
National Tsing Hua University ® copyright OIANational Tsing Hua University

CS 2351 Data Structures

Arrays

Prof. Chung-Ta King

Department of Computer Science

National Tsing Hua University

National Tsing Hua University ® copyright OIANational Tsing Hua University 2

Arrays

 You think that you know arrays

– You know how to define an array in C

int a[100];

int *a = malloc(100 * sizeof(int));

– You know the indices are from 0 to 99

– Given an index, i, you know how to read a value from or
write a value into the corresponding entry a[i]

a[i] = ...; ... = a[i];

*(a + i) = ...; ... = *(a + i);

 But, think again …

National Tsing Hua University ® copyright OIANational Tsing Hua University 3

Arrays

 For an array

– Why the indices must start from 0?

– Why the indices must be consecutive?

– Why the array has to store the same type of data?

 In a very general sense, an array is a set of pairs
<index, value>

– e.g. student id: {(James, #1), (Claire, #2), …, (Tony, #n)}

 Though general arrays look “general”, they can often
be implemented efficiently using C-type arrays!

– We shall study in this chapter how C-type arrays may be
extended to support more general arrays and operations

National Tsing Hua University ® copyright OIANational Tsing Hua University

 A conceptual C-type array:

 A conceptual general array:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

D E A E H

C-Type Arrays vs. General Arrays

1 D

2 E6 A

11 E
13 H

[0] [1] [2] [3] [4] [5] [6]

Index 6 2 13 11 1
Value A E H E D

A possible implementation
using C-type arrays

National Tsing Hua University ® copyright OIANational Tsing Hua University

ADT of General Arrays of Floats

5

ADT GeneralArray is
objects: A set of <index, value>. Each index in IndexSet has a value
of float. IndexSet is a finite ordered set of one or more dimensions,
e.g. {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)} for 2-D.
functions:

int SizeOf(); // Return the number of entries in the array
float Retrieve(index i);
/* if (i is in IndexSet) return the float associated with i; else signal
an error */
void Store(index i, float x);
/* if (i is in IndexSet) replace the old pair with <i, x>; else signal an
error */

end GeneralArray

National Tsing Hua University ® copyright OIANational Tsing Hua University

Notes on the ADT of General Arrays

 We only define the interface, not implementation

– We have not specified how the set of <index, value> pairs
are organized and structured  often depends on appl.

– C-type arrays are a special case of general arrays

– C-type arrays can be used to implement general arrays

 General arrays are more flexible, may use memory
more efficiently (depending on implementation), and
allow index set checked for validity

 We will see different applications of general arrays in
this chapter, which can be implemented efficiently
using C-type arrays

6

National Tsing Hua University ® copyright OIANational Tsing Hua University

How to implement an ADT in C++?

7

National Tsing Hua University ® copyright OIANational Tsing Hua University 8

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

 Sparse matrices as another example

– Time optimization in associated operations

8

National Tsing Hua University ® copyright OIANational Tsing Hua University

An Example C++ Class

9

#ifndef RECTANGLE_H

#define RECTANGLE_H

// In the header file Rectangle.h

class Rectangle {

public:

Rectangle(); // constructor

~Rectangle(); // destructor

int GetHeight();

int GetWidth();

private:

int xLow, yLow, height, width;

};

#endif

National Tsing Hua University ® copyright OIANational Tsing Hua University

C++ Class Definition

 A C++ class consists of 4 components

– Class name: Rectangle

– Data members: xLow, yLow, height, width

– Member functions: GetHeight(), GetWidth()

– Levels of program access: public, protected, private

 Program access of data members/member functions

– Public: can be accessed from any where in the program

– Private: can be accessed from within its class or by a
friend class or function

– Protected: can be accessed from within its class or from its
subclasses or by a friend

10

National Tsing Hua University ® copyright OIANational Tsing Hua University

C++ Constructors and Destructors

 Constructor: a member function to initialize data
members of an object, e.g. Rectangle()

– Has same name as class, must be public, no return value

– If defined, automatically executed when object is created

– Can define default initial values

 Destructor: a member function to delete data
members immediately before object is deleted or
goes out of scope , e.g. ~Rectangle()

