

#### CS 2351 Data Structures

# Arrays

#### Prof. Chung-Ta King Department of Computer Science National Tsing Hua University





- You think that you know *arrays* 
  - You know how to define an array in C

int a[100];

- int \*a = malloc(100 \* sizeof(int));
- You know the indices are from 0 to 99
- Given an index, i, you know how to read a value from or write a value into the corresponding entry a[i]
  - a[i] = ...; ... = a[i];
  - \*(a + i) = ...; ... = \*(a + i);
- But, think again ...





- For an array
  - Why the indices must start from 0?
  - Why the indices must be consecutive?
  - Why the array has to store the same type of data?
- In a very general sense, an array is a set of pairs <index, value>
  - e.g. student id: {(James, #1), (Claire, #2), ..., (Tony, #n)}
- Though general arrays look "general", they can often be implemented efficiently using C-type arrays!
  - We shall study in this chapter how C-type arrays may be extended to support more general arrays and operations



# **C-Type Arrays vs. General Arrays**

• A conceptual C-type array:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

• A conceptual general array:



A possible implementation using C-type arrays

н

|       | [0] | [1] | [2] | [3] | [4] | [5] | [6] |
|-------|-----|-----|-----|-----|-----|-----|-----|
| Index | 6   | 2   | 13  | 11  | 1   |     |     |
| Value | Α   | Е   | Н   | Е   | D   |     |     |





# **ADT of General Arrays of Floats**

#### ADT GeneralArray is

**objects**: A set of *<index, value>*. Each *index* in *IndexSet* has a *value* of float. *IndexSet* is a finite ordered set of one or more dimensions, e.g. {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)} for 2-D. **functions:** 

int SizeOf(); // Return the number of entries in the array
float Retrieve(index i);

/\* if (i is in IndexSet) return the float associated with i; else signal an error \*/

#### void Store(index i, float x);

/\* if (i is in IndexSet) replace the old pair with <i, x>; else signal an
error \*/

#### end GeneralArray



## **Notes on the ADT of General Arrays**

- We only define the interface, not implementation
  - We have not specified how the set of <index, value> pairs are organized and structured → often depends on appl.
  - C-type arrays are a special case of general arrays
  - C-type arrays can be used to implement general arrays
- General arrays are more flexible, may use memory more efficiently (depending on implementation), and allow index set checked for validity
- We will see different applications of general arrays in this chapter, which can be implemented efficiently using C-type arrays





# How to implement an ADT in C++?





National Tsing Hua University

# Outline

- C++ class
- From general arrays to ordered list
- Polynomial as an example
  - Space optimization in data structure
- Sparse matrices as another example
  - Time optimization in associated operations



### An Example C++ Class

```
#ifndef RECTANGLE H
#define RECTANGLE H
// In the header file Rectangle.h
class Rectangle {
public:
   Rectangle(); // constructor
   ~Rectangle(); // destructor
   int GetHeight();
   int GetWidth();
private:
   int xLow, yLow, height, width;
};
#endif
```



## **C++** Class Definition

- A C++ class consists of 4 components
  - Class name: *Rectangle*
  - Data members: xLow, yLow, height, width
  - Member functions: GetHeight(), GetWidth()
  - Levels of program access: public, protected, private
- Program access of data members/member functions
  - Public: can be accessed from any where in the program
  - Private: can be accessed from within its class or by a friend class or function
  - Protected: can be accessed from within its class or from its subclasses or by a friend



### **C++ Constructors and Destructors**

- Constructor: a member function to initialize data members of an object, e.g. Rectangle()
  - Has same name as class, must be public, no return value
  - If defined, automatically executed when object is created
  - Can define default initial values
- Destructor: a member function to delete data members immediately before object is deleted or goes out of scope , e.g. ~Rectangle()



## **Data Abstraction & Encapsulation in C++**

- Data encapsulation is enforced in C++ by declaring all data members of a class to be private or protected
  - External access to data members only by member functions
- Data abstraction of classes:
  - Specification: must be in public portion, consist of names of public member functions, type of their arguments and return values (*function prototype*)
    - $\rightarrow$  usually placed in a <u>header file</u>
  - Implementation: usually placed in a source file of the same name





