
National Tsing Hua University ®  copyright OIANational Tsing Hua University

CS 2351 Data Structures

Arrays

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University



National Tsing Hua University ®  copyright OIANational Tsing Hua University 2

Arrays

 You think that you know arrays

– You know how to define an array in C

int a[100];

int *a = malloc(100 * sizeof(int));

– You know the indices are from 0 to 99

– Given an index, i, you know how to read a value from or 
write a value into the corresponding entry a[i]

a[i] = ...; ... = a[i];

*(a + i) = ...; ... = *(a + i);

 But, think again …



National Tsing Hua University ®  copyright OIANational Tsing Hua University 3

Arrays

 For an array

– Why the indices must start from 0?

– Why the indices must be consecutive? 

– Why the array has to store the same type of data?

 In a very general sense, an array is a set of pairs 
<index, value>

– e.g. student id: {(James, #1), (Claire, #2), …, (Tony, #n)}

 Though general arrays look “general”, they can often 
be implemented efficiently using C-type arrays!

– We shall study in this chapter how C-type arrays may be 
extended to support more general arrays and operations



National Tsing Hua University ®  copyright OIANational Tsing Hua University

 A conceptual C-type array:

 A conceptual general array:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

D E A E H

C-Type Arrays vs. General Arrays

1 D

2 E6 A

11 E
13 H

[0] [1] [2] [3] [4] [5] [6]

Index 6 2 13 11 1
Value A E H E D

A possible implementation 
using C-type arrays



National Tsing Hua University ®  copyright OIANational Tsing Hua University

ADT of General Arrays of Floats

5

ADT GeneralArray is
objects: A set of <index, value>. Each index in IndexSet has a value
of float. IndexSet is a finite ordered set of one or more dimensions, 
e.g. {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)} for 2-D.
functions:

int SizeOf();  // Return the number of entries in the array
float Retrieve(index i);
/* if (i is in IndexSet) return the float associated with i; else signal
an error */
void Store(index i, float x);
/* if (i is in IndexSet) replace the old pair with <i, x>; else signal an
error */

end GeneralArray



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Notes on the ADT of General Arrays 

 We only define the interface, not implementation

– We have not specified how the set of <index, value> pairs 
are organized and structured  often depends on appl.

– C-type arrays are a special case of general arrays

– C-type arrays can be used to implement general arrays

 General arrays are more flexible, may use memory 
more efficiently (depending on implementation), and 
allow index set checked for validity

 We will see different applications of general arrays in 
this chapter, which can be implemented efficiently 
using C-type arrays

6



National Tsing Hua University ®  copyright OIANational Tsing Hua University

How to implement an ADT in C++?

7



National Tsing Hua University ®  copyright OIANational Tsing Hua University 8

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

 Sparse matrices as another example

– Time optimization in associated operations

8



National Tsing Hua University ®  copyright OIANational Tsing Hua University

An Example C++ Class

9

#ifndef RECTANGLE_H

#define RECTANGLE_H

// In the header file Rectangle.h

class Rectangle {

public:

Rectangle();   // constructor

~Rectangle();  // destructor

int GetHeight();

int GetWidth();

private:

int xLow, yLow, height, width;

};

#endif



National Tsing Hua University ®  copyright OIANational Tsing Hua University

C++ Class Definition

 A C++ class consists of 4 components

– Class name: Rectangle

– Data members: xLow, yLow, height, width

– Member functions: GetHeight(), GetWidth()

– Levels of program access: public, protected, private

 Program access of data members/member functions

– Public: can be accessed from any where in the program

– Private: can be accessed from within its class or by a 
friend class or function

– Protected: can be accessed from within its class or from its 
subclasses or by a friend

10



National Tsing Hua University ®  copyright OIANational Tsing Hua University

C++ Constructors and Destructors

 Constructor: a member function to initialize data 
members of an object, e.g. Rectangle()

– Has same name as class, must be public, no return value

– If defined, automatically executed when object is created

– Can define default initial values

 Destructor: a member function to delete data 
members immediately before object is deleted or 
goes out of scope , e.g. ~Rectangle()