11

National Tsing Hua University ® copyright OIANational Tsing Hua University

Data Abstraction & Encapsulation in C++

 Data encapsulation is enforced in C++ by declaring all
data members of a class to be private or protected

– External access to data members only by member
functions

 Data abstraction of classes:

– Specification: must be in public portion, consist of names
of public member functions, type of their arguments and
return values (function prototype)
 usually placed in a header file

– Implementation: usually placed in a source file of the same
name

12

National Tsing Hua University ® copyright OIANational Tsing Hua University

Implementation of a C++ Class

13

// In the source file Rectangle.cpp

#include “Rectangle.h”

Rectangle::Rectangle(int x=0, int y=0,

int h=0, int w=0):

xLow(x), yLow(y), height(h), width(w)

{}

int Rectangle::GetHeight() {

return height;

}

int Rectangle::GetWidth() {

return width;

}

Default values

National Tsing Hua University ® copyright OIANational Tsing Hua University

Declaring and Invoking a C++ Class

14

#include <iostream>

#include “Rectangle.h”

main() {

Rectangle r,s; //object of class Rectangle

Rectangle *t = &s; // object pointer

...

if (r.GetHeight()*r.GetWidth() >

t->GetHeight()*t->GetWidth()) cout<<“r”;

else cout<<“s”;

cout<<“ has the greater area” << endl;

};

National Tsing Hua University ® copyright OIANational Tsing Hua University

Operator Overloading

 How to check if two Rectangle objects are equal?
– You may write a function, e.g. equal(r,s), to compare,

which takes these two objects as arguments, compares
the four data members, and returns a true or false

– Isn’t it wonderful if you could just say
if (r == s) { ... }

So, the operator == not only compares variables of basic
data types, e.g. int, float, but also user defined types

 operator overloading

– User defined data types can be treated same as basic data
types

15

National Tsing Hua University ® copyright OIANational Tsing Hua University

Overloading == as a Member Function

 The pointer this inside a member function points
to the class object that invoked it  *this points
to class itself

16

bool Rectangle::operator==(cont Rectangle& s)

{

if (this == &s) return true;

if ((xLow == s.xLow) && (yLow = s.yLow)

&& (height == s.height)

&& (width == s.width)) return true;

else return false;

}

National Tsing Hua University ® copyright OIANational Tsing Hua University

Overloading << as Non-member Function

 This function accesses private data members of class
Rectangle and must be made a friend of it (see
next page)

 With the overloaded operator, we can do
cout << r << endl;

17

ostream& operator<<(ostream& os,Rectangle& r)

{ os << “Position is: “ << r.xLow << “ “;

os << r.yLow << endl;

os << “Height is: “ << r.Height << endl;

os << “Width is: “ << r.Width << endl;

return os;

};

Return cout; thus have cout<<endl

National Tsing Hua University ® copyright OIANational Tsing Hua University

Class Rectangle

18

class Rectangle {

friend ostream& operator<<(ostream& os,

Rectangle& r);

public:

Rectangle(int x = 0, int y = 0,

int h = 0, int w = 0)

: xLow(x), yLow(y), height(h), width(w){ }

bool operator==(const Rectangle& s){

...

}

private:

int xLow, yLow, height, width;

};

National Tsing Hua University ® copyright OIANational Tsing Hua University

ADT of General Arrays in C++

19

class GeneralArray {

private:

/* A set of <index, value>, where IndexSet is a

finite ordered set of one or more dimensions */

public:

GeneralArray(int j; RangeList list,

float initValue = defatultValue);

/* Constructor creates a j-D array of floats.

Range of k-D is given by kth element of list.

For each i in IndexSet, insert <i,initValue> */

float Retrieve(index i);

void Store(index i, float x);

}; // end of GeneralArray

National Tsing Hua University ® copyright OIANational Tsing Hua University 20

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

 Sparse matrices as another example

– Time optimization in associated operations

20

National Tsing Hua University ® copyright OIANational Tsing Hua University

From General Arrays to Ordered Lists

 A general array only specifies that there is a set of
<index, value> pairs  no special order imposed

 An ordered (linear) list is a special case of general
arrays, in which the items are ordered linearly
– Days of Week: (Sun, Mon, Tue, Wed, Thu, Fri, Sat)

– Months: (Jan, Feb, Mar, …, Nov, Dec)

