CS 2351 Data Structures

Basics of C++

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University

National Tsing Hua University

C and C++

® C and C++ are closely related

— C++ grew out of C and was designed to be source-and-link
compatible with C

® C++is evolving

® C++ is often considered to be a superset of C

— Most C code can be made to compile correctly in C++, but
some valid C code are invalid or behave differently in C++

® C++ is described as “a better C”

— C++ supports OOP and more; but C++ is not pure OOP, i.e.
you can write non-0O0 programs (C-like) using C++

— Study basics here and leave OOP and other features later

National Tsing Hua University

Outlines
;S ST

® Program organization

® Scope and namespace

® Declaration of variables

® Functions

— Parameter passing, function overloading, inlining
® Dynamic memory allocation

® Exceptions

ational Tsing Hua University

Basic Program Structure: “Hello, World!”

C: |#include <stdio.h>

int main (void)

{
printf ("Hello, world'\n");
return 0O;

C++: |// Hello, World! in C++
#include <iostream>

int main(void)

{

std: :cout<<"Hello, world!”<<std::endl;
return O;

* National Tsing Hua University

Some Notes from C++ “Hello, World!”
;S ST

® Comments:

— One line comment:
// Hello, World! in C++

— Multiple line comment:
/* Hello, World!
in C++ */
® #include <iostream>

— Instruct the preprocessor to include C++ header iostream,
that performs standard input and output operations

National Tsing Hua University

Some Notes from C++ “Hello, World!”
;S ST

® std: :cout

— ldentifies the standard character output device (usually,
computer screen)

— Forinput, use std: :cin
std::cin >> a >> b;
0o <<

— Insertion operator: indicate that what follows is inserted
into std: : cout

® std: :endl

® File I/0O by including head file fstream and defining a
filestream variable: ofstream outFile(“abc”,ios::out);

National Tsing Hua University

Some Notes from C++ “Hello, World!”

® Use coutinstead of std: : cout

— cout is part of the standard C++ library, where all the
elements are declared within the namespace std

— These elements may be referred to either qualified (e.g.
std: : cout) or made visible by the using declaration:

#include <iostream>

using namespace std;

int main ()

{
cout << "Hello World! “ << endl;

}

This allows all elements in std namespace to be accessed
in an unuall ed manner (without the std: : prefix

ational Tsing Hua University

Namespace Scope
" ...

® Group related variables and functions together into
narrower logical scopes = avoid name collision

namespace foo {

int value() { return 5; }
}
namespace bar {

const double pi = 3.1416;

double value() { return 2*pi; }

cout << foo::value() << '\n';
cout << bar::value() << '\n';
cout << bar::pi << '\n';

ational Tsing Hua University

Keyword “using”

® The “using” keyword can directly expand namespace

namespace first ({

int x = 5; int y = 10;
}
namespace second {

double x = 3.1416; double y = 2.7183;

using first::x; using second::y;
cout << x << '\n';

cout << y << '\n';

cout << first::y << '\n';

cout << second::x << '\n’';

ational Tsing Hua University

4 Types of Scopes in C++

...
Each variable has a scope and is uniquely identified by
its scope and its name. A variable is visible to a
program only from within its scope.

® Local scope:

— A name declared in a block is in local scope of that block

void funcl() {
int 1;
for (i=0;
int j
}
}

i<10;
42 ;

i++) |

printf(“%d %d\n” ,i, j);

National Tsing Hua University

4 Types of Scopes in C++

® Namespace scope:
— Discussed above

® Class scope:

— Declarations associated with a class definition; each class
represents a distinct class scope; discussed next chapter

® File scope:

— Declarations not contained in a function definition, class
definition, or a namespace

ational Tsing Hua University

Outlines
;S ST

® Program organization

® Scope and namespace

® Declaration of variables

® Functions

— Parameter passing, function overloading, inlining
® Dynamic memory allocation

® Exceptions

ational Tsing Hua University

Data Declaration
s

® Data declaration associates a data type with a name
— Constant values: 5, ‘@’, 4.3
— Variables
— Constant variables: variables cannot be assigned a value

— Enumeration types:
enum semester {SUMMER, FALL, SRPING};

— Pointers

— Reference types: an alternative name for an object
int 1 = 5; int& j = 1;
when i’s value is changed, j’s value changes
correspondingly

ational Tsing Hua University

Reference Variables
s

® Reference = alias
— The operator “&” has been extended in C++

int id = 100;

int *id ptr = &id;
const int *cid ptr = &id;
int &1d alias = id;
const int &cid alias = id;

— Now idand id _alias are bound to the “same” variable

ational Tsing Hua University

Reference and Pointer
s

® Pointer can be NULL, but reference CANNOT be NULL
(reference must be bound to a variable)
// address = 0

int *ptr = NULL;
// syntax error

int &ptr = NULL;
® Binding target of reference CANNOT be changed
int y = 20;
ptr = &y; // pointer can change target
® Pointers can be initialized at any time, but a
reference must be initialized when it is created

