
National Tsing Hua University ® copyright OIANational Tsing Hua University

CS 2351 Data Structures

Stacks and Queues

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIANational Tsing Hua University 2

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 3

Many Things Are Packed in Bags

A bag of tools A bag of books

A bag of vegetables
A bag of gifts

National Tsing Hua University ® copyright OIANational Tsing Hua University 4

Characteristics of “a Bag of X”

 The bag contains objects of type X

 Objects can be added to or deleted from the bag

 The bag may contain multiple occurrences of the
same objects, e.g. oranges

 We do not care about the position of an object

 We do not care which object is removed when a
delete operation is performed, just taking out one

How to specify “a bag of X” in C++?

National Tsing Hua University ® copyright OIANational Tsing Hua University 5

Easy for a Bag of Integers

class Bag {

public:

Bag(int bagCapacity = 10); // Constructor

~Bag(); // Destructor

int Size() const; // Return number of elements

bool IsEmpty() const; // Check if bag is empty

int Element() const; // Return an element in the bag

void Push(const int); // Insert an integer into bag

void Pop() // Delete an integer from bag

private:

int *array; // Integer array to store data

int capacity; // Capacity of array

int top; // Position of top element

};

The func. does not
change bag object!

National Tsing Hua University ® copyright OIANational Tsing Hua University 6

A Bag of Integers and Its Implementation

6

2
6

11
13

[0] [1] [2] [3] [4] [5] [6] [7]

6 13 11 6 2

A bag of integers
Implementation of
a bag of integers

top

capacity

4

8

array

Element()
Push(20)
Pop()

National Tsing Hua University ® copyright OIANational Tsing Hua University 7

Implementation of a Bag of Integers

Bag::Bag(int bagCapacity):capacity(bagCapacity) {
if(capacity < 1) throw “Capacity must be > 0”;
array = new int[capacity]; top = -1;

}
Bag::~Bag(){ delete [] array; }
inline int Bag::Size() const { return top + 1; }
inline bool Bag::IsEmpty() const { return Size() == 0; }
inline int Bag::Element() const {
if(IsEmpty()) throw “Bag is empty”;
return array[0]; // Always return the first object

}
void Bag::Push(const int x) {
if(capacity==top+1) {ChangeSize1D(array,capacity,2*capacity);
capacity *= 2; } array[++top]=x;

}
void Bag::Pop() {
if(IsEmpty()) throw “Bag is empty, cannot delete”;
int deletePos = top/2; // Always delete middle object
copy(array+deletePos+1, array+top+1, array+deletePos);
top--;

}

Could use
different ways

National Tsing Hua University ® copyright OIANational Tsing Hua University 8

How about a Bag of Floats, Rectangles?

 It is awkward to repeat the same segment of code
just to replace int with float, Rectangle, …

 In C++, you can use templates

template <class T>

void SelectionSort(T *a, const int n) {

for (int i = 0; i < n; i++) {

int j = i;

// find smallest object in a[i] to a[n-1]

for (int k = i + 1; k < n; k++)

if (a[k] < a[j]) j = k;

swap(a[i], a[j]);

}

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 9

Instantiation of Templates

 The template function can be instantiated to the
type of the array argument that is supplied to it

– Operators in templates must be defined for data type T
 we cannot use this template for Rectangle class
unless we overload operator < for Rectangle

float farray[100];

int intarray[250];

.

.