## **Implementation of a C++ Class**

```
// In the source file Rectangle.cpp
#include "Rectangle.h"
Rectangle::Rectangle(int x=0, int y=0,
        int h=0, int w=0):
 xLow(x), yLow(y), height(h), width(w)
{ }
                                 Default values
int Rectangle::GetHeight() {
   return height;
int Rectangle::GetWidth() {
   return width;
```



### **Declaring and Invoking a C++ Class**

```
#include <iostream>
#include "Rectangle.h"
main() {
  Rectangle r,s; //object of class Rectangle
  Rectangle *t = &s; // object pointer
  if (r.GetHeight()*r.GetWidth() >
    t->GetHeight()*t->GetWidth()) cout<<"r";
  else cout<<"s";</pre>
  cout<<" has the greater area" << endl;
};
```



## **Operator Overloading**

- How to check if two Rectangle objects are equal?
  - You may write a function, e.g. equal (r, s), to compare, which takes these two objects as arguments, compares the four data members, and returns a true or false
  - Isn't it wonderful if you could just say

if (r == s) { ... }

So, the operator == not only compares variables of basic data types, e.g. int, float, but also user defined types

- $\rightarrow$  operator overloading
- User defined data types can be treated same as basic data types



### **Overloading == as a Member Function**

```
bool Rectangle::operator==(cont Rectangle& s)
ł
  if (this == &s) return true;
  if ((xLow == s.xLow) && (yLow = s.yLow)
     && (height == s.height)
     && (width == s.width)) return true;
  else return false;
```

• The pointer **this** inside a member function points to the class object that invoked it  $\rightarrow$  **\*this** points to class itself



### **Overloading << as Non-member Function**

```
ostream& operator<<(ostream& os,Rectangle& r)
{ os << "Position is: " << r.xLow << " ";
   os << r.yLow << endl;
   os << "Height is: " << r.Height << endl;
   os << "Width is: " << r.Width << endl;
   return os;
};</pre>
```

- This function accesses private data members of class
   Rectangle and must be made a friend of it (see
   next page)
   Return cout; thus have cout<<endl</li>
- With the overloaded operator, we can do

cout << r << endl;</pre>



### **Class Rectangle**

```
class Rectangle {
friend ostream& operator<<(ostream& os,</pre>
          Rectangle& r);
public:
  Rectangle(int x = 0, int y = 0,
     int h = 0, int w = 0)
   : xLow(x), yLow(y), height(h), width(w) { }
  bool operator==(const Rectangle& s) {
private:
    int xLow, yLow, height, width;
};
```



```
class GeneralArray {
private:
/* A set of <index, value>, where IndexSet is a
finite ordered set of one or more dimensions */
public:
  GeneralArray(int j; RangeList list,
           float initValue = defatultValue);
     /* Constructor creates a j-D array of floats.
    Range of k-D is given by kth element of list.
    For each i in IndexSet, insert <i, initValue> */
  float Retrieve(index i);
  void Store(index i, float x);
}; // end of GeneralArray
```



# Outline

- C++ class
- From general arrays to ordered list
- Polynomial as an example
  - Space optimization in data structure
- Sparse matrices as another example
  - Time optimization in associated operations



### **From General Arrays to Ordered Lists**

- A general array only specifies that there is a set of <index, value> pairs → no special order imposed
- An ordered (linear) list is a special case of general arrays, in which the items are ordered linearly
  - Days of Week: (Sun, Mon, Tue, Wed, Thu, Fri, Sat)
  - Months: (Jan, Feb, Mar, ..., Nov, Dec)
  - Poker: (2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace)



В

K

11

6

13

M

## **Operations on Ordered Lists**

- Find the length, n, of the list
- Read the items from left to right (or right to left)
- Retrieve the ith item,  $0 \le i < n$
- Store a new value into ith position,  $0 \le i < n$
- Insert/delete the item at position i,  $0 \le i < n$
- It is not necessary to include all operations
- Depending on applications, different representations support different subsets of operations efficiently