– Poker: (2, 3, 4, 5, 6, 7, 8, 9, 10, Jack,
Queen, King, Ace)

21

1 A

2 B6 F

11 K
13 M

1 A 2 B 6 F 11 K 13 M

National Tsing Hua University ® copyright OIANational Tsing Hua University

Operations on Ordered Lists

 Find the length, n, of the list

 Read the items from left to right (or right to left)

 Retrieve the ith item, 0 ≤ i < n

 Store a new value into ith position, 0 ≤ i < n

 Insert/delete the item at position i, 0 ≤ i < n

 It is not necessary to include all operations

 Depending on applications, different representations
support different subsets of operations efficiently

22

National Tsing Hua University ® copyright OIANational Tsing Hua University 23

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

– Representation, addition, time complexity analysis

 Sparse matrices as another example

– Time optimization in associated operations

23

National Tsing Hua University ® copyright OIANational Tsing Hua University 24

 p(x) = a0xe0 + a1xe1 +, …, anxen =∑ aix
ei

– Each aix
ei is a term with coefficient ai and exponent ei

– Degree of p(x) is largest exponent of the non-zero term

– Ex.: p(x)=x5+4x3+2x2+1
has 4 terms with coefficients 1, 4 ,2, 1, and a degree of 5

 Intuitive representation in a C-type array
– Store (ai, ei) by assigning ai to A[n-i], where n is the degree

1 0 4 2 10

A[0] A[1] A[2] A[3] A[4] A[5]

x5 4x3 2x2 x0

Polynomials

exponent  index
coefficient  value

National Tsing Hua University ® copyright OIANational Tsing Hua University 25

Let a(x) = ∑ aix
i and b(x) = ∑ bix

i

 Polynomial addition

– a(x) + b(x) = ∑ (ai+bi)x
i

– Ex.: a(x)=x5+4x3+2x2+1 (degree = 5)
b(x)=3x6+4x3+x (degree = 6)
a(x) + b(x) = 3x6+x5+8x3+2x2+x+1 (degree = 6)

 Polynomial multiplication

– a(x)  b(x) = ∑ (aix
i  ∑ (bjx

j))

 How about insertion/deletion?

Operations for Polynomials

National Tsing Hua University ® copyright OIANational Tsing Hua University 26

class Polynomial {

// a set of ordered pairs of <ai, ei>, where ai is

// nonzero float, ei is non-negative integer

public:

Polynomial(void); // Constructor p(x) = 0

~Polynomial(void); // Destructor

Polynomial Add(Polynomial poly);

// Return the sum of *this and poly

Polynomial Mult(Polynomial poly);

// Return multiplication of *this and poly

float Eval(float x);

// Evaluate *this at x and return result

};

We will ignore destructor hereafter. It is
programmer’s responsibility to treat her
memory well 

ADT of Polynomials How to represent to be
most efficient in space?

National Tsing Hua University ® copyright OIANational Tsing Hua University 27

1st Representation of Data Members

 Use C-type arrays with fixed space

– Must know MaxDegree, may allocate too much space,
waste memory in a sparse polynomial, e.g., x1000+1

private:

// degree ≤ MaxDegree

int degree;

// coefficient array

float coef[MaxDegree+1];

Usage:

Polynomial a;

a.degree = n;

a.coef[i] = an-i

1 0 4 2 10

A[0] A[1] A[2] A[3] A[4] A[5]

x5 4x3 2x2 x0

National Tsing Hua University ® copyright OIANational Tsing Hua University 28

2nd Representation of Data Members

 Use C-type arrays with dynamically allocated space:

– No need to know MaxDegree in advance, allocate exact
space as needed

– Disadvantage: waste memory in a sparse polynomial

private:

int degree;

float *coef;

// constructor

Polynomial::Polynomial(int d)

{ degree = d;

coef = new float[degree+1];

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 29

3rd Representation of Data Members

 Store only nonzero terms:

– Coefficients are stored in order of decreasing exponents

– Better if polynomial is sparse, but if polynomial is full, it
requires double the space of 2nd representation
 considerations for space optimization

class Polynomial;

// forward decl.

class Term {

friend Polynomial;

float coef;

int exp;

};

private:

// array of nonzero terms

Term* termArray;

// termArray size

int capacity;

