
National Tsing Hua University ® copyright OIANational Tsing Hua University

CS 2351 Data Structures

Stacks and Queues

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIANational Tsing Hua University 2

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 3

Many Things Are Packed in Bags

A bag of tools A bag of books

A bag of vegetables
A bag of gifts

National Tsing Hua University ® copyright OIANational Tsing Hua University 4

Characteristics of “a Bag of X”

 The bag contains objects of type X

 Objects can be added to or deleted from the bag

 The bag may contain multiple occurrences of the
same objects, e.g. oranges

 We do not care about the position of an object

 We do not care which object is removed when a
delete operation is performed, just taking out one

How to specify “a bag of X” in C++?

National Tsing Hua University ® copyright OIANational Tsing Hua University 5

Easy for a Bag of Integers

class Bag {

public:

Bag(int bagCapacity = 10); // Constructor

~Bag(); // Destructor

int Size() const; // Return number of elements

bool IsEmpty() const; // Check if bag is empty

int Element() const; // Return an element in the bag

void Push(const int); // Insert an integer into bag

void Pop() // Delete an integer from bag

private:

int *array; // Integer array to store data

int capacity; // Capacity of array

int top; // Position of top element

};

The func. does not
change bag object!

National Tsing Hua University ® copyright OIANational Tsing Hua University 6

A Bag of Integers and Its Implementation

6

2
6

11
13

[0] [1] [2] [3] [4] [5] [6] [7]

6 13 11 6 2

A bag of integers
Implementation of
a bag of integers

top

capacity

4

8

array

Element()
Push(20)
Pop()

National Tsing Hua University ® copyright OIANational Tsing Hua University 7

Implementation of a Bag of Integers

Bag::Bag(int bagCapacity):capacity(bagCapacity) {
if(capacity < 1) throw “Capacity must be > 0”;
array = new int[capacity]; top = -1;

}
Bag::~Bag(){ delete [] array; }
inline int Bag::Size() const { return top + 1; }
inline bool Bag::IsEmpty() const { return Size() == 0; }
inline int Bag::Element() const {
if(IsEmpty()) throw “Bag is empty”;
return array[0]; // Always return the first object

}
void Bag::Push(const int x) {
if(capacity==top+1) {ChangeSize1D(array,capacity,2*capacity);
capacity *= 2; } array[++top]=x;

}
void Bag::Pop() {
if(IsEmpty()) throw “Bag is empty, cannot delete”;
int deletePos = top/2; // Always delete middle object
copy(array+deletePos+1, array+top+1, array+deletePos);
top--;

}

Could use
different ways

National Tsing Hua University ® copyright OIANational Tsing Hua University 8

How about a Bag of Floats, Rectangles?

 It is awkward to repeat the same segment of code
just to replace int with float, Rectangle, …

 In C++, you can use templates

template <class T>

void SelectionSort(T *a, const int n) {

for (int i = 0; i < n; i++) {

int j = i;

// find smallest object in a[i] to a[n-1]

for (int k = i + 1; k < n; k++)

if (a[k] < a[j]) j = k;

swap(a[i], a[j]);

}

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 9

Instantiation of Templates

 The template function can be instantiated to the
type of the array argument that is supplied to it

– Operators in templates must be defined for data type T
 we cannot use this template for Rectangle class
unless we overload operator < for Rectangle

float farray[100];

int intarray[250];

.

.

SelectionSort(farray, 100);

SelectionSort(intarray, 250);

National Tsing Hua University ® copyright OIANational Tsing Hua University

Template for a Bag of X

template <class T>

class Bag {

public:

Bag(int bagCapacity = 10); // Constructor

~Bag(); // Destructor

int Size() const; // Return number of elements

bool IsEmpty() const; // Check if bag is empty

T& Element() const; // Return an element in bag

void Push(const T&); // Insert an element into bag

void Pop() // Delete an element from bag

private:

T *array; // Data array

int capacity; // Capacity of array

int top; // Position of top element

};