# Outline

- C++ class
- From general arrays to ordered list
- Polynomial as an example
  - Space optimization in data structure
  - Representation, addition, time complexity analysis
- Sparse matrices as another example
  - Time optimization in associated operations



# Polynomials

- $p(x) = a_0 x^{e0} + a_1 x^{e1} +, ..., a_n x^{en} = \sum a_i x^{ei}$ 
  - Each a<sub>i</sub>x<sup>ei</sup> is a term with coefficient a<sub>i</sub> and exponent e<sub>i</sub>
  - Degree of p(x) is largest exponent of the non-zero term
  - Ex.: p(x)=x<sup>5</sup>+4x<sup>3</sup>+2x<sup>2</sup>+1
     has 4 terms with coefficients 1, 4, 2, 1, and a degree of 5
- Intuitive representation in a C-type array
  - Store  $(a_i, e_i)$  by assigning  $a_i$  to A[n-i], where n is the degree



exponent  $\rightarrow$  index coefficient  $\rightarrow$  value



## **Operations for Polynomials**

Let 
$$a(x) = \sum a_i x^i$$
 and  $b(x) = \sum b_i x^i$ 

- Polynomial addition
  - $a(x) + b(x) = \sum (a_i + b_i)x^i$
  - Ex.:  $a(x)=x^5+4x^3+2x^2+1$  (degree = 5)  $b(x)=3x^6+4x^3+x$  (degree = 6)  $a(x) + b(x) = 3x^6+x^5+8x^3+2x^2+x+1$  (degree = 6)
- Polynomial multiplication
  - $a(\mathbf{x}) \times b(\mathbf{x}) = \sum (a_i \mathbf{x}^i \times \sum (b_j \mathbf{x}^j))$
- How about insertion/deletion?



# **ADT of Polynomials**





## **1st Representation of Data Members**

• Use C-type arrays with fixed space

| <pre>private:<br/>// degree ≤ MaxDegree<br/>int degree;<br/>// coefficient array<br/>float coef[MaxDegree+1];</pre> | Usage:<br>Polynomial a;<br>a.degree = n;<br>a.coef[i] = a <sub>n-i</sub> |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|



 Must know MaxDegree, may allocate too much space, waste memory in a sparse polynomial, e.g., x<sup>1000</sup>+1



# **2nd Representation of Data Members**

Use C-type arrays with dynamically allocated space:

private:

int degree;

float \*coef;

```
// constructor
Polynomial::Polynomial(int d)
{ degree = d;
   coef = new float[degree+1];
}
```

- No need to know MaxDegree in advance, allocate exact space as needed
- Disadvantage: waste memory in a sparse polynomial



## **3rd Representation of Data Members**

#### Store only nonzero terms:

```
class Polynomial;
// forward decl.
class Term {
  friend Polynomial;
  float coef;
  int exp;
};
```

```
private:
    // array of nonzero terms
    Term* termArray;
    // termArray size
    int capacity;
    // # nonzero terms
    int terms;
```

- Coefficients are stored in order of decreasing exponents
- Better if polynomial is sparse, but if polynomial is full, it requires double the space of 2nd representation
  - $\rightarrow$  considerations for space optimization



# Polynomial Addition (1/3)

```
Polynomial Polynomial::Add(Polynomial b) {
 Polynomial c;
 int aPos = 0, bPos = 0;
while((aPos < terms) && (bPos < b.terms))</pre>
  if(termArray[aPos].exp == b.termArray[bPos].exp){
   float t = termArray[aPos].coef
              + b.termArray[bPos].coef;
   if (t) c.NewTerm(t, termArray[aPos].exp);
   aPos++; bPos++;
                              Append to the end
  } else
                               of Polynomial c
  if(termArray[aPos].exp < b.termArray[bPos].exp){</pre>
   c.NewTerm(b.termArray[bPos].coef,
                  b.termArray[bPos].exp);
   bPos++;
```



# Polynomial Addition (2/3)

```
else{
 c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);
 aPos++;
// add in remaining terms of *this
for(; aPos < terms; aPos++)</pre>
  c.NewTerm(termArray[aPos].coef,
               termArray[aPos].exp);
// add in remaining terms of b
for(; bPos < b.terms; bPos++)</pre>
  c.NewTerm(b.termArray[bPos].coef,
              b.termArray[bPos].exp);
return c;
```