11



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Data Abstraction & Encapsulation in C++

 Data encapsulation is enforced in C++ by declaring all 
data members of a class to be private or protected

– External access to data members only by member 
functions

 Data abstraction of classes:

– Specification: must be in public portion, consist of names 
of public member functions, type of their arguments and 
return values (function prototype) 
 usually placed in a header file

– Implementation: usually placed in a source file of the same 
name

12



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Implementation of a C++ Class

13

// In the source file Rectangle.cpp

#include “Rectangle.h”

Rectangle::Rectangle(int x=0, int y=0, 

int h=0, int w=0):

xLow(x), yLow(y), height(h), width(w)

{}

int Rectangle::GetHeight() {

return height;

}

int Rectangle::GetWidth() {

return width;

}

Default values



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Declaring and Invoking a C++ Class

14

#include <iostream>

#include “Rectangle.h”

main() {

Rectangle r,s; //object of class Rectangle

Rectangle *t = &s; // object pointer

...

if (r.GetHeight()*r.GetWidth() > 

t->GetHeight()*t->GetWidth()) cout<<“r”;

else cout<<“s”;

cout<<“ has the greater area” << endl;

};



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Operator Overloading

 How to check if two Rectangle objects are equal?
– You may write a function, e.g. equal(r,s), to compare, 

which takes these two objects as arguments, compares 
the four data members, and returns a true or false

– Isn’t it wonderful if you could just say
if (r == s) { ... }

So, the operator == not only compares variables of basic 
data types, e.g. int, float, but also user defined types

 operator overloading

– User defined data types can be treated same as basic data 
types

15



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Overloading == as a Member Function

 The pointer this inside a member function points 
to the class object that invoked it  *this points 
to class itself

16

bool Rectangle::operator==(cont Rectangle& s)

{

if (this == &s) return true; 

if ((xLow == s.xLow) && (yLow = s.yLow)

&& (height == s.height)

&& (width == s.width)) return true;

else return false;

}



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Overloading << as Non-member Function

 This function accesses private data members of class 
Rectangle and must be made a friend of it (see 
next page)

 With the overloaded operator, we can do
cout << r << endl;

17

ostream& operator<<(ostream& os,Rectangle& r)

{ os << “Position is: “ << r.xLow << “ “; 

os << r.yLow << endl;

os << “Height is: “ << r.Height << endl;

os << “Width is: “ << r.Width << endl;

return os;

};

Return cout; thus have cout<<endl



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Class Rectangle

18

class Rectangle {

friend ostream& operator<<(ostream& os,

Rectangle& r);

public:

Rectangle(int x = 0, int y = 0, 

int h = 0, int w = 0)

: xLow(x), yLow(y), height(h), width(w){ }

bool operator==(const Rectangle& s){

...

}

private:

int xLow, yLow, height, width;

};



National Tsing Hua University ®  copyright OIANational Tsing Hua University

ADT of General Arrays in C++

19

class GeneralArray {

private:

/* A set of <index, value>, where IndexSet is a 

finite ordered set of one or more dimensions */

public:

GeneralArray(int j; RangeList list, 

float initValue = defatultValue);

/* Constructor creates a j-D array of floats. 

Range of k-D is given by kth element of list. 

For each i in IndexSet, insert <i,initValue> */

float Retrieve(index i);

void Store(index i, float x);

}; // end of GeneralArray



National Tsing Hua University ®  copyright OIANational Tsing Hua University 20

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

 Sparse matrices as another example

– Time optimization in associated operations

20



National Tsing Hua University ®  copyright OIANational Tsing Hua University

From General Arrays to Ordered Lists

 A general array only specifies that there is a set of 
<index, value> pairs  no special order imposed

 An ordered (linear) list is a special case of general 
arrays, in which the items are ordered linearly
– Days of Week: (Sun, Mon, Tue, Wed, Thu, Fri, Sat)

– Months: (Jan, Feb, Mar, …, Nov, Dec)

– Poker: (2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, 
Queen, King, Ace)