National Tsing Hua University

Outlines
;S ST

® Program organization

® Scope and namespace

® Declaration of variables

® Functions

— Parameter passing, function overloading, inlining
® Dynamic memory allocation

® Exceptions

ational Tsing Hua University

Functions in C++
s

® Two types of functions:
— Regular functions
— Member functions: associated with C++ classes
® Function components:
— Name, arguments (signature), return type, body
® Function declaration (function prototype):
int add(int, int);
® Function definition:
int add(int a, int b) {
return a+b;

}

http://www.cplusplus.com/doc/tutorial/functions/

National Tsing Hua University

Parameter Passing: Call-by-Value

® \When an object is passed by value, it is copied into
the function’s local storage and the function

accesses its local copy. Memory
int add5(int a, int b) X 10
{
a=a+5; y 23
return a + b;
} Storage [3
. . spaceof | b
add5(x, y); adds() |
What happen if arguments are arrays,
e.g., a[100] and b[100]>?

National Tsing Hua University

What If “Value” Is “Address”?

® Recall in C, we can use pointers as arguments

— When the “value” of a pointer variable is passed, an
address is passed and the function can Memory

access the actual object directly.
X
void addv(int *a, int n)
{
a[n-1] = a[0] + 5;
return O; b
} Storage | a |— gy
int x[100]; space of [n 100
o add5() L
addv (x, 100) ;

National Tsing Hua University

Reference Variables for Call-by-Reference

® In C++, an argument may be passed by reference

— Only the address of the object is copied to the function’s
local store, and function accesses the Memory
actual arguments

— Default for array types X 10
int add5(int& a, int b) Y 23
{

a=a-+5; St _
return a + b; Ofage | a I ax
} spaceof | b
add5() L

add5 (x, y);

National Tsing Hua University

Function Overloading
" ...

® |In C++, we can define functions with same name but
different signatures in the same program, e.g.
int Max (int, int);
int Max (int, int, int);
int Max (int*, int);
int Max (float, int);

® In C, it is impossible to define two functions with
same function name

National Tsing Hua University

How Function Overloading Work in C++ ?
-

® Function signature is defined in C using
— Function name

® Function signature is defined in C++ using
— Function name
— Type of parameters
— Order of parameters

ational Tsing Hua University

Inline Functions
s

® Aninline function is declared by keyword inline

— Compiler will replace all calls to the function by its body
- eliminate overhead of function calls/returns

inline int Sum(int a, int b)

{

return a + b;

ational Tsing Hua University

Outlines
;S ST

® Program organization

® Scope and namespace

® Declaration of variables

® Functions

— Parameter passing, function overloading, inlining
® Dynamic memory allocation

® Exceptions

ational Tsing Hua University

Dynamic Memory Allocation
" ...
® new and delete operators

— An object created by new exists for the duration of the
program unless it is explicitly deleted by delete

— In C, dynamic memory allocation is done through library
functionsmalloc () and free ()

#include <iostream>
#include <cstdio>

int *x = (int*) malloc(sizeof(int)) ;
free (x) ;

int * y = new int ;

delete y ;

int * data new int [10];
delete [] data ;

National Tsing Hua University

const vs. #define
;S ST

® “const”: new keyword to declare constant variables

int main() {
const int SIZE = 5;

SIZE = 10; // compiler ERROR

}

® Compiler will do type-check for you. The #define
macro cannot achieve this.

National Tsing Hua University

Outlines
;S ST

® Program organization

® Scope and namespace

® Declaration of variables

® Functions

— Parameter passing, function overloading, inlining
® Dynamic memory allocation

® Exceptions

ational Tsing Hua University

Exception Handling

" ...
® Exceptions are used to signal occurrences of run
-time errors and other special conditions

— Hardware may signals exceptions

— C++ programs can check for exceptional conditions and
throw an exception

int DivZero(int a, int b, int c)
{
if (<=0 || b<=0 || ¢ <= 0)
throw “All parameters should be > 07;
return a + b / c;

ational Tsing Hua University

Exception Handling
...
® Exceptions that might be thrown by a piece of code
can be handled by enclosing this code within a try
block, followed by zero or more catch blocks

— The catch block has an argument whose type determine
the type of exception caught by that catch block

— A catch block typically contains code to recover from the
exception that has occurred

— When an exception is thrown, normal execution of the try
block terminates and the first catch block that matches
the type of the thrown exception is executed, with the
remaining catch blocks bypassed

National Tsing Hua University

Exception Handling

#include <iostream> // std::cerr
#include <exception> // std::exception
int main () {
try {
if(hasError ()) {
throw 20;

}
} catch (int ERRNO){ // catch exception int
std: :cerr << "ERRORNO=" << ERRNO << '\n';

} catch (...) { //catch all types of exceptions
std: :cerr << "exception caught: " << '\n';

}

return O;

* National Tsing Hua University

Summary
T

® C++is a better C

— In addition to OOP, C++ provides many new features to
facilitate programming: reference variables, cout/cint,
namespace, call-by-reference, function/operator
overloading, inline function, exception handling, ...

® Further readings:
— http://www.cplusplus.com/doc/tutorial/

— Any textbook on C++

— MIT’s Introduction to C++

http://ocw.mit.edu/courses/electrical-engineering-and-computer
-science/6-096-introduction-to-c-january-iap-2011/

" National Tsing Hua University