}

# Polynomial Addition (3/3)

```
void Polynomial::NewTerm(const float c, const int e)
{ //Add a new term to the end of termArray
  if (terms == capacity)
  { // double capacity of termArray
      capacity *= 2;
      term *temp = new term[capacity];
      copy(termArray, termArray + terms, temp);
      delete[] termArray;
      termArray = temp;
  termArray[terms].coef = c;
  termArray[terms].exp = e;
}
```



# **A Running Example**



 $C(x) = x^{6} + (1+3)x^{5} + 9x^{4} + 7x^{3} + (2+6)x + 3$ =  $x^{6} + 4x^{5} + 9x^{4} + 7x^{3} + 8x + 3$ 





# **Time Complexity Analysis**

- Inside the while loop, every statement has O(1) time
- How many times the "while loop" is executed in the worst case?
  - Let a(x) have m terms and b(x) have n terms
  - Each iteration accesses next element in a(x), b(x), or both
  - Worst case: m + n 1e.g.,  $a(x) = 7x^5 + x^3 + x$ ;  $b(x) = x^6 + 2x^4 + 6x^2 + 3$
  - Access remaining terms in a(x): O(m), and b(x): O(n)
- Hence, total running time = O(m + n)



# Outline

- C++ class
- From general arrays to ordered list
- Polynomial as an example
  - Space optimization in data structure
- Sparse matrices as another example
  - Time optimization in associated operations
  - Representation, transpose, multiplication, time complexity analysis



A matrix has many zero elements



- 2D array representation is inefficient
  - Waste both memory and running time to store and compute those zero elements



### **Example of Sparse Matrices**

- Web page matrix
  - Web pages are numbered 1 through n
  - web(i,j) = number of links from page i to page j
- Space analysis
  - n = 2 billion =  $2 \times 10^9$  pages
  - If use n x n array of ints  $\rightarrow$  4 × 10<sup>18</sup> × 4 bytes
  - Each page links to 10 (say) other pages on average, i.e. 10 nonzero entries per row
  - If use general array  $\rightarrow$  2 × 10<sup>9</sup> × 10 × 8 bytes '



### **Example of Sparse Matrices**

- Social network
  - People are numbered 1 through n
  - friend(i,j) = 1, if i and j are friends; 0, otherwise
  - What does it mean by (friend matrix)<sup>2</sup>?
  - n = 100M (say), each person has 100 friends in average
  - If use n x n array  $\rightarrow$  10<sup>16</sup> × 4 bytes
  - If use general array  $\rightarrow 10^8 \times 100 \times 8$  bytes



### **Sparse Matrix Representation**

- Use an array, smArray[], of triple <row, col, value> to store nonzero elements (2D index space)
- Triples are stored in row-major order → ordered list



| smArray[3] | 1 | 1 | 11 |
|------------|---|---|----|
| smArray[4] | 1 | 2 | 3  |
| smArray[5] | 2 | 3 | -6 |
| smArray[6] | 4 | 0 | 91 |
| smArray[7] | 5 | 2 | 28 |

smArray[0]

smArray[1]

smArray[2]

#### How about insertion/deletion?





value

15

22

-15

col

0

3

5

row

0

0

0

## **ADT of Sparse Matrix**

```
class SparseMatrix{
public:
```

```
SparseMatrix(int r, int c, int t);
```

```
// t is the capacity of nonzero terms
```

```
SparseMatrix Transpose(void);
```

```
SparseMatrix Add(SparseMatrix b);
```

```
SparseMatrix Multiply(SparseMatrix b);
```

};

private:

```
int rows, cols;
```

```
int terms, capacity;
```

```
MatrixTerm *smArray;
```

class MatrixTerm {

```
friend SparseMatrix;
```

```
int row, col, value;
```



};