SelectionSort(farray, 100);

SelectionSort(intarray, 250);

National Tsing Hua University ® copyright OIANational Tsing Hua University

Template for a Bag of X

template <class T>

class Bag {

public:

Bag(int bagCapacity = 10); // Constructor

~Bag(); // Destructor

int Size() const; // Return number of elements

bool IsEmpty() const; // Check if bag is empty

T& Element() const; // Return an element in bag

void Push(const T&); // Insert an element into bag

void Pop() // Delete an element from bag

private:

T *array; // Data array

int capacity; // Capacity of array

int top; // Position of top element

};

10

Made a constant reference to avoid
copy overhead when T is large

National Tsing Hua University ® copyright OIANational Tsing Hua University 11

Template Implementation for a Bag of X

template <class T>

Bag<T>::Bag(int bagCapacity):capacity(bagCapacity) {

if(capacity < 1) throw “Capacity must be > 0”;

array = new T[capacity]; top = -1;

}

template <class T>

void Bag<T>::Push(const T& x) {

if(capacity == top+1) {

ChangeSize1D(array,capacity,2*capacity);

capacity *= 2;} array[++top]=x;

}

template <class T>

void Bag<T>::Pop() {

if(IsEmpty()) throw “Bag is empty, cannot delete”;

int deletePos = top/2; // delete middle emelent

copy(array+deletePos+1, array+top+1, array+deletePos);

array[top--].~T();

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 12

Template Implementation for a Bag of X

template <class T>
void ChangeSize1D(T*& a, const int oldSize,

const int newSize)
{

if (newSize<0) throw “New length must be >=0”;
T* temp = new T[newSize];
int number = min(oldSize, newSize);
copy (a, a + number, temp);
delete [] a;
a = temp;

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 13

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 14

A Line of Things

 If we empty “a bag of things” and line them up, then
we have “a line of things”, c.f. ordered list (fixed
indices versus moving positions)

National Tsing Hua University ® copyright OIANational Tsing Hua University 15

We Encounter a Line of Things Everyday

National Tsing Hua University ® copyright OIANational Tsing Hua University 16

How to Define “a Line of X” in C++?

There are two types of lines:

 Stack: a line that enters and
exits at the same end

– Last-in-first-out (LIFO)

 Queue: a line that enters at
one end and exits at the other

– First-in-first-out (FIFO)

Top Push Pop

National Tsing Hua University ® copyright OIANational Tsing Hua University 17

Stack Operations

 Insert a new element into stack (push)

A
B
Atop

top

top

Insert A Insert B Insert C

empty

A B C

National Tsing Hua University ® copyright OIANational Tsing Hua University 18

Stack Operations

 Delete an element from stack (pop)

B
A

C
B
A top

top

top

A

DeleteDelete

National Tsing Hua University ® copyright OIANational Tsing Hua University 19

ADT for a Stack of Things

template <class T>

class Stack { // A finite ordered list

public:

// Constructor

Stack(int stackCapacity = 10);

// Check if the stack is empty

bool IsEmpty() const;

// Return the top element

T& Top() const;

// Insert a new element at top

void Push(const T& item);

// Delete one element from top

void Pop();

private:

T* stack;

int top;

int capacity;

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 20

Stack Operations: Push & Pop

template <class T>

void Stack <T>::Push(const T& x)

{ // Add x to stack

if(top == capacity – 1) {

ChangeSize1D(stack, capacity, 2*capacity);

capacity *= 2;

}

stack[++top] = x;

}

template <class T>

void Stack <T>::Pop()

{ // Delete top element from stack

if(IsEmpty()) throw “Stack empty, cannot delete”;

stack[top--].~T(); // Delete the element

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 21

Stack Application

 System stack for function
recursion

– Used at run time to process
recursive function calls

(function calls are LIFO)

– For each invocation, store
function parameters,
local variables, and return
address of the caller function

main PROC

 .

 .

 call Sub1

 exit

main ENDP

Sub1 PROC

 .

 .

 call Sub2

 ret

Sub1 ENDP

Sub2 PROC

 .

 .

 call Sub3

 ret

Sub2 ENDP

Sub3 PROC

 .