21

1 A

2 B6 F

11 K
13 M

1 A 2 B 6 F 11 K 13 M



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Operations on Ordered Lists

 Find the length, n, of the list

 Read the items from left to right (or right to left)

 Retrieve the ith item, 0 ≤ i < n

 Store a new value into ith position, 0 ≤ i < n

 Insert/delete the item at position i, 0 ≤ i < n

 It is not necessary to include all operations

 Depending on applications, different representations 
support different subsets of operations efficiently

22



National Tsing Hua University ®  copyright OIANational Tsing Hua University 23

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

– Representation, addition, time complexity analysis

 Sparse matrices as another example

– Time optimization in associated operations

23



National Tsing Hua University ®  copyright OIANational Tsing Hua University 24

 p(x) = a0xe0 + a1xe1 +, …, anxen =∑ aix
ei

– Each aix
ei is a term with coefficient ai and exponent ei

– Degree of p(x) is largest exponent of the non-zero term

– Ex.: p(x)=x5+4x3+2x2+1
has 4 terms with coefficients 1, 4 ,2, 1, and a degree of 5

 Intuitive representation in a C-type array
– Store (ai, ei) by assigning ai to A[n-i], where n is the degree

1 0 4 2 10

A[0]    A[1]    A[2]   A[3]   A[4]    A[5] 

x5 4x3 2x2 x0

Polynomials

exponent  index
coefficient  value



National Tsing Hua University ®  copyright OIANational Tsing Hua University 25

Let a(x) = ∑ aix
i and b(x) = ∑ bix

i

 Polynomial addition

– a(x) + b(x) = ∑ (ai+bi)x
i

– Ex.: a(x)=x5+4x3+2x2+1 (degree = 5)
b(x)=3x6+4x3+x (degree = 6)
a(x) + b(x) = 3x6+x5+8x3+2x2+x+1 (degree = 6)

 Polynomial multiplication

– a(x)  b(x) = ∑ (aix
i  ∑ (bjx

j))

 How about insertion/deletion?

Operations for Polynomials



National Tsing Hua University ®  copyright OIANational Tsing Hua University 26

class Polynomial {

// a set of ordered pairs of <ai, ei>, where ai is

// nonzero float, ei is non-negative integer

public:

Polynomial(void); // Constructor p(x) = 0

~Polynomial(void); // Destructor

Polynomial Add(Polynomial poly);

// Return the sum of *this and poly

Polynomial Mult(Polynomial poly);

// Return multiplication of *this and poly

float Eval(float x);

// Evaluate *this at x and return result

};

We will ignore destructor hereafter. It is 
programmer’s responsibility to treat her 
memory well 

ADT of Polynomials How to represent to be 
most efficient in space?



National Tsing Hua University ®  copyright OIANational Tsing Hua University 27

1st Representation of Data Members

 Use C-type arrays with fixed space

– Must know MaxDegree, may allocate too much space, 
waste memory in a sparse polynomial, e.g., x1000+1

private:

// degree ≤  MaxDegree

int degree; 

// coefficient array

float coef[MaxDegree+1];

Usage:

Polynomial a;

a.degree = n;

a.coef[i] = an-i

1 0 4 2 10

A[0]    A[1]    A[2]   A[3]   A[4]    A[5] 

x5 4x3 2x2 x0



National Tsing Hua University ®  copyright OIANational Tsing Hua University 28

2nd Representation of Data Members

 Use C-type arrays with dynamically allocated space:

– No need to know MaxDegree in advance, allocate exact 
space as needed

– Disadvantage: waste memory in a sparse polynomial

private:

int degree; 

float *coef;

// constructor

Polynomial::Polynomial(int d)

{ degree = d;

coef = new float[degree+1];

}



National Tsing Hua University ®  copyright OIANational Tsing Hua University 29

3rd Representation of Data Members

 Store only nonzero terms:

– Coefficients are stored in order of decreasing exponents

– Better if polynomial is sparse, but if polynomial is full, it 
requires double the space of 2nd representation
 considerations for space optimization

class Polynomial; 