### **Approximate Memory Requirements**

 500 x 500 matrix with 1994 nonzero elements, 4 bytes per element

2D array  $500 \times 500 \times 4 = 1$  million bytes Class SparseMatrix  $3 \times 1994 \times 4 + 4 \times 4$ = 23,944 bytes



## **Matrix Transpose**





## **Transpose of Matrix**

 Intuitive idea: check columns sequentially and collect terms with same column together

| Α          | row | col | value | A <sup>T</sup> | row | col | value |
|------------|-----|-----|-------|----------------|-----|-----|-------|
| smArray[0] | 0   | 0   | 15    | smArray[0]     | 0   | 0   | 15    |
| smArray[1] | 0   | 3   | 22    | smArray[1]     | 0   | 4   | 91    |
| smArray[2] | 0   | 5   | -15   | smArray[2]     | 1   | 1   | 11    |
| smArray[3] | 1   | 1   | 11    | smArray[3]     | 2   | 1   | 3     |
| smArray[4] | 1   | 2   | 3     | smArray[4]     | 2   | 5   | 28    |
| smArray[5] | 2   | 3   | -6    | smArray[5]     | 3   | 0   | 22    |
| smArray[6] | 4   | 0   | 91    | smArray[6]     | 3   | 2   | -6    |
| smArray[7] | 5   | 2   | 28    | smArray[7]     | 5   | 0   | -15   |



| 國立       | 情.    | 華    | 大    | 學       |    |
|----------|-------|------|------|---------|----|
| National | Tsind | r Hu | a Ur | niversi | it |

## **1st Transpose Algorithm**

```
SparseMatrix SparseMatrix::Transpose() {
 SparseMatrix b(cols, rows, terms);
 if (terms > 0) { // has nonzero terms
  int currentB = 0;
   for (int c=0; c<cols; c++) // O(cols)
    for(int i=0; i<terms; i++) // O(terms)</pre>
     if(smArray[i].col == c){
      b.smArray[currentB].row = c;
      b.smArray[currentB].col = smArray[i].row;
      b.smArray[currentB++].value=smArray[i].value;
                     Time complexity: O(cols × terms)
  return b;
                          \sim O(cols \times cols \times rows)
```



# **2nd Transpose Algorithm: Fast Transpose**

- Cause of inefficiency for 1<sup>st</sup> transpose algorithm:
  - Do not know locations of different columns
  - This information can be calculated beforehand
- Use additional space to calculate and store
  - rowSize[i]: # of nonzero terms in the  $i^{th}$  row of  $A^T$
  - rowStart[i]: location of nonzero term of the i<sup>th</sup> row of A<sup>T</sup> in smArray
  - For i>0, rowStart[i]=rowStart[i-1]+rowSize[i-1]
- Then copy elements from A to A<sup>T</sup> one by one
- Time complexity: O(terms + cols)!



#### Count the # of nonzero terms in each row of $A^T$

| Α          | row | col | value | AT  | rowSize | rowStart | AT         | row | col |
|------------|-----|-----|-------|-----|---------|----------|------------|-----|-----|
| smArray[0] | 0   | 0   | 15    | [0] | 2       |          | smArray[0] |     |     |
| smArray[1] | 0   | 3   | 22    | [1] | 1       |          | smArray[1] |     |     |
| smArray[2] | 0   | 5   | -15   | [2] | 2       |          | smArray[2] |     |     |
| smArray[3] | 1   | 1   | 11    | [3] | 2       |          | smArray[3] |     |     |
| smArray[4] | 1   | 2   | 3     | [4] | 0       |          | smArray[4] |     |     |
| smArray[5] | 2   | 3   | -6    | [5] | 1       |          | smArray[5] |     |     |
| smArray[6] | 4   | 0   | 91    |     |         |          | smArray[6] |     |     |
| smArray[7] | 5   | 2   | 28    |     |         |          | smArray[7] |     |     |