10

Made a constant reference to avoid
copy overhead when T is large

National Tsing Hua University ® copyright OIANational Tsing Hua University 11

Template Implementation for a Bag of X

template <class T>

Bag<T>::Bag(int bagCapacity):capacity(bagCapacity) {

if(capacity < 1) throw “Capacity must be > 0”;

array = new T[capacity]; top = -1;

}

template <class T>

void Bag<T>::Push(const T& x) {

if(capacity == top+1) {

ChangeSize1D(array,capacity,2*capacity);

capacity *= 2;} array[++top]=x;

}

template <class T>

void Bag<T>::Pop() {

if(IsEmpty()) throw “Bag is empty, cannot delete”;

int deletePos = top/2; // delete middle emelent

copy(array+deletePos+1, array+top+1, array+deletePos);

array[top--].~T();

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 12

Template Implementation for a Bag of X

template <class T>
void ChangeSize1D(T*& a, const int oldSize,

const int newSize)
{

if (newSize<0) throw “New length must be >=0”;
T* temp = new T[newSize];
int number = min(oldSize, newSize);
copy (a, a + number, temp);
delete [] a;
a = temp;

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 13

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 14

A Line of Things

 If we empty “a bag of things” and line them up, then
we have “a line of things”, c.f. ordered list (fixed
indices versus moving positions)

National Tsing Hua University ® copyright OIANational Tsing Hua University 15

We Encounter a Line of Things Everyday

National Tsing Hua University ® copyright OIANational Tsing Hua University 16

How to Define “a Line of X” in C++?

There are two types of lines:

 Stack: a line that enters and
exits at the same end

– Last-in-first-out (LIFO)

 Queue: a line that enters at
one end and exits at the other

– First-in-first-out (FIFO)

Top Push Pop

National Tsing Hua University ® copyright OIANational Tsing Hua University 17

Stack Operations

 Insert a new element into stack (push)

A
B
Atop

top

top

Insert A Insert B Insert C

empty

A B C

National Tsing Hua University ® copyright OIANational Tsing Hua University 18

Stack Operations

 Delete an element from stack (pop)

B
A

C
B
A top

top

top

A

DeleteDelete

National Tsing Hua University ® copyright OIANational Tsing Hua University 19

ADT for a Stack of Things

template <class T>

class Stack { // A finite ordered list

public:

// Constructor

Stack(int stackCapacity = 10);

// Check if the stack is empty

bool IsEmpty() const;

// Return the top element

T& Top() const;

// Insert a new element at top

void Push(const T& item);

// Delete one element from top

void Pop();

private:

T* stack;

int top;

int capacity;

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 20

Stack Operations: Push & Pop

template <class T>

void Stack <T>::Push(const T& x)

{ // Add x to stack

if(top == capacity – 1) {

ChangeSize1D(stack, capacity, 2*capacity);

capacity *= 2;

}

stack[++top] = x;

}

template <class T>

void Stack <T>::Pop()

{ // Delete top element from stack

if(IsEmpty()) throw “Stack empty, cannot delete”;

stack[top--].~T(); // Delete the element

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 21

Stack Application

 System stack for function
recursion

– Used at run time to process
recursive function calls

(function calls are LIFO)

– For each invocation, store
function parameters,
local variables, and return
address of the caller function

main PROC

 .

 .

 call Sub1

 exit

main ENDP

Sub1 PROC

 .

 .

 call Sub2

 ret

Sub1 ENDP

Sub2 PROC

 .

 .

 call Sub3

 ret

Sub2 ENDP

Sub3 PROC

 .

 .

 ret

Sub3 ENDP

By the time
Sub3 is called,
stack contains
all 3 return
addresses:

Return address
to Sub2
Return address
to Sub1
Return address
to main

System stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 22

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 23

Queue Operations

 Insert a new element into queue

– f: front (where old objects are deleted)

– r: rear (where next new object
is to be inserted)

Insert A

f r

Insert B

f r

Insert C

f rf r

A A BA B C

f

r

National Tsing Hua University ® copyright OIANational Tsing Hua University 24

Queue Operations

 Delete an old element from queue

– f: front (where old objects are deleted)

– r: rear (where next new object
is to be inserted)

Delete

f r

Delete

f rf r

A B C B C C

National Tsing Hua University ® copyright OIANational Tsing Hua University 25

Problem

 What happen if (rear == capacity-1) ?