// # nonzero terms

int terms;

National Tsing Hua University ® copyright OIANational Tsing Hua University 30

Polynomial Addition (1/3)

Polynomial Polynomial::Add(Polynomial b) {

Polynomial c;

int aPos = 0, bPos = 0;

while((aPos < terms) && (bPos < b.terms))

if(termArray[aPos].exp == b.termArray[bPos].exp){

float t = termArray[aPos].coef

+ b.termArray[bPos].coef;

if (t) c.NewTerm(t, termArray[aPos].exp);

aPos++; bPos++;

} else

if(termArray[aPos].exp < b.termArray[bPos].exp){

c.NewTerm(b.termArray[bPos].coef,

b.termArray[bPos].exp);

bPos++;

}

Append to the end
of Polynomial c

National Tsing Hua University ® copyright OIANational Tsing Hua University 31

Polynomial Addition (2/3)

else{

c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);

aPos++;

}

// add in remaining terms of *this

for(; aPos < terms; aPos++)

c.NewTerm(termArray[aPos].coef,

termArray[aPos].exp);

// add in remaining terms of b

for(; bPos < b.terms; bPos++)

c.NewTerm(b.termArray[bPos].coef,

b.termArray[bPos].exp);

return c;

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 32

Polynomial Addition (3/3)

void Polynomial::NewTerm(const float c, const int e)

{ //Add a new term to the end of termArray

if (terms == capacity)

{ // double capacity of termArray

capacity *= 2;

term *temp = new term[capacity];

copy(termArray, termArray + terms, temp);

delete[] termArray;

termArray = temp;

}

termArray[terms].coef = c;

termArray[terms].exp = e;

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 33

A Running Example

a(x) = x5 + 9x4 + 7x3 + 2x

b(x) = x6 + 3x5 + 6x + 3

aPos

bPos

c(x) =

=x6 + 4x5 + 9x4 + 7x3 + 8x + 3

bPos

aPos aPos

bPos bPos

aPos

+(1+3)x5 + 9x4+ 7x3+(2+6)x + 3x6

aPos

National Tsing Hua University ® copyright OIANational Tsing Hua University 34

Time Complexity Analysis

 Inside the while loop, every statement has O(1) time

 How many times the “while loop” is executed in the
worst case?

– Let a(x) have m terms and b(x) have n terms

– Each iteration accesses next element in a(x), b(x), or both

– Worst case: m + n – 1
e.g., a(x) = 7x5 + x3 + x; b(x) = x6 + 2x4 + 6x2 +3

– Access remaining terms in a(x): O(m), and b(x): O(n)

 Hence, total running time = O(m + n)

National Tsing Hua University ® copyright OIANational Tsing Hua University 35

Outline

 C++ class

 From general arrays to ordered list

 Polynomial as an example

– Space optimization in data structure

 Sparse matrices as another example

– Time optimization in associated operations

– Representation, transpose, multiplication, time complexity
analysis

35

National Tsing Hua University ® copyright OIANational Tsing Hua University

 A matrix has many zero elements

 2D array representation is inefficient

– Waste both memory and running time to store and
compute those zero elements

36

Sparse Matrix

15 0 0 22 0 -15
0 11 3 0 0 0
0 0 0 -6 0 0
0 0 0 0 0 0

91 0 0 0 0 0
0 0 28 0 0 0

a[6][6] =

National Tsing Hua University ® copyright OIANational Tsing Hua University

Example of Sparse Matrices

 Web page matrix

– Web pages are numbered 1 through n

– web(i,j) = number of links from page i to page j

 Space analysis

– n = 2 billion = 2  109 pages

– If use n x n array of ints  4  1018  4 bytes

– Each page links to 10 (say) other pages on average, i.e. 10
nonzero entries per row

– If use general array  2  109  10  8 bytes

National Tsing Hua University ® copyright OIANational Tsing Hua University

Example of Sparse Matrices

 Social network

– People are numbered 1 through n

– friend(i,j) = 1, if i and j are friends; 0, otherwise

– What does it mean by (friend matrix)2?