#### Calculate location of $1^{st}$ nonzero term of $i^{th}$ row of $A^T$ in smArray

| А          | row | col | value | AT  | rowSize | rowStart | A <sup>T</sup> | row | col |
|------------|-----|-----|-------|-----|---------|----------|----------------|-----|-----|
| smArray[0] | 0   | 0   | 15    | [0] | 2       | 0        | smArray[0]     |     |     |
| smArray[1] | 0   | 3   | 22    | [1] | 1       | 2        | smArray[1]     |     |     |
| smArray[2] | 0   | 5   | -15   | [2] | 2       | 3        | smArray[2]     |     |     |
| smArray[3] | 1   | 1   | 11    | [3] | 2       | 5        | smArray[3]     |     |     |
| smArray[4] | 1   | 2   | 3     | [4] | 0       | 7        | smArray[4]     |     |     |
| smArray[5] | 2   | 3   | -6    | [5] | 1       | 7        | smArray[5]     |     |     |
| smArray[6] | 4   | 0   | 91    |     |         |          | smArray[6]     |     |     |
| smArray[7] | 5   | 2   | 28    |     |         |          | smArray[7]     |     |     |





|     | row | col | value | AT  | rowSize | rowStart |   | AT         | row | col | value |
|-----|-----|-----|-------|-----|---------|----------|---|------------|-----|-----|-------|
| [0] | 0   | 0   | 15    | [0] | 2       | 0        |   | smArray[0] | 0   | 0   | 15    |
| [1] | 0   | 3   | 22    | [1] | 1       | 2        | • | smArray[1] |     |     |       |
| [2] | 0   | 5   | -15   | [2] | 2       | 3        |   | smArray[2] |     |     |       |
| [3] | 1   | 1   | 11    | [3] | 2       | 5        |   | smArray[3] |     |     |       |
| [4] | 1   | 2   | 3     | [4] | 0       | 7        |   | smArray[4] |     |     |       |
| [5] | 2   | 3   | -6    | [5] | 1       | 7        |   | smArray[5] |     |     |       |
| [6] | 4   | 0   | 91    |     |         |          |   | smArray[6] |     |     |       |
| [7] | 5   | 2   | 28    |     |         |          |   | smArray[7] |     |     |       |





|     | row | col | value | AT  | rowSize | rowStart | AT         | row | col | value |
|-----|-----|-----|-------|-----|---------|----------|------------|-----|-----|-------|
| [0] | 0   | 0   | 15    | [0] | 2       | 1        | smArray[0] | 0   | 0   | 15    |
| [1] | 0   | 3   | 22    | [1] | 1       | 2        | smArray[1] |     |     |       |
| [2] | 0   | 5   | -15   | [2] | 2       | 3        | smArray[2] |     |     |       |
| [3] | 1   | 1   | 11    | [3] | 2       | 5        | smArray[3] |     |     |       |
| [4] | 1   | 2   | 3     | [4] | 0       | 7        | smArray[4] |     |     |       |
| [5] | 2   | 3   | -6    | [5] | 1       | 7        | smArray[5] | 3   | 0   | 22    |
| [6] | 4   | 0   | 91    |     |         |          | smArray[6] |     |     |       |
| [7] | 5   | 2   | 28    |     |         |          | smArray[7] |     |     |       |





|     | row | col | value | AT  | rowSize | rowStart | AT         | row | col | value |
|-----|-----|-----|-------|-----|---------|----------|------------|-----|-----|-------|
| [0] | 0   | 0   | 15    | [0] | 2       | 1        | smArray[0] | 0   | 0   | 15    |
| [1] | 0   | 3   | 22    | [1] | 1       | 3        | smArray[1] | 0   | 4   | 91    |
| [2] | 0   | 5   | -15   | [2] | 2       | 4        | smArray[2] | 1   | 1   | 11    |
| [3] | 1   | 1   | 11    | [3] | 2       | 7        | smArray[3] | 2   | 1   | 3     |
| [4] | 1   | 2   | 3     | [4] | 0       | 7        | smArray[4] |     |     |       |
| [5] | 2   | 3   | -6    | [5] | 1       | 8        | smArray[5] | 3   | 0   | 22    |
| [6] | 4   | 0   | 91    |     |         |          | smArray[6] | 3   | 2   | -6    |
| [7] | 5   | 2   | 28    |     |         |          | smArray[7] | 5   | 0   | -15   |