 .

 ret

Sub3 ENDP

By the time
Sub3 is called,
stack contains
all 3 return
addresses:

Return address
to Sub2
Return address
to Sub1
Return address
to main

System stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 22

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 23

Queue Operations

 Insert a new element into queue

– f: front (where old objects are deleted)

– r: rear (where next new object
is to be inserted)

Insert A

f r

Insert B

f r

Insert C

f rf r

A A BA B C

f

r

National Tsing Hua University ® copyright OIANational Tsing Hua University 24

Queue Operations

 Delete an old element from queue

– f: front (where old objects are deleted)

– r: rear (where next new object
is to be inserted)

Delete

f r

Delete

f rf r

A B C B C C

National Tsing Hua University ® copyright OIANational Tsing Hua University 25

Problem

 What happen if (rear == capacity-1) ?

 Add more space?

 Shift left?

f r

f rwasted!

f r

Complex code, extra time

… E F G H I

… E F G H I

E F G H I

National Tsing Hua University ® copyright OIANational Tsing Hua University 26

Circular Queue

B

C D

B

C D

A

B

C

A

front front

front

rearrearrear

Initial Insertion Deletion

rear = (rear+1) % capacity;

front: 1 position ahead of 1st object
rear: last object

National Tsing Hua University ® copyright OIANational Tsing Hua University 27

Circular Queue

 When is the queue empty?

– rear == front?

front

rear

B

C D

A

front

rear

E

F

GH

Queue is empty Queue is full

Allocate additional space before the queue is full

National Tsing Hua University ® copyright OIANational Tsing Hua University 28

ADT of Queue

template <class T>
class Queue { // A finite ordered list
public:

Queue(int queueCapacity = 10);
// Check if the stack is empty
bool IsEmpty() const;
// Return the front element
T& Front() const;
// Return the rear element
T& Rear() const;
// Insert a new element at rear
void Push(const T& item);
// Delete one element from front
void Pop();

private:
T* queue;
int front, rear;
int capacity;

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 29

Queue Operations

template <class T>

void Queue <T>::IsEmpty() {return front==rear;}

template <class T>

T& Queue <T>::Front() {

if (IsEmpty()) throw “Queue is empty!”;

return queue[(front+1)%capacity];

}

template <class T>

T& Queue <T>::Rear() {

if (IsEmpty()) throw “Queue is empty!”;

return queue[rear];

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 30

Queue Operations: Push & Pop

template <class T>

void Queue <T>::Push(const T& x)

{ // Add x at rear of queue

if((rear+1)%capacity == front) {

// queue is going to full, double the capacity!

}

rear = (rear+1)%capacity;

queue[rear] = x;

}

template <class T>

void Queue <T>::Pop()

{ // Delete front element from queue

if(IsEmpty()) throw “Queue empty, cannot delete”;

front = (front+1)%capacity;

queue[front].~T(); // Delete the element

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 31

Doubling Queue Capacity

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]
C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B
front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B
front = 13, rear = 4

Scenario 1: After shifting right segment

National Tsing Hua University ® copyright OIANational Tsing Hua University 32

Doubling Queue Capacity

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]
C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B
front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

A B C D G F G
front = 15, rear = 6

Scenario 2: Alternative configuration

National Tsing Hua University ® copyright OIANational Tsing Hua University 33

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 34

Bag vs Stack

 Is a stack a bag?

 Is a bag a stack?

 ?

National Tsing Hua University ® copyright OIANational Tsing Hua University 35

C++ Bag vs C++ Stack

template <class T>

class Bag

{

public:

Bag(int bagCapacity=10);

~Bag();

int Size() const;

bool IsEmpty() const;

T& Element() const;

void Push(const T&);

void Pop();

};

template <class T>

class Stack

{

public:

Stack(int stackCapacity=10);

~Stack();

bool IsEmpty() const;

T& Top() const;

void Push(const T& item);

void Pop();

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 36

Subtype and Inheritance

 We say that Stack is derived/inherited from Bag

– Bag is the base class

– Stack is the derived class

– Stack is a subtype of Bag

 All member functions in Stack are same as those in
Bag except Top() and Pop()

