University

Insertion/Deletion in an Array

 Suppose we have an array that stores 3-letter words
in their alphabetic order

 Given a new word “GAT”, we would certainly like it
to be inserted between “FAT” and “HAT”

– This would require shifting either “BAT” … “FAT” left or
“HAT” … “MAT” right; both are expensive operations

BAT CAT EAT FAT HAT JAT LAT MAT

GAT

5

National Tsing Hua University ® copyright OIA National Tsing Hua University

Any Alternative?

 Linked list representation

– List elements are stored in memory in an arbitrary order

– Explicit information (called a link) is used to go from one
element to the next

6

e a d b c L

National Tsing Hua University ® copyright OIA National Tsing Hua University

 Nodes are no longer contiguous in the memory

 Each node stores address or location of the next one

 Singly Linked List (SLL)

– Each node has exactly one pointer (link) field

a1

Linked List Representation

a0 … a2

Data field

Node

Link field

Chain

7

first

National Tsing Hua University ® copyright OIA National Tsing Hua University

SLL Operation: Insertion

 Steps to do when we want to insert ”EAT” in
between “CAT” and “FAT”

– Create a new node “a” and set data field to “EAT”

– Set the link field of “a” to “FAT” node

– Set the link field of “CAT” node to “a”

BAT CAT FAT HAT …

first

EAT
a

You do not need to move or shift any node!

8

National Tsing Hua University ® copyright OIA National Tsing Hua University

SLL Operation: Deletion

 Steps to do when we want to delete ”EAT” from the
list

– Locate the node “a” precedes the “EAT” node

– Set the link field of “a” to the node next to “EAT” node

– Delete the “EAT” node

BAT CAT EAT FAT …

first

You do not need to move or shift any node!

a

9

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

10

National Tsing Hua University ® copyright OIA National Tsing Hua University

Conceptual Design

 Defining a “ChainNode” class

– Data field

– Link field

 Designing a “Chain” class

– A container class of ChainNodes

– Support various operations on ChainNodes

BAT CAT EAT FAT first

ChainNode

…

Chain

11

National Tsing Hua University ® copyright OIA National Tsing Hua University

ChainNode and Chain Classes

class ChainNode {

friend class Chain;

public:

 // Constructor

 ChainNode(int

 value=0, ChainNode*

 next=NULL)

 {

 data = value;

 link = next;

 }

private:

 int data;

 ChainNode *link;

};

class Chain
{
public:
 // Create a chain with two nodes
 void Create2();

 // Insert a node with data=50
 void Insert50(ChainNode *x);

 // Delete a node
 void Delete(ChainNode *x,
 ChainNode *y);

private:
 ChainNode *first;
};

12

National Tsing Hua University ® copyright OIA National Tsing Hua University

Nested ChainNode and Chain Classes

 Alternative specification

13

class Chain {

 public:

 // chain manipulation operations

 ...

 private:

 class ChainNode {

 public:

 int data;

 ChainNode *link;

 };

 ChainNode *first;

};

National Tsing Hua University ® copyright OIA National Tsing Hua University

Pointer Manipulation in C++

 Declare pointer of object
– NodeA *a1=NULL, *a2=NULL;

 Allocate memory for object
– a1 = new NodeA;

– a2 = new NodeA[10];

 Delete object
– delete a1;

– delete [] a2;

14

National Tsing Hua University ® copyright OIA National Tsing Hua University

Pointer Assignment

ChainNode *x, *y;

10 x

20 y

x = y;

10 x

20 y

*x = *y;

20 x

20 y

15

National Tsing Hua University ® copyright OIA National Tsing Hua University

Chain Manipulation Operations

void Chain::Create2()

{ // Create a chain of two nodes

 // Create and set the fields of 2nd node

 ChainNode *second = new ChainNode(20,0);

 // Create and set the fields of 1st node

 first = new ChainNode(10,second);

}

10 first 20 0

16

National Tsing Hua University ® copyright OIA National Tsing Hua University

Chain Manipulation Operations

void Chain::Insert50(ChainNode *x)

{ // Insert a node with data=50

 if (first) // Insert after x

 xlink = new ChainNode(50, x->link);

 else // Insert into empty list

 first = new ChainNode(50);

}

10 first 20 45 3
… …

x

50

17

National Tsing Hua University ® copyright OIA National Tsing Hua University

Chain Manipulation Operations

void Chain::Delete(ChainNode *x, ChainNode *y)

{ // x is the node to be deleted

 // y is the node preceding x

 if(x==first) first = first->link;

 else y->link = x->link;

 delete x;

}

10 first 20 45 3
… …

x

18

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

19

National Tsing Hua University ® copyright OIA National Tsing Hua University

Software Reuse

 There are urgent needs for reducing the cost of
developing software

 How to reduce the number of person-hours in
developing software without sacrificing quality?