 Add more space?

 Shift left?

f r

f rwasted!

f r

Complex code, extra time

… E F G H I

… E F G H I

E F G H I

National Tsing Hua University ® copyright OIANational Tsing Hua University 26

Circular Queue

B

C D

B

C D

A

B

C

A

front front

front

rearrearrear

Initial Insertion Deletion

rear = (rear+1) % capacity;

front: 1 position ahead of 1st object
rear: last object

National Tsing Hua University ® copyright OIANational Tsing Hua University 27

Circular Queue

 When is the queue empty?

– rear == front?

front

rear

B

C D

A

front

rear

E

F

GH

Queue is empty Queue is full

Allocate additional space before the queue is full

National Tsing Hua University ® copyright OIANational Tsing Hua University 28

ADT of Queue

template <class T>
class Queue { // A finite ordered list
public:

Queue(int queueCapacity = 10);
// Check if the stack is empty
bool IsEmpty() const;
// Return the front element
T& Front() const;
// Return the rear element
T& Rear() const;
// Insert a new element at rear
void Push(const T& item);
// Delete one element from front
void Pop();

private:
T* queue;
int front, rear;
int capacity;

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 29

Queue Operations

template <class T>

void Queue <T>::IsEmpty() {return front==rear;}

template <class T>

T& Queue <T>::Front() {

if (IsEmpty()) throw “Queue is empty!”;

return queue[(front+1)%capacity];

}

template <class T>

T& Queue <T>::Rear() {

if (IsEmpty()) throw “Queue is empty!”;

return queue[rear];

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 30

Queue Operations: Push & Pop

template <class T>

void Queue <T>::Push(const T& x)

{ // Add x at rear of queue

if((rear+1)%capacity == front) {

// queue is going to full, double the capacity!

}

rear = (rear+1)%capacity;

queue[rear] = x;

}

template <class T>

void Queue <T>::Pop()

{ // Delete front element from queue

if(IsEmpty()) throw “Queue empty, cannot delete”;

front = (front+1)%capacity;

queue[front].~T(); // Delete the element

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 31

Doubling Queue Capacity

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]
C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B
front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B
front = 13, rear = 4

Scenario 1: After shifting right segment

National Tsing Hua University ® copyright OIANational Tsing Hua University 32

Doubling Queue Capacity

B

C D

A

front = 5
rear = 4

E

F

G

Full circular queue

queue [0] [1] [2] [3] [4] [5] [6] [7]
C D E F G A B

front = 5, rear = 4

Expanded full circular queue

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

C D E F G A B
front = 5, rear = 4

Doubling the array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

A B C D G F G
front = 15, rear = 6

Scenario 2: Alternative configuration

National Tsing Hua University ® copyright OIANational Tsing Hua University 33

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

National Tsing Hua University ® copyright OIANational Tsing Hua University 34

Bag vs Stack

 Is a stack a bag?

 Is a bag a stack?

 ?

National Tsing Hua University ® copyright OIANational Tsing Hua University 35

C++ Bag vs C++ Stack

template <class T>

class Bag

{

public:

Bag(int bagCapacity=10);

~Bag();

int Size() const;

bool IsEmpty() const;

T& Element() const;

void Push(const T&);

void Pop();

};

template <class T>

class Stack

{

public:

Stack(int stackCapacity=10);

~Stack();

bool IsEmpty() const;

T& Top() const;

void Push(const T& item);

void Pop();

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 36

Subtype and Inheritance

 We say that Stack is derived/inherited from Bag

– Bag is the base class

– Stack is the derived class

– Stack is a subtype of Bag

 All member functions in Stack are same as those in
Bag except Top() and Pop()