– n = 100M (say), each person has 100 friends in average

– If use n x n array  1016  4 bytes

– If use general array  108  100  8 bytes

National Tsing Hua University ® copyright OIANational Tsing Hua University

Sparse Matrix Representation

 Use an array, smArray[], of triple <row, col, value> to
store nonzero elements (2D index space)

 Triples are stored in row-major order  ordered list

39

15 0 0 22 0 -15
0 11 3 0 0 0
0 0 0 -6 0 0
0 0 0 0 0 0

91 0 0 0 0 0
0 0 28 0 0 0

a[6][6] =

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28How about insertion/deletion?

National Tsing Hua University ® copyright OIANational Tsing Hua University 40

ADT of Sparse Matrix

class SparseMatrix{

public:

SparseMatrix(int r, int c, int t);

// t is the capacity of nonzero terms

SparseMatrix Transpose(void);

SparseMatrix Add(SparseMatrix b);

SparseMatrix Multiply(SparseMatrix b);

private:

int rows, cols;

int terms, capacity;

MatrixTerm *smArray;

};

class MatrixTerm {

friend SparseMatrix;

int row, col, value;

};

National Tsing Hua University ® copyright OIANational Tsing Hua University

Approximate Memory Requirements

 500 x 500 matrix with 1994 nonzero elements, 4
bytes per element

2D array 500 x 500 x 4 = 1million bytes

Class SparseMatrix 3 x 1994 x 4 + 4 x 4

= 23,944 bytes

National Tsing Hua University ® copyright OIANational Tsing Hua University

Matrix Transpose

42

15 0 0 22 0 -15

0 11 3 0 0 0

0 0 0 -6 0 0

0 0 0 0 0 0

91 0 0 0 0 0

0 0 28 0 0 0

A =

15 0 0 0 91 0

0 11 0 0 0 0

0 3 0 0 0 28

22 0 -6 0 0 0

0 0 0 0 0 0

-15 0 0 0 0 0

AT =

National Tsing Hua University ® copyright OIANational Tsing Hua University

Transpose of Matrix

 Intuitive idea: check columns sequentially and collect
terms with same column together

43

A row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

0 4 91

1 1 11

2 1 3

2 5 28

3 0 22

3 2 -6

5 0 -15

National Tsing Hua University ® copyright OIANational Tsing Hua University 44

1st Transpose Algorithm

SparseMatrix SparseMatrix::Transpose() {

SparseMatrix b(cols, rows, terms);

if (terms > 0) { // has nonzero terms

int currentB = 0;

for(int c=0; c<cols; c++) // O(cols)

for(int i=0; i<terms; i++) // O(terms)

if(smArray[i].col == c){

b.smArray[currentB].row = c;

b.smArray[currentB].col = smArray[i].row;

b.smArray[currentB++].value=smArray[i].value;

}

}

return b;

}

Time complexity: O(cols  terms)
~O(cols  cols  rows)

National Tsing Hua University ® copyright OIANational Tsing Hua University 45

 Cause of inefficiency for 1st transpose algorithm:

– Do not know locations of different columns

– This information can be calculated beforehand

 Use additional space to calculate and store

– rowSize[i]: # of nonzero terms in the ith row of AT

– rowStart[i]: location of nonzero term of the ith row of AT in
smArray

– For i>0, rowStart[i]=rowStart[i-1]+rowSize[i-1]

 Then copy elements from A to AT one by one

 Time complexity: O(terms + cols)!

2nd Transpose Algorithm: Fast Transpose

National Tsing Hua University ® copyright OIANational Tsing Hua University 46

A row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Count the # of nonzero terms in each row of AT

AT row col

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

Fast Transpose

National Tsing Hua University ® copyright OIANational Tsing Hua University 47

A row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Calculate location of 1st nonzero term of ith row of AT in smArray

0

2

3

5

7

7

AT row col

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

Fast Transpose

National Tsing Hua University ® copyright OIANational Tsing Hua University 48

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

0

2

3

5

7

7

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

Fast Transpose

National Tsing Hua University ® copyright OIANational Tsing Hua University 49

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

1

2

3

5

7

7

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

3 0 22

Fast Transpose

National Tsing Hua University ® copyright OIANational Tsing Hua University 50

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

1

3

4

7

7

8

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

1 1 11

2 1 3

3 0 22

5 0 -15

3 2 -6

0 4 91

Fast Transpose

National Tsing Hua University ® copyright OIANational Tsing Hua University 51

row col value

smArray[0] 0 0 15

smArray[1] 0 3 22

smArray[2] 0 5 -15

smArray[3] 1 1 11

smArray[4] 1 2 3

smArray[5] 2 3 -6

smArray[6] 4 0 91

smArray[7] 5 2 28

AT rowSize rowStart

[0]