 Software reuse

 When initially design and develop software, do so to
make it possible to reuse software in the future

 How to enhance chain class so that it becomes more
reusable?

– Use templates, design iterators, decide operations, ...

20

National Tsing Hua University ® copyright OIA National Tsing Hua University

Implementing Chain Class with Template

template <class T> class Chain; // Forward decl.

template <class T>

class ChainNode {

 friend class Chain <T>;

 private:

 T data;

 ChainNode<T>* link;

};
template <class T>

class Chain {

 public:

 // Constructor

 Chain(void) {first = last = NULL;}

 // More chain operations here…

 private:

 ChainNode<T> *first;

 ChainNode<T> *last;

};

Please refer to the
textbook for more
Chain operations

21

National Tsing Hua University ® copyright OIA National Tsing Hua University

Container Class

 A container class is a class that represents a data
structure that contains a number of data objects
– e.g. Chain class that contains ChainNodes objects

 How to visit elements in a container object?
Suppose we have a chain L of Chain<int>

– Output all integers in L

– Find the maximum, minimum or mean of all integers in L

– Obtain the sum or product of all integers in L

 All operations require to visit every element in the
chain L

22

National Tsing Hua University ® copyright OIA National Tsing Hua University

Issue: How to Identify Individuals?

 How many birds are there?

 How to visit every bird once?

23

National Tsing Hua University ® copyright OIA National Tsing Hua University

Issue: How to Identify Individuals?

 How many corals are there?

 How to visit every coral once?

24

It requires an
expert!

National Tsing Hua University ® copyright OIA National Tsing Hua University

 for (int i=0; i<n; i++) {

 int currentItem = a[i];

 // do something with currentItem;

 }

It Is Easy to Iterate through an Array

 It takes an “expert” to iterate through a linked list

25

for (ChainNode<int> *ptr=first; ptr!=0;

 ptr=ptr->link) {

 int currentItem = ptr->data;

 // do something with currentItem;

}

National Tsing Hua University ® copyright OIA National Tsing Hua University

Towards a Generic “Expert”

 Which version is easier to generalize to other data
types?

26

 for (int i=0; i<n; i++) {

 int currentItem = a[i];

 // do something with currentItem;

 }

 for (int* ip = a; ip != a+n; ip++) {

 int currentItem = *ip;

 // do something with currentItem;

 }

National Tsing Hua University ® copyright OIA National Tsing Hua University

Towards a Generic “Expert”

 We need some kind of pointer variables (objects)
that can point to and iterate through the elements in
a container class

– At least support deferencing (*ip), pre- or post- increment
(ip++), and equality (==, !=)

 Such a pointer object is called an iterator of that
container class

27

void main() {

 for (Iterator y = begin; y != end; y++)

 cout << *y << endl;

}

Data type of iterator

Container class should provide begin/end

National Tsing Hua University ® copyright OIA National Tsing Hua University

Iterators in C++ STL

 Iterators defined in C++ Standard Template Library
(STL)

– All iterators support “==”, “!=” and “*” operators

– Input iterator: read access, pre- and post- “++” operators

– Output iterator: write access, pre- /post- “++” operators

– Forward iterator: pre- and post- “++” operators

– Bidirectional iterator: pre- and post- “++” and “--”
operators

– Random access iterator: permit pointer jumps by arbitrary
amounts

28

National Tsing Hua University ® copyright OIA National Tsing Hua University

Forward Iterator for Chain

template <class T>

class Chain {

public:

 // Constructor

 Chain(void) {first = last = NULL;}

 // Iterator to Chain

 class ChainIterator{…};

