

CS 2351 Data Structures

Introduction to Algorithms

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University

Outline

- Data structure and algorithm
 - What is algorithm? How to specify algorithms?

- Designing algorithms
 - Divide-and-conquer, recursion

- Performance, analysis and measurement
 - Concept of Big-O

You have a Problem to Solve

• What is the shortest path from Taipei to Hsinchu?

To Solve the Problem on a Computer

You must formulate the problem so that the computer can understand

– What are the inputs?

- What are the outputs?
- How to represent and structure the data?

Data Structure

 You then tell the computer how to solve the problem step-by-step

This is called algorithm

What Is Algorithm?

- An algorithm is a finite set of instructions to solve a computational problem:
 - Must specify every step completely, so a computer can implement it without any further "understanding"
 - Must work for all possible inputs of the problem
 - May have many different algorithms for a problem
- An algorithm must be:
 - Definiteness: each instruction is clear and unambiguous
 - Finiteness: terminate after a finite number of steps
 - Effectiveness: every instruction must be basic and easy to be computed

Algorithm and Data Structure

- - It is important to design the data structures and associated operations to provide natural and efficient support for the most important steps in the algorithm, e.g. finding a data
- Selecting a data structure to solve a problem:
 - Analyze your problem to determine the basic operations that must be supported
 - Quantify the resource constraints for each operation
 - Select the data structure best meets these requirements

Algorithm and Efficiency

- As computer scientists, we strive for efficient algo.
- Two aspects of efficiency: good/optimal
 - The algorithm produces an <u>effixent</u> output/solution, e.g., find the <u>shortest</u> path from Taipei to Hsinchu
 ← the original problem is often an *optimization* problem
 - The algorithm produces the output/solution <u>efficiently</u>,
 e.g., sort a set of numbers in the <u>shortest</u> time, find the
 shortest path from Taipei to Hsinchu in the <u>shortest</u> time

End result versus process/method

 We are more concerned of the efficiency that an algorithm can produce the solution

Algorithm and Efficiency

- An algorithm is efficient if it solves the problem within required resource constraints, e.g. time, space
 - Some algorithms solve the problem but are not efficient
- To develop efficient algorithms
 - We must first analyze the problem to determine the performance goals that must be achieved
 - Select the right data structure
 - Work out the algorithm and prove it correct
 - Analyze and estimate performance of resultant algorithm (to be discussed later) to see if perf. goals are achieved

How to Specify Algorithms?

- Natural languages
 - English, Chinese, ...etc.
 - A lot of sentences...
- Graphic representation
 - Flowchart
 - Feasible only if the algorithm is small and simple
- Programming language + few English
 - **-** C++
 - Concise and effective!

Example: Search through a Sorted List

- The problem:
 - Input: n ≥ 1 distinct integers that are sorted in array A[0] ...
 A[n-1], an integer x
 - Output: if x=A[j], return index j
 otherwise return -1

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A 1 3 5 8 9 17 32 50

Ex. For x=9, return index 4 For x=10, return -1 Data structure

Binary Search Algo in Natural Language

- Let *left* and *right* denote the left and right end indices of the list with initial value 0 and *n*-1
- Let middle = (left+right)/2 be the middle position
- Compare A[middle] with x and obtain three results:
 - x < A[middle]: x must be somewhere between 0 and middle-1 → set right to middle-1
 - -x == A[middle]: return middle
 - x > A[middle]: x must be somewhere between middle+1 and n-1 → set left to middle+1
- If x is not found and there are still integers to check, recalculate middle and repeat above comparisons

Binary Search Algo in C++ and English

```
int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;
 while (left <= right)</pre>
  { // more integers to check
    int middle = (left+right)/2;
    if (x < A[middle]) right = middle-1;</pre>
    else if (x > A[middle]) left = middle+1;
    else return middle;
  } // end of while
  return -1; // not found
```

Outline

Data structure and algorithm

- Designing algorithms
 - Divide-and-conquer, recursion

Performance, analysis and measurement

Designing Algorithms

- There is no single recipe for inventing algorithms
- There are basic rules:
 - Understand your problem well may require much mathematical analysis!
 - Use existing algorithms (reduction) or algorithmic ideas
- There is a single basic algorithmic technique:

Divide and Conquer

- In its simplest form it is simple induction: in order to solve a problem, solve a similar problem of smaller size
- The key conceptual idea: think about how to use the smaller solution to get the larger one