National Tsing Hua University ® copyright OIANational Tsing Hua University 37

Subtype Definition in C++

Class Bag {

public:

Bag(int bagCapacity=10);

virtual ~Bag();

virtual int Size() const;

virtual bool IsEmpty() const;

virtual int Element() const;

virtual void Push(const int);

virtual void Pop();

protected:

int *array;

int capacity;

int top;

};

class Stack: public Bag {

public:

Stack(int stackCapacity=10);

~Stack();

int Top() const;

void Pop();

};

Implement operations
different from or not in
Bag class

National Tsing Hua University ® copyright OIANational Tsing Hua University 38

Notes on Inheritance

 The derived class Stack inherits all the members
(data and functions) of the base class Bag

– Only the non-private members of the base class are
accessible to the derived class

– Inherited public and protected members of the base class
have the same level of access in derived class

 The member functions inherited by the derived class
have the same prototype  interface reuse

– The implementation can be reused, but can also be
overridden, e.g. Pop()

– Constructor and destructor cannot be inherited

National Tsing Hua University ® copyright OIANational Tsing Hua University 39

Bag vs Queue

 Queue can also be represented as a derived class of
Bag, but the implementations of Bag and Queue
are less similar

template <class T>

class Bag {

public:

Bag(int bagCapacity = 10);

~Bag();

int Size() const;

bool IsEmpty() const;

T& Element() const;

void Push(const T&);

void Pop()

};

template <class T>
class Queue
{
public:

Queue(int queueCapacity=10);
~Queue();

bool IsEmpty() const;
T& Rear() const;
T& Front() const;

void Push(const T& item);
void Pop();

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 40

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

– An example of using stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 41

An Arithmetic Expression

 Operators: +, -, *, /, …

 Operands: A, B, C, D, E, F

National Tsing Hua University ® copyright OIANational Tsing Hua University 42

 For X = A/B – C + D*E – A*C

 If A=4, B=C=2, D=E=3

 X = ((4/2)-2)+(3*3)+(4*2)=1

 For X = (A/(B – C + D))*(E – A)*C

 If A=4, B=C=2, D=E=3

 X = (4/(2-2+3))*(3-4)*2 = -2.6666666

The order of applying the operations are important!

Expression Evaluation

National Tsing Hua University ® copyright OIANational Tsing Hua University 43

Evaluation Rules

 Operators have priority

 Operator with higher priority is evaluated first

 Operators of equal priority are evaluated from left
to right  left associative
– a/b*c: For b, which operator is evaluated first, / or *?

 Unary operators are evaluated from right to left
– a=b=c=2

National Tsing Hua University ® copyright OIANational Tsing Hua University 44

Priority of Operators in C++

Priority Operators

1 Minus, !

2 *, /, %

3 +, -

4 <, <=, >=, >

5 = =, !=

6 &&

7 ||

National Tsing Hua University ® copyright OIANational Tsing Hua University 45

Infix and Postfix Notation

 Infix notation

– Operator comes in between the operands, e.g. A+B*C

– Hard to generate machine code

 Postfix notation

– Each operator appears after its operands, e.g. ABC*+

– No need for parentheses

– Operator priority is irrelevant and given in the expression

– Efficient evaluation using stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 46

Infix to Postfix Evaluation

 Phase 1: Infix to postfix conversion
6/2-3+4*2  6 2 / 3 – 4 2 * +

 Phase 2: Postfix expression evaluation
6 2 / 3 – 4 2 * +  8

– Making a left to right scan

– Putting operands into stack

– On encountering an operator, popping operands and
evaluating

– Pushing the result back into stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 47

Example of Postfix Expression Evaluation

 Infix: A+B – C  Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operand
Stack