National Tsing Hua University ® copyright OIANational Tsing Hua University 37

Subtype Definition in C++

Class Bag {

public:

Bag(int bagCapacity=10);

virtual ~Bag();

virtual int Size() const;

virtual bool IsEmpty() const;

virtual int Element() const;

virtual void Push(const int);

virtual void Pop();

protected:

int *array;

int capacity;

int top;

};

class Stack: public Bag {

public:

Stack(int stackCapacity=10);

~Stack();

int Top() const;

void Pop();

};

Implement operations
different from or not in
Bag class

National Tsing Hua University ® copyright OIANational Tsing Hua University 38

Notes on Inheritance

 The derived class Stack inherits all the members
(data and functions) of the base class Bag

– Only the non-private members of the base class are
accessible to the derived class

– Inherited public and protected members of the base class
have the same level of access in derived class

 The member functions inherited by the derived class
have the same prototype interface reuse

– The implementation can be reused, but can also be
overridden, e.g. Pop()

– Constructor and destructor cannot be inherited

National Tsing Hua University ® copyright OIANational Tsing Hua University 39

Bag vs Queue

 Queue can also be represented as a derived class of
Bag, but the implementations of Bag and Queue
are less similar

template <class T>

class Bag {

public:

Bag(int bagCapacity = 10);

~Bag();

int Size() const;

bool IsEmpty() const;

T& Element() const;

void Push(const T&);

void Pop()

};

template <class T>
class Queue
{
public:

Queue(int queueCapacity=10);
~Queue();

bool IsEmpty() const;
T& Rear() const;
T& Front() const;

void Push(const T& item);
void Pop();

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 40

Outline

 A bag of things and templates in C++

 Stacks

 Queues

 Subtype and inheritance

 Evaluation of expressions

– An example of using stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 41

An Arithmetic Expression

 Operators: +, -, *, /, …

 Operands: A, B, C, D, E, F

National Tsing Hua University ® copyright OIANational Tsing Hua University 42

 For X = A/B – C + D*E – A*C

 If A=4, B=C=2, D=E=3

 X = ((4/2)-2)+(3*3)+(4*2)=1

 For X = (A/(B – C + D))*(E – A)*C

 If A=4, B=C=2, D=E=3

 X = (4/(2-2+3))*(3-4)*2 = -2.6666666

The order of applying the operations are important!

Expression Evaluation

National Tsing Hua University ® copyright OIANational Tsing Hua University 43

Evaluation Rules

 Operators have priority

 Operator with higher priority is evaluated first

 Operators of equal priority are evaluated from left
to right left associative
– a/b*c: For b, which operator is evaluated first, / or *?

 Unary operators are evaluated from right to left
– a=b=c=2

National Tsing Hua University ® copyright OIANational Tsing Hua University 44

Priority of Operators in C++

Priority Operators

1 Minus, !

2 *, /, %

3 +, -

4 <, <=, >=, >

5 = =, !=

6 &&

7 ||

National Tsing Hua University ® copyright OIANational Tsing Hua University 45

Infix and Postfix Notation

 Infix notation

– Operator comes in between the operands, e.g. A+B*C

– Hard to generate machine code

 Postfix notation

– Each operator appears after its operands, e.g. ABC*+

– No need for parentheses

– Operator priority is irrelevant and given in the expression

– Efficient evaluation using stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 46

Infix to Postfix Evaluation

 Phase 1: Infix to postfix conversion
6/2-3+4*2 6 2 / 3 – 4 2 * +

 Phase 2: Postfix expression evaluation
6 2 / 3 – 4 2 * + 8

– Making a left to right scan

– Putting operands into stack

– On encountering an operator, popping operands and
evaluating

– Pushing the result back into stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 47