// forward decl.

class Term {

friend Polynomial;

float coef;

int exp;

};

private:

// array of nonzero terms

Term* termArray; 

// termArray size

int capacity; 

// # nonzero terms

int terms; 



National Tsing Hua University ®  copyright OIANational Tsing Hua University 30

Polynomial Addition (1/3)

Polynomial Polynomial::Add(Polynomial b) {

Polynomial c;

int aPos = 0, bPos = 0;

while((aPos < terms) && (bPos < b.terms))

if(termArray[aPos].exp == b.termArray[bPos].exp){

float t = termArray[aPos].coef

+ b.termArray[bPos].coef;

if (t) c.NewTerm(t, termArray[aPos].exp);

aPos++; bPos++;

} else

if(termArray[aPos].exp < b.termArray[bPos].exp){

c.NewTerm(b.termArray[bPos].coef,

b.termArray[bPos].exp);

bPos++;

}

Append to the end 
of Polynomial c



National Tsing Hua University ®  copyright OIANational Tsing Hua University 31

Polynomial Addition (2/3)

else{

c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);

aPos++;

}

// add in remaining terms of *this

for(; aPos < terms; aPos++)

c.NewTerm(termArray[aPos].coef,

termArray[aPos].exp);

// add in remaining terms of b

for(; bPos < b.terms; bPos++)

c.NewTerm(b.termArray[bPos].coef,

b.termArray[bPos].exp);

return c;

}



National Tsing Hua University ®  copyright OIANational Tsing Hua University 32

Polynomial Addition (3/3)

void Polynomial::NewTerm(const float c, const int e)

{ //Add a new term to the end of termArray

if (terms == capacity)

{  // double capacity of termArray

capacity *= 2;

term *temp = new term[capacity];

copy(termArray, termArray + terms, temp);

delete[] termArray;

termArray = temp;

}

termArray[terms].coef = c;

termArray[terms].exp = e;

}



National Tsing Hua University ®  copyright OIANational Tsing Hua University 33

A Running Example

a(x) = x5 + 9x4 + 7x3 + 2x

b(x) = x6 + 3x5 + 6x + 3

aPos

bPos

c(x) =

=x6 + 4x5 + 9x4 + 7x3 + 8x + 3

bPos

aPos aPos

bPos bPos

aPos

+(1+3)x5 + 9x4+ 7x3+(2+6)x + 3x6

aPos



National Tsing Hua University ®  copyright OIANational Tsing Hua University 34

Time Complexity Analysis

 Inside the while loop,  every statement has O(1) time

 How many times the “while loop” is executed in the 
worst case?

– Let a(x) have m terms and  b(x) have n terms

– Each iteration accesses next element in a(x), b(x), or both

– Worst case: m + n – 1
e.g., a(x) = 7x5 + x3 + x;  b(x) = x6 + 2x4 + 6x2 +3

– Access remaining terms in a(x):  O(m), and b(x):  O(n)

 Hence, total running time = O(m + n)



National Tsing Hua University ®  copyright OIANational Tsing Hua University 35

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

 Sparse matrices as another example

– Time optimization in associated operations

– Representation, transpose, multiplication, time complexity 
analysis 

35



National Tsing Hua University ®  copyright OIANational Tsing Hua University

 A matrix has many zero elements

 2D array representation is inefficient

– Waste both memory and running time to store and 
compute those zero elements

36

Sparse Matrix

15     0      0    22    0   -15
0    11     3     0     0      0
0      0     0    -6     0      0
0      0     0     0     0      0

91      0     0     0     0      0
0      0    28    0     0      0

a[6][6] =



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Example of Sparse Matrices

 Web page matrix

– Web pages are numbered 1 through n

– web(i,j) = number of links from page i to page j

 Space analysis

– n = 2 billion = 2  109 pages

– If use n x n array of ints  4  1018  4 bytes

– Each page links to 10 (say) other pages on average, i.e. 10 
nonzero entries per row

– If use general array  2  109  10  8 bytes 



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Example of Sparse Matrices

 Social network

– People are numbered 1 through n

– friend(i,j) = 1, if i and j are friends; 0, otherwise

– What does it mean by (friend matrix)2?