Induction Expressed as Recursion

- To express induction-styled divide-and-conquer method, recursion is very handy
 - A recursive method is one that contains a call to itself
- Direct recursion:
 - Function calls itself directly
 - Ex.: funcA → funcA
- Indirect recursion:
 - Function A calls other functions that invoke function A
 - Ex.: funcA → funcB → funcA

From Iterative to Recursive

```
int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;
 while (left <= right)</pre>
  { // more integers to check
    int middle = (left+right)/2;
    if (x < A[middle]) right = middle-1;</pre>
    else if (x > A[middle]) left = middle+1;
    else return middle;
-} // end of while
 return -1; // not found
```

Learn Using an Example

• Search for x=9 in array A[0], ..., A[7]:

1st iteration:

2nd iteration:

3rd iteration: return index 4

Recursive Binary Search

```
int BinarySearch(int *A, const int x,
              const int left, const int right)
{ // Search A[left],..,A[right] for x
  if (left <= right) { // more to check</pre>
    int middle = (left+right)/2;
    if (x < A[middle])</pre>
       return BinarySearch(A,x,left,middle-1);
    else if (x > A[middle])
       return BinarySearch(A,x,middle+1,right);
    return middle;
  } // end of if
  return -1; // not found
```

Easy If Problem Recursively Defined

Binomial coefficient

$$C(n, m) = \frac{n!}{m! (n-m)!}$$

can be computed by the recursive formula:

$$C(n, m) = C(n-1, m) + C(n-1, m-1)$$

where
$$C(0, 0) = C(n, n) = 1$$

Recursive Binomial Coefficients

```
int BinoCoeff(int n, int m)
  // termination conditions
  if (m==n) then return 1;
 else if (m==0) then return 1;
  // recursive step
  else
    return BinoCoeff(n-1,m)+BinoCoeff(n-1,m-1);
```

Hints for Recursive Algorithms

To ensure a feasible recursive algorithm, you must stick to the following principles:

- Termination conditions:
 - Your function should return a value or stop at certain condition and stop calling itself
- Decreased parameters:
 - Your parameters should be continuously decreased so that each call brings us one step closer to a termination condition.

Outline

Data structure and algorithm

- Designing algorithms
- Performance, analysis and measurement
 - Time/space complexity, asymptotic performance, concept of Big-O

You Are Given a Task/Problem

Make 100,000 arrows in 3 days

You Are Considering Two Options

- Hire 1000 workers, each makes 100 arrows in 3 days, including find and chop the woods
- Borrow the arrows from your enemy (草船借箭)

Use 20 boats, each has 30 soldiers and 50 straw figures on

the sides

Which option is better?

This is called performance comparison

(We are comparing efficiency of algorithms)

Before You Can Compare Performance

- You must define what you mean by "better"
 - Usually you use some quantitative values to express the goodness, called performance metrics
 - Common metrics: time (latency/throughput), space, power, cost, ...
 - How to define goodness for making arrows?

- You must be able to analyze/measure performance
 - How to analyze the cost of making arrows?
 - How to measure the cost of making arrows?

Comparison May Be Meaningless

- If the problem size is too small, performance comparison may not be meaningful or even misleading
- Suppose you only need to make 10 arrows in 3 days
- How about 1000 arrows in 3 days?
- How about 100,000 arrows in 3 days?
 - Apparently, there is a break even point

The comparison is meaningful only if the problem size is large enough

To compare performance, you should consider very <u>large</u> <u>problem size</u> and focus on the effects of <u>growth rate</u>

(You should learn to sharpen your skills in developing large, robust programs)

Same for Comparing Program/Algorithm

- Criteria for performance:
 - Space complexity: How much memory space is used?
 - Time complexity: How much running time is needed?
 - Power/energy
 - → Must be considered against problem size
- Two approaches:
 - Performance analysis
 - Machine independent, a prior estimate
 - Performance measurement
 - Machine dependent, a posterior testing

Space Complexity

- Space complexity: $S(P) = C + S_P(I)$
- C is a fixed part:
 - Independent of the number and size of input and output
 - Including code space, space for simple variables, fixed-size structured variables, constants
- S_P(I) is a variable part:
 - Dependent on the particular problem instance, or *Instance* Characteristics (I) (problem size)
 - Including space of referenced variables and recursion stack space

Analyzing Space Complexity

- Should concentrate on estimating $S_p(I)$
 - → need to first determine how to quantize instance characteristics
 - Commonly used instance characteristic (I) include number and magnitude of input and output of the problem

```
Ex. 1: sorting(A[], n)
Then I= number of integers = n
```