|     | row | col | value | AT  | rowSize | rowStart | AT        | row | col | value |
|-----|-----|-----|-------|-----|---------|----------|-----------|-----|-----|-------|
| [0] | 0   | 0   | 15    | [0] | 2       | 2        | smArray[0 | ] 0 | 0   | 15    |
| [1] | 0   | 3   | 22    | [1] | 1       | 3        | smArray[1 | ] 0 | 4   | 91    |
| [2] | 0   | 5   | -15   | [2] | 2       | 5        | smArray[2 | ] 1 | 1   | 11    |
| [3] | 1   | 1   | 11    | [3] | 2       | 7        | smArray[3 | ] 2 | 1   | 3     |
| [4] | 1   | 2   | 3     | [4] | 0       | 7        | smArray[4 | ] 2 | 5   | 28    |
| 5]  | 2   | 3   | -6    | [5] | 1       | 8        | smArray[5 | ] 3 | 0   | 22    |
| [6] | 4   | 0   | 91    |     |         |          | smArray[6 | ] 3 | 2   | -6    |
| [7] | 5   | 2   | 28    |     |         |          | smArray[7 | ] 5 | 0   | -15   |





# Fast Transpose (1/2)

```
SparseMatrix SparseMatrix::FastTranspose( )
{ SparseMatrix b(cols, rows, terms);
  if (terms > 0) {
    int *rowSize = new int[cols];
    int *rowStart = new int[cols];
    // compute rowSize[i]=# of terms in row i of b
    fill(rowSize, rowSize+cols, 0);
    for(int i=0; i<terms; i++)</pre>
       rowSize[smArray[i].col]++;
    // rowStart[i] = starting pos. of row i in b
    rowStart[0] = 0;
    for(int i=1; i<cols; i++)</pre>
      rowStart[i]=rowStart[i-1]+rowSize[i-1];
```



# Fast Transpose (2/2)

```
// copy terms from *this to b
for(int i=0; i<terms; i++){</pre>
    int j = rowStart[smArray[i].col];
    b.smArray[j].row = smArray[i].col;
    b.smArray[j].col = smArray[i].row;
    b.smArray[j].value = smArray[i].value;
    rowStart[smArray[i].col]++;
    // Increase the start pos by 1
  delete [] rowSize;
  delete [] rowStart;
return b;
```



# **Running Time Comparison**

| 1st Transpose Algorithm | 2nd Transpose Algorithm |
|-------------------------|-------------------------|
| O(cols × terms)         | O(cols + terms)         |

- For a dense matrix (terms = rows × cols)
  - 2nd algorithm is faster: O(rows × cols)
  - 1st algorithm is slower:  $O(rows \times cols^2)$
- For a sparse matrix (terms << rows × cols)
  - 2nd algorithm is much faster
- Considerations for time optimization



## **Sparse Matrix Multiplication**

Compute the transpose of b



 $X = 0 \times 3 + 5 \times 0 + 2 \times 4 + 0 \times 3 + 0 \times 6 + 7 \times 5 = 43$  $c(i,j) = \Sigma a(i,k) \times b(k,j)$ 



## **Sparse Matrix Multiplication**

 Use approach similar to Polynomial Addition to compute the X





# **Time Complexity**

```
SparseMatrix SparseMatrix::Multiply(SparseMatrix b) {
  SparseMatrix bT = b.FastTranspose(); //O(b.terms+b.cols)
  for ith row in smArray // O(rows)
   for jth row in bT.smArray // O(b.cols)
    Perform "Polynomal Addition" // O(Terms[i]+b.Terms[j])
}
```

- Complexity:
  - O(rows × b.cols × (Term[i] + b.Terms[j]))
  - rows × Term[i] = a.terms
     b.cols × b.Terms[j] = b.terms
  - O(rows × b.terms + b.cols × a.terms)





- General arrays as ADT with easy C-type array ext.
- C++ class
- Polynomial as an example of ordered list (linear index space)
  - 3 versions of presentations for space optimization
- Sparse matrix as another example of ordered list (2 dimensional index space)
  - 2 transpose algorithms for time optimization
- What if we want to support insertion/deletion efficiently?