– n = 100M (say), each person has 100 friends in average

– If use n x n array  1016  4 bytes 

– If use general array  108  100  8 bytes



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Sparse Matrix Representation

 Use an array, smArray[], of triple <row, col, value> to 
store nonzero elements (2D index space)

 Triples are stored in row-major order  ordered list

39

15     0      0    22    0   -15
0    11     3     0     0      0
0      0     0    -6     0      0
0      0     0     0     0      0

91      0     0     0     0      0
0      0    28    0     0      0

a[6][6] =

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28How about insertion/deletion?



National Tsing Hua University ®  copyright OIANational Tsing Hua University 40

ADT of Sparse Matrix

class SparseMatrix{

public:

SparseMatrix(int r, int c, int t);

// t is the capacity of nonzero terms

SparseMatrix Transpose(void);

SparseMatrix Add(SparseMatrix b);

SparseMatrix Multiply(SparseMatrix b);

private:

int rows, cols;

int terms, capacity;

MatrixTerm *smArray;

};

class MatrixTerm {

friend SparseMatrix;

int row, col, value;

};



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Approximate Memory Requirements 

 500 x 500 matrix with 1994 nonzero elements, 4 
bytes per element

2D array                   500 x 500 x 4 = 1million bytes

Class SparseMatrix  3 x 1994 x 4 + 4 x 4

=  23,944  bytes



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Matrix Transpose

42

15 0 0 22 0 -15

0 11 3 0 0 0

0 0 0 -6 0 0

0 0 0 0 0 0

91 0 0 0 0 0

0 0 28 0 0 0

A =

15 0 0 0 91 0

0 11 0 0 0 0

0 3 0 0 0 28

22 0 -6 0 0 0

0 0 0 0 0 0

-15 0 0 0 0 0

AT =



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Transpose of Matrix

 Intuitive idea: check columns sequentially and collect 
terms with same column together

43

A row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

0 4 91

1 1 11

2 1 3

2 5 28

3 0 22

3 2 -6

5 0 -15



National Tsing Hua University ®  copyright OIANational Tsing Hua University 44

1st Transpose Algorithm

SparseMatrix SparseMatrix::Transpose() {

SparseMatrix b(cols, rows, terms); 

if (terms > 0) { // has nonzero terms

int currentB = 0;

for(int c=0; c<cols; c++)  // O(cols)

for(int i=0; i<terms; i++)  // O(terms)

if(smArray[i].col == c){

b.smArray[currentB].row = c;

b.smArray[currentB].col = smArray[i].row;

b.smArray[currentB++].value=smArray[i].value;

}

}

return b;

}

Time complexity: O(cols  terms)
~O(cols  cols  rows)



National Tsing Hua University ®  copyright OIANational Tsing Hua University 45

 Cause of inefficiency for 1st transpose algorithm:

– Do not know locations of different columns

– This information can be calculated beforehand

 Use additional space to calculate and store

– rowSize[i]: # of nonzero terms in the ith row of AT

– rowStart[i]: location of nonzero term of the ith row of AT in 
smArray

– For i>0, rowStart[i]=rowStart[i-1]+rowSize[i-1]

 Then copy elements from A to AT one by one

 Time complexity: O(terms + cols)!

2nd Transpose Algorithm: Fast Transpose



National Tsing Hua University ®  copyright OIANational Tsing Hua University 46

A row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Count the # of nonzero terms in each row of AT

AT row col

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

Fast Transpose



National Tsing Hua University ®  copyright OIANational Tsing Hua University 47

A row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Calculate location of 1st nonzero term of ith row of AT in smArray