Operation

See operand A, put it
into stack

A B + C –

4

National Tsing Hua University ® copyright OIANational Tsing Hua University 48

Example of Postfix Expression Evaluation

 Infix: A+B – C  Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operation

See operand B, put it
into stack

A B + C –

4

3

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 49

Example of Postfix Expression Evaluation

 Infix: A+B – C  Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operation

See binary operator ‘+’
1. Pop two elements from stack
2. Perform evaluation (3+4)
3. Push result into stack (7)

A B + C –

74

3

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 50

Example of Postfix Expression Evaluation

 Infix: A+B – C  Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

A B + C –

7

Operation

See operand C, put it
into stack

2

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 51

Example of Postfix Expression Evaluation

 Infix: A+B – C  Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operation

See binary operator ‘-’
1. Pop two elements from stack
2. Perform evaluation (7-2)
3. Push result into stack (5)

A B + C –

7
2
5

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 52

Evaluation of Postfix Expressions

void Eval(Expression e)

{ // Assume the last token of e is ‘#’

// NextToken() gets next token in

Stack<Token> stack; // initialize stack

for (Token x=NextToken(e); x != ‘#’;

x=NextToken(e)){

if(x is an operand) stack.Push(x);

else{

// Pop correct # of operands from stack

// Perform the operation x

// Push the result back to stack

}

}

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 53

Machine Code Generation for Expressions

 Phase 1: Infix to postfix conversion
a/b – c + d*b  a b / c – d b * +

 Phase 2: Postfix expression evaluation

a b / c – d b * +
load r1,M[a]

load r2,M[b]

div r3,r1,r2

load r4,M[c]

sub r5,r3,r4

load r6,M[d]

mult r7,r2,r6

add r8,r5,r7

National Tsing Hua University ® copyright OIANational Tsing Hua University 54

Infix to Postfix Conversion

 Fully parenthesize algorithm:

– Fully parenthesize the expression

– Move all operators so that they replace the corresponding
right parentheses

– Delete all parentheses

((((A / B) – C) + (D * E)) – (A * C))

A B / C – D E * + A C * –

National Tsing Hua University ® copyright OIANational Tsing Hua University 55

Infix to Postfix

 Smarter algorithm

– Scan the expression only once

– Utilize stack

 The order of operands dose not change between
infix and postfix

– Output every visited operand directly

 Use stack to store visited operators and pop them
out at the right moment

– When the priority of the operator on top of stack is higher
or equal to that of the incoming operator (left-to-right
associativity)

National Tsing Hua University ® copyright OIANational Tsing Hua University 56

Example 1

 Infix: A + B * C

Next token Stack Output

None Empty None
A Empty A
+ + A

B + AB
* +* AB
C +* ABC

+ ABC*
Empty ABC*+

National Tsing Hua University ® copyright OIANational Tsing Hua University 57

Example 2

 Infix: A * (B + C) * D
Next token Stack Output

None Empty None
A Empty A
* * A

(*(A
B *(AB
+ *(+ AB
C *(+ ABC
) * ABC+
* * ABC+*

D * ABC+*D
Empty ABC+*D*

National Tsing Hua University ® copyright OIANational Tsing Hua University 58

Notes

 Expression with ()

– ‘(‘ has the highest priority, always push to stack

– Once pushed, ‘(’ get lowest priority

– Pop the operators until you see the matching ‘)’

National Tsing Hua University ® copyright OIANational Tsing Hua University

Try It Out …

 Find the postfix representation of the following infix
expression:

a * (b + c) – a * d * e

 Suppose a=1, b=2, c=3, d=4, e=5 and we use postfix
to evaluate the expression. Draw the content of the
stack when the second * is encountered

59

National Tsing Hua University ® copyright OIANational Tsing Hua University 60

Summary

 Template, subtype, inheritance in C++

 Stacks are last-in-first-out

 Queues are first-in-first-out

– Circular queues

 Evaluation of expressions as an example of using
stacks

– Infix to postfix conversion

– Evaluation of postfix expressions