 // Get the first element

 ChainIterator begin() {return ChainIterator(first);}

 // Get the end of the list

 ChainIterator end() {return ChainIterator(last);}

private:

 ChainNode<T> *first;

 ChainNode<T> *last;

};

29

National Tsing Hua University ® copyright OIA National Tsing Hua University

Usage of Forward Iterator for Chain

30

void main() {

 Chain<int> myChain;

 // do operations on myChain here…

 // print out every element in myChain

 Chain<int>::ChainIterator my_it;

 for (my_it = myChain.begin();

 my_it != myChain.end(); ++my_it)

 cout << *my_it << endl;

 // more operations

}
for (ChainNode<int> *ptr=first; ptr!=0;

 ptr=ptr->link) {

 cout << ptr->data << endl;

}

National Tsing Hua University ® copyright OIA National Tsing Hua University

Forward Iterator for Chain

Class ChainIterator{ // nested class within Chain

public:

 // Constructor

 ChainIterator(ChainNode<T>* startNode = 0)

 {current = startNode;}

 // Dereferencing operator

 T& operator*() const {return current->data;}

 T* operator->() const {return ¤t->data;}

 // Increment operator

 ChainIterator& operator++() // pre-”++”

 { current = current->link ; return *this; }

 ChainIterator operator++(int) { // post- “++”

 ChainIterator old = *this;

 current = current->link;

 return old;

 }

31

National Tsing Hua University ® copyright OIA National Tsing Hua University

Forward Iterator for Chain

 // Equality operators

 bool operator!=(const ChainIterator right) const

 { return current != right.current; }

 bool operator==(const ChainIterator right) const

 { return current == right.current;}

private:

 ChainNode<T>* current;

};

32

National Tsing Hua University ® copyright OIA National Tsing Hua University

Outline

 Singly linked lists and chains (Sec. 4.1)

 C++ representation of chains (Sec. 4.2)

 The template class chain (Sec. 4.3)

– C++ Iterator

 Circular lists and doubly linked lists (Sec. 4.4, 4.10)

33

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists

A singly-linked circular list

 The link field of the last node points to the first node

 Check for the last node
– If (current->link == first)

 Can visit a node from any position

x1

first x2 xn
…

34

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists: Insert

 Suppose we want to insert a new node at the front
of the list

 Set link field of new node to first and set first to new
node

 Go to the last node and set the link field to new node

x1

first

x2 xn
… xnew

first

35

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists

 Instead of using a pointer to store the first node, it is
more convenient to store the last node of a circular
list

 We could always access the first node via
last->link

x1 last x2 xn
…

36

National Tsing Hua University ® copyright OIA National Tsing Hua University

Circular Lists: Insert at Front

Template<class T>

void CircularList<T>::InsertFront(const T& e)

{

 ChainNode<T>* newNode = new ChainNode<T>(e);

 if (last) { // nonempty list

 newNode->link = last->link;

 last->link = newNode;

 }

 else { // empty list

 last = newNode;

 newNode->link = newNode;

 }

}

37

National Tsing Hua University ® copyright OIA National Tsing Hua University

Double Linked Lists

 Each node has TWO link fields

 Could move in TWO directions to visit nodes

a0

Node

Left link field Right link field

x1 x2 xn
…

first

0
0 Linear list

x1 x2 xn
…

first

Circular list

38

National Tsing Hua University ® copyright OIA National Tsing Hua University

Double Linked Lists: Delete

x1 x2 xn
…

first

0
0 x3

x

x->left->right = x->right; x->right->left = x->left;

x1 x2 xn
…

first

0
0 x3

delete x;

x1 xn
…

first

0
0 x3

39

National Tsing Hua University ® copyright OIA National Tsing Hua University

Double Linked Lists: Insert

x1 x2 xn
…

first

0
0 x3

xnew

x

p

p->left = x; p->right=x->right

x1 x2 xn
…

first

0
0 x3

xnew

x

p

x->right->left = p; x->right = p;

40

National Tsing Hua University ® copyright OIA National Tsing Hua University

Summary

 Linked lists need not store data in contiguous space

 Some C++ supports for software reuse: template,
iterator

 Circular lists and doubly linked lists

 Self-study topics

– Polynomial using linked lists

– Sparse matrix using linked lists

– Linked stacks and queues

41