0

2

3

5

7

7

AT row col

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

Fast Transpose



National Tsing Hua University ®  copyright OIANational Tsing Hua University 48

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

0

2

3

5

7

7

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

Fast Transpose



National Tsing Hua University ®  copyright OIANational Tsing Hua University 49

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

1

2

3

5

7

7

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

3 0 22

Fast Transpose



National Tsing Hua University ®  copyright OIANational Tsing Hua University 50

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

1

3

4

7

7

8

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

1 1 11

2 1 3

3 0 22

5 0 -15

3 2 -6

0 4 91

Fast Transpose



National Tsing Hua University ®  copyright OIANational Tsing Hua University 51

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

2

3

5

7

7

8

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

1 1 11

2 1 3

3 0 22

5 0 -15

3 2 -6

0 4 91

2 5 28

Fast Transpose



National Tsing Hua University ®  copyright OIANational Tsing Hua University 52

Fast Transpose (1/2)

SparseMatrix SparseMatrix::FastTranspose( )

{ SparseMatrix b(cols, rows, terms);

if (terms > 0) {

int *rowSize = new int[cols];

int *rowStart = new int[cols];

// compute rowSize[i]=# of terms in row i of b

fill(rowSize, rowSize+cols, 0);  

for(int i=0; i<terms; i++)

rowSize[smArray[i].col]++;

// rowStart[i] = starting pos. of row i in b

rowStart[0] = 0;

for(int i=1; i<cols; i++) 

rowStart[i]=rowStart[i-1]+rowSize[i-1];



National Tsing Hua University ®  copyright OIANational Tsing Hua University 53

Fast Transpose (2/2)

// copy terms from *this to b

for(int i=0; i<terms; i++){

int j = rowStart[smArray[i].col];

b.smArray[j].row = smArray[i].col;

b.smArray[j].col = smArray[i].row;

b.smArray[j].value = smArray[i].value;

rowStart[smArray[i].col]++; 

// Increase the start pos by 1

}

delete [] rowSize;

delete [] rowStart;

}

return b;

}



National Tsing Hua University ®  copyright OIANational Tsing Hua University 54

Running Time Comparison

 For a dense matrix (terms = rows  cols)

– 2nd algorithm is faster: O(rows  cols)

– 1st algorithm is slower: O(rows  cols2)

 For a sparse matrix (terms << rows  cols)

– 2nd algorithm is much faster

 Considerations for time optimization

1st Transpose Algorithm 2nd Transpose Algorithm

O(cols  terms) O(cols + terms)



National Tsing Hua University ®  copyright OIANational Tsing Hua University 55

Sparse Matrix Multiplication

 Compute the transpose of b

0   5   2   0   0   7 3
0
4
3
6
5

=

x

c: m x p a: m x n            b: n x p 

X = 03 + 50 + 24 + 03 + 06 + 75 = 43

c(i,j) =  a(i,k)  b(k,j)



National Tsing Hua University ®  copyright OIANational Tsing Hua University 56

Sparse Matrix Multiplication

 Use approach similar to Polynomial Addition 
to compute the X

0   5   2   0   0   7 3   0   4   3   6   5

=

x

p q qp qp q q

x =(2)(4)+ (7)(5)= 43

c: m x p a: m x n          bT: p x n 

Please refer to the 
textbook for code



National Tsing Hua University ®  copyright OIANational Tsing Hua University 57

Time Complexity

 Complexity: 

– O(rows  b.cols  (Term[i] + b.Terms[j]))

– rows  Term[i] = a.terms 
b.cols  b.Terms[j] = b.terms

– O(rows  b.terms + b.cols  a.terms)

SparseMatrix SparseMatrix::Multiply(SparseMatrix b) {

SparseMatrix bT = b.FastTranspose(); //O(b.terms+b.cols)

for ith row in smArray          // O(rows)

for jth row in bT.smArray      // O(b.cols)

Perform “Polynomal Addition”  // O(Terms[i]+b.Terms[j]) 

}



National Tsing Hua University ®  copyright OIANational Tsing Hua University

Summary

 General arrays as ADT with easy C-type array ext.

 C++ class

 Polynomial as an example of ordered list (linear 
index space)

– 3 versions of presentations for space optimization

 Sparse matrix as another example of ordered list (2 
dimensional index space)

– 2 transpose algorithms for time optimization

 What if we want to support insertion/deletion 
efficiently?