Ex. 2: find the shortest path
Then I= number of nodes/edges in the graph

Space Complexity: Iterative Summing

```
float Sum(float *a, const int n)
{ float s = 0;
  for(int i=0; i<n; i++)
    s += a[i];
  return s;
}</pre>
```

- I = n (number of elements to be summed)
- $C = \text{code space} + \text{space for } \mathbf{a}, \mathbf{n} = \text{constant}$
- S_{sum}(I) = 0 (a stores only the address of array)
- \rightarrow S(Sum) = C + $S_{sum}(I)$ = constant

Space Complexity: Recursive Summing

```
float Rsum(float *a, const int n)
{ float s = a[n-1];
  if (n<=1) return s;
  else return s = s + Rsum(a, n-1);
}</pre>
```

- I = n (number of elements to be summed)
- C = constant
- Each recursive call "Rsum" requires 4 words
 - Space for n, a, return value, return address
- # of calls: Rsum(a, n) \rightarrow ... \rightarrow Rsum(a, 1) \rightarrow n calls
- \rightarrow S(Rsum) = C + $S_{Rsum}(n)$ = constant + 4 words $\times n$

Time Complexity

- Time complexity: $T(P) = C + T_P(I)$
- C is a constant part:
 - Compile time, program load time, ...; independent of instance characteristics
- T_P(I) is a variable part:
 - Running time

Focus on run time $T_p(I)$

Time Complexity

- How to evaluate $T_p(I)$?
 - Count every Add, Sub, Multiply, ... etc.
 - Practically infeasible because each instruction takes different running time at different machines
- Use "program step" to estimate T_p(I)
 - "program step" = a segment of code whose execution time
 is *independent* of instance characteristics (I)

```
for(i=0; i<n, i++) \rightarrow one program step \Rightarrow one program step
```

Yes, they have different execution times. But, when we compare large problem sizes, the differences are immaterial

Time Complexity: Iterative Summing

- I = n (number of elements to be summed)
- $T_{Sum}(I) = 1 + (n+1) + n + 1 = 2n+3$ steps
- \rightarrow T(Sum) = C + T_{Sum}(n) = constant + (2n+3) steps

For large problem sizes, n dominates the execution time

Time Complexity: Recursive Summing

- I = n (number of elements to be summed)
- $T_{Rsum}(n) = ?$

Time Complexity: Recursive Summing

- I = n (number of elements to be summed)
- $T_{Rsum}(1) = 2$ steps

```
• T_{Rsum}(n) = 2 + T_{Rsum}(n-1)

= 2 + (2 + T_{Rsum}(n-2))

= ...

= 2(n-1) + T_{Rsum}(1) = 2n steps
```

Observation on Step Counts

• In the previous examples:

$$T_{Sum}(n) = 2n + 3 \text{ steps}$$

 $T_{Rsum}(n) = 2n \text{ steps}$

- Can we say that Rsum is faster than Sum?
 - No!
 - The execution time of each step is inexact and different
- Instead, we focus on "Growth Rate" to compare the time complexities of programs
 - "How the running time changes with changes in the instance characteristics?"

Program Growth Rate

- For Sum program, $T_{Sum}(n) = 2n + 3$ • when n is tenfold (10X), $T_{Sum}(n)$ is tenfold (10X)
 - We say that the Sum program runs in linear time

- $T_{Rsum}(n) = 2n$ also runs in **linear** time
- Since T_{Sum}(n) and T_{Rsum}(n) have the same growth rate, we say that they are equal in time complexity
- What if $T_{Rsum}(n) = 2^n$?

Mere Growth Rate Is Insufficient

Two programs with time complexities

$$- P1: C_1 n^2 + C_2 n$$

- P2: C₃ N

Which one runs faster?