[1]

[2]

[3]

[4]

[5]

2

1

2

2

0

1

Copy elements from A to AT one by one

2

3

5

7

7

8

AT row col value

smArray[0]

smArray[1]

smArray[2]

smArray[3]

smArray[4]

smArray[5]

smArray[6]

smArray[7]

0 0 15

1 1 11

2 1 3

3 0 22

5 0 -15

3 2 -6

0 4 91

2 5 28

Fast Transpose

National Tsing Hua University ® copyright OIANational Tsing Hua University 52

Fast Transpose (1/2)

SparseMatrix SparseMatrix::FastTranspose()

{ SparseMatrix b(cols, rows, terms);

if (terms > 0) {

int *rowSize = new int[cols];

int *rowStart = new int[cols];

// compute rowSize[i]=# of terms in row i of b

fill(rowSize, rowSize+cols, 0);

for(int i=0; i<terms; i++)

rowSize[smArray[i].col]++;

// rowStart[i] = starting pos. of row i in b

rowStart[0] = 0;

for(int i=1; i<cols; i++)

rowStart[i]=rowStart[i-1]+rowSize[i-1];

National Tsing Hua University ® copyright OIANational Tsing Hua University 53

Fast Transpose (2/2)

// copy terms from *this to b

for(int i=0; i<terms; i++){

int j = rowStart[smArray[i].col];

b.smArray[j].row = smArray[i].col;

b.smArray[j].col = smArray[i].row;

b.smArray[j].value = smArray[i].value;

rowStart[smArray[i].col]++;

// Increase the start pos by 1

}

delete [] rowSize;

delete [] rowStart;

}

return b;

}

National Tsing Hua University ® copyright OIANational Tsing Hua University 54

Running Time Comparison

 For a dense matrix (terms = rows  cols)

– 2nd algorithm is faster: O(rows  cols)

– 1st algorithm is slower: O(rows  cols2)

 For a sparse matrix (terms << rows  cols)

– 2nd algorithm is much faster

 Considerations for time optimization

1st Transpose Algorithm 2nd Transpose Algorithm

O(cols  terms) O(cols + terms)

National Tsing Hua University ® copyright OIANational Tsing Hua University 55

Sparse Matrix Multiplication

 Compute the transpose of b

0 5 2 0 0 7 3
0
4
3
6
5

=

x

c: m x p a: m x n b: n x p

X = 03 + 50 + 24 + 03 + 06 + 75 = 43

c(i,j) =  a(i,k)  b(k,j)

National Tsing Hua University ® copyright OIANational Tsing Hua University 56

Sparse Matrix Multiplication

 Use approach similar to Polynomial Addition
to compute the X

0 5 2 0 0 7 3 0 4 3 6 5

=

x

p q qp qp q q

x =(2)(4)+ (7)(5)= 43

c: m x p a: m x n bT: p x n

Please refer to the
textbook for code

National Tsing Hua University ® copyright OIANational Tsing Hua University 57

Time Complexity

 Complexity:

– O(rows  b.cols  (Term[i] + b.Terms[j]))

– rows  Term[i] = a.terms
b.cols  b.Terms[j] = b.terms

– O(rows  b.terms + b.cols  a.terms)

SparseMatrix SparseMatrix::Multiply(SparseMatrix b) {

SparseMatrix bT = b.FastTranspose(); //O(b.terms+b.cols)

for ith row in smArray // O(rows)

for jth row in bT.smArray // O(b.cols)

Perform “Polynomal Addition” // O(Terms[i]+b.Terms[j])

}

National Tsing Hua University ® copyright OIANational Tsing Hua University

Summary

 General arrays as ADT with easy C-type array ext.

 C++ class

 Polynomial as an example of ordered list (linear
index space)

– 3 versions of presentations for space optimization

 Sparse matrix as another example of ordered list (2
dimensional index space)

– 2 transpose algorithms for time optimization

 What if we want to support insertion/deletion
efficiently?