Example of Postfix Expression Evaluation

 Infix: A+B – C Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operand
Stack

Operation

See operand A, put it
into stack

A B + C –

4

National Tsing Hua University ® copyright OIANational Tsing Hua University 48

Example of Postfix Expression Evaluation

 Infix: A+B – C Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operation

See operand B, put it
into stack

A B + C –

4

3

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 49

Example of Postfix Expression Evaluation

 Infix: A+B – C Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operation

See binary operator ‘+’
1. Pop two elements from stack
2. Perform evaluation (3+4)
3. Push result into stack (7)

A B + C –

74

3

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 50

Example of Postfix Expression Evaluation

 Infix: A+B – C Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

A B + C –

7

Operation

See operand C, put it
into stack

2

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 51

Example of Postfix Expression Evaluation

 Infix: A+B – C Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

Operation

See binary operator ‘-’
1. Pop two elements from stack
2. Perform evaluation (7-2)
3. Push result into stack (5)

A B + C –

7
2
5

Operand
Stack

National Tsing Hua University ® copyright OIANational Tsing Hua University 52

Evaluation of Postfix Expressions

void Eval(Expression e)

{ // Assume the last token of e is ‘#’

// NextToken() gets next token in

Stack<Token> stack; // initialize stack

for (Token x=NextToken(e); x != ‘#’;

x=NextToken(e)){

if(x is an operand) stack.Push(x);

else{

// Pop correct # of operands from stack

// Perform the operation x

// Push the result back to stack

}

}

};

National Tsing Hua University ® copyright OIANational Tsing Hua University 53

Machine Code Generation for Expressions

 Phase 1: Infix to postfix conversion
a/b – c + d*b a b / c – d b * +

 Phase 2: Postfix expression evaluation

a b / c – d b * +
load r1,M[a]

load r2,M[b]

div r3,r1,r2

load r4,M[c]

sub r5,r3,r4

load r6,M[d]

mult r7,r2,r6

add r8,r5,r7

National Tsing Hua University ® copyright OIANational Tsing Hua University 54

Infix to Postfix Conversion

 Fully parenthesize algorithm:

– Fully parenthesize the expression

– Move all operators so that they replace the corresponding
right parentheses

– Delete all parentheses

((((A / B) – C) + (D * E)) – (A * C))

A B / C – D E * + A C * –

National Tsing Hua University ® copyright OIANational Tsing Hua University 55

Infix to Postfix

 Smarter algorithm

– Scan the expression only once

– Utilize stack

 The order of operands dose not change between
infix and postfix

– Output every visited operand directly

 Use stack to store visited operators and pop them
out at the right moment

– When the priority of the operator on top of stack is higher
or equal to that of the incoming operator (left-to-right
associativity)

National Tsing Hua University ® copyright OIANational Tsing Hua University 56

Example 1

 Infix: A + B * C

Next token Stack Output

None Empty None
A Empty A
+ + A

B + AB
* +* AB
C +* ABC

+ ABC*
Empty ABC*+

National Tsing Hua University ® copyright OIANational Tsing Hua University 57

Example 2

 Infix: A * (B + C) * D
Next token Stack Output

None Empty None
A Empty A
* * A

(*(A
B *(AB
+ *(+ AB
C *(+ ABC
) * ABC+
* * ABC+*

D * ABC+*D
Empty ABC+*D*

National Tsing Hua University ® copyright OIANational Tsing Hua University 58

Notes

 Expression with ()

– ‘(‘ has the highest priority, always push to stack

– Once pushed, ‘(’ get lowest priority

– Pop the operators until you see the matching ‘)’

National Tsing Hua University ® copyright OIANational Tsing Hua University

Try It Out …

 Find the postfix representation of the following infix
expression:

a * (b + c) – a * d * e

 Suppose a=1, b=2, c=3, d=4, e=5 and we use postfix
to evaluate the expression. Draw the content of the
stack when the second * is encountered

59

National Tsing Hua University ® copyright OIANational Tsing Hua University 60

Summary

 Template, subtype, inheritance in C++

 Stacks are last-in-first-out

 Queues are first-in-first-out

– Circular queues

 Evaluation of expressions as an example of using
stacks

– Infix to postfix conversion

– Evaluation of postfix expressions