- Case 1: $c_1 = 1$, $c_2 = 2$, and $c_3 = 100$
 - P1(n^2 + 2n) ≤ P2(100n) for $n \le 98$ → P1 is faster!
- Case 2: $c_1 = 1$, $c_2 = 2$, and $c_3 = 1000$
 - P1($n^2 + 2n$) ≤ P2(1000n) for n ≤ 998 → P1 is faster
- No matter what values c_1 , c_2 and c_3 are, there will be an n beyond which c_1 $n^2 + c_2$ $n > c_3$ n and P2 is faster

Asymptotic Performance

- We should compare the complexity in terms of growth rate for a sufficiently large value of n
- Big-O notation:
 f(n) = O(g(n)) iff there exist positive constants c and
 n₀>0 such that f(n) ≤ c g(n) for all n ≥ n₀
- Ex1.: 3n + 2 = O(n)
 - $-3n+2 \le 4n$ for all n ≥ 2
- Ex2.: 100n + 6 = O(n)
 - -100n+6 ≤ 101n for all n ≥ 10
- Ex3.: $10n^2 + 4n + 2 = O(n^2)$
 - $-10n^2 + 4n + 2 \le 11 n^2$ for all n ≥5

Properties of Big-O

- f(n) = O(g(n)) states g(n) is an *upper bound* of f(n)
 - $n = O(n) = O(n^{2.5}) = O(n^3)$
 - For the Big-O notation to be informative, g(n) should be as small a function of n as possible!
 - Big-O refers to as worst-case running time of a program
- Omega (Ω) notation: *lower bound* or *best-case* $f(n) = \Omega(g(n))$ iff these exist c, $n_0 > 0$ such that $f(n) \ge c$ g(n) for all all $n \ge n_0$
- Theta (Θ) notation: **tight bound** or **average-case** $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Big-O for Polynomial Functions

• Theorm 1.2:

If
$$f(n) = a_m n^m + ... + a_1 n + a_0$$
, then $f(n) = O(n^m)$

- -3n + 2 = O(n)
- -100n + 6 = O(n)
- $-6n^4 + 1000 n^3 + n^2 = O(n^4)$
- Since Big-O estimates worst-case performance, the "worst term" dominates other terms
 - leading constants and lower-order terms do not matter
 - $n^2 + n \log n = O(?)$
 - $O(2^n) + O(n^{10000}) = O(?)$

Names of Common Functions

Complexity	Name
O(1)	Constant time
O(log n)	Logarithmic time
O(n log n)	$O(\log n) \le . \le O(n^2)$
O(n ²)	Quadratic time
$O(n^3)$	Cubic time
O(n ¹⁰⁰)	Polynomial time
O(2 ⁿ)	Exponential time

When n is large enough, the lower terms take more time than the upper ones

Running Times on Computers

 Running times on a 1-billion-steps-per-second computer (1 billion = 10⁹)

	f (n)							
n	n	n log ₂ n	n ²	n^3	n ¹⁰	2 ⁿ		
10 20 30 40 50 100 10 ³ 10 ⁵ 10 ⁶	.01 µs .02 µs .03 µs .04 µs .05 µs .10 µs 100 µs 1ms	.03 µs .09 µs .15 µs .21 µs .28 µs .66 µs 130 µs 1.66 ms 19.92ms	.1 µs .4 µs .9 µs 1.6 µs 2.5 µs 10 µs 1 ms 100 ms 10s 16.67m	1 μs 8 μs 27 μs 64 μs 125 μs 1ms 1s 16.67m 11.57d 31.71y	10s 2.84h 6.83d 121d 3.1y 3171y 3.17*10 ¹³ y 3.17*10 ²³ y 3.17*10 ³³ y 3.17*10 ⁴³ y	1μs 1ms 1s 18m 13d 4*10 ¹³ y 32*10 ²⁸³ y		

 μ s = microsecond = 10⁻⁶second; ms =milliseconds = 10⁻³seconds s = seconds; m = minutes; h = hours; d = days; y = years;

Algorithm impractical if complexity is exponential or high degree polynomial

Performance Measurement

- Obtain actual space and time requirement when running a program
- How to do time measurement?
 - Use system functions such as time()
 - How many data points to measure?
 - To time a short program, it is necessary to repeat it many times, and then take the average
- How to measure average/worst-case time?
- How to determine a sufficiently large instance for asymptotic performance?

Performance Measurement

Use time(), measured in seconds

```
#include <time.h>
void main()
  time t start = time(NULL);
  // main body of program comes here!
  time t stop = time(NULL);
  double duration=(double)difftime(stop, start);
```

Summary

- An algorithm is a finite set of instructions to solve a computational problem
 - Take some inputs and produce some outputs
 - Right choice of data structures affects algorithm efficiency
- Divide-and-conquer is a common strategy for developing algorithms
 - Recursion is handy for expressing certain type of such algo
- Algorithms are often evaluated using time/space
 - Evaluated using instance characteristics, considering growth rate and large problem size
 - Concept of Big-O