CS 2351 Data Structures

Introduction to Algorithms

Prof. Chung-Ta King
Department of Computer Science
National Tsing Hua University

’* National Tsing Hua University



Outline
;S ST

® Data structure and algorithm
— What is algorithm? How to specify algorithms?

® Designing algorithms
— Divide-and-conquer, recursion

® Performance, analysis and measurement
— Concept of Big-O

ational Tsing Hua University



You have a Problem to Solve

® What is the shortest path from Taipei to Hsinchu?

9 zME
SEE  SUE

AEE @ 2R SPEE
Imﬁ@ \ 24

~‘ —

V/HEHEB

57 Al

National Tsing Hua University



To Solve the Problem on a Computer

® You must formulate the problem so that the
computer can understand

— What are the inputs?
— What are the outputs?

— How to represent and
structure the data?

Data Structure

® You then tell the computer how to solve the problem
step-by-step

This is called algorithm

National Tsing Hua University



What Is Algorithm?

® An algorithm is a finite set of instructions to solve a
computational problem:

— Must specify every step completely, so a computer can
implement it without any further “understanding”

— Must work for all possible inputs of the problem
— May have many different algorithms for a problem
® An algorithm must be:
— Definiteness: each instruction is clear and unambiguous
— Finiteness: terminate after a finite number of steps

— Effectiveness: every instruction must be basic and easy to
be computed

National Tsing Hua University



Algorithm and Data Structure

...
® \When developing an algorithm, the input data and
intermediate results must be organized and stored
in some structures = data structure

— It is important to design the data structures and associated
operations to provide natural and efficient support for the
most important steps in the algorithm, e.g. finding a data

® Selecting a data structure to solve a problem:

— Analyze your problem to determine the basic operations
that must be supported

— Quantify the resource constraints for each operation
— Select the data structure best meets these requirements

National Tsing Hua University



Algorithm and Efficiency

® As computer scientists, we strive for efficient algo.

® Two aspects of efficiency: g0o0d/optimal

— The algorithm produces an effifent output/solution, e.g.,
find the shortest path from Taipei to Hsinchu

< the original problem is often an optimization problem

— The algorithm produces the output/solution efficiently,
e.g., sort a set of numbers in the shortest time, find the
shortest path from Taipei to Hsinchu in the shortest time

End result versus process/method

® \We are more concerned of the efficiency that an
algorithm can produce the solution

%

National Tsing Hua University



Algorithm and Efficiency

® An algorithm is efficient if it solves the problem
within required resource constraints, e.g. time,
space
— Some algorithms solve the problem but are not efficient

® To develop efficient algorithms

— We must first analyze the problem to determine the
performance goals that must be achieved

— Select the right data structure
— Work out the algorithm and prove it correct

— Analyze and estimate performance of resultant algorithm
(to be discussed later) to see if perf. goals are achieved

National Tsing Hua University



How to Specify Algorithms?

-
® Natural languages
— English, Chinese, ...etc.
— A lot of sentences...
® Graphic representation

— Flowchart
e Feasible only if the algorithm is small and simple
® Programming language + few English
— C++

e Concise and effective!

ational Tsing Hua University



Example: Search through a Sorted List

® The problem:

— Input: n 2 1 distinct integers that are sorted in array A[0O] ...
A[n-1], an integer x |
— Output: if x=A[j], return index j - Data structure
otherwise return -1

A[O] A[1] A[2] A[3] Al4] A[5] A[6] A[7]

A 1 3 3} 8 9 17 32 50

Ex. For x=9, return index 4
For x=10, return -1

National Tsing Hua University



Binary Search Algo in Natural Language
...

® Let /eft and right denote the left and right end
indices of the list with initial value 0 and n-1

® Let middle = (left+right)/2 be the middle position

® Compare A[middle] with x and obtain three results:

— x < A[middle]: x must be somewhere between 0 and
middle-1 - set right to middle-1

— x == A[lmiddle]: return middle

— x> A[lmiddle]: x must be somewhere between middle+1
and n-1 =2 set left to middle+1

® If x is not found and there are still integers to check,
recalculate middle and repeat above comparisons

National Tsing Hua University



Binary Search Algo in C++ and English
...

int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;

while (left <= right)

{ // more integers to check
int middle = (left+right)/2;
if (x < A[middle]) right middle-1;
else if (x > A[middle]) 1left = middle+l;
else return middle;

} // end of while

return -1; // not found

National Tsing Hua University



Outline
-l

® Data structure and algorithm

® Designing algorithms

— Divide-and-conquer, recursion

® Performance, analysis and measurement

ational Tsing Hua University



Designing Algorithms

e
® There is no single recipe for inventing algorithms

® There are basic rules:

— Understand your problem well — may require much
mathematical analysis!

— Use existing algorithms (reduction) or algorithmic ideas

® There is a single basic algorithmic technique:
Divide and Conquer

— In its simplest form it is simple induction: in order to solve
a problem, solve a similar problem of smaller size

— The key conceptual idea: think about how to use the
smaller solution to get the larger one

National Tsing Hua University



Induction Expressed as Recursion
...

® To express induction-styled divide-and-conquer
method, recursion is very handy

— A recursive method is one that contains a call to itself
® Direct recursion:
— Function calls itself directly

— Ex.: funcA =» funcA

® Indirect recursion:

— Function A calls other functions that invoke function A
— Ex.: funcA =» funcB = funcA

National Tsing Hua University



From lterative to Recursive
s,

int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;

—while (left <= right)
{ // more integers to check
int middle = (left+right)/2;
if (x < A[middle]) right middle-1;
else if (x > A[middle]) 1left = middle+l;
else return middle;
—} // end of while
return -1; // not found

National Tsing Hua University



Learn Using an Example

® Search for x=9 in array A[O], ..., A[7]:

A[O] A[1] A[2] A[3] A[4] A[5] A[6] A[7]
1st iteration: A1 M 5181911713250
1

8<x

A[4] A[5] Al6] Al]
2nd iteration: /A» 9 117%
A similar 17 > x
{ problem-of 1 A[4] A[5]
3rd iteration: SMELErsie NL% 17
return index 4 9 ==X

National Tsing Hua University



Recursive Binary Search
" ...
int BinarySearch(int *A, const int x,

const int left, const int right)
{ // Search A[left],..,A[right] for x
if (left <= right) { // more to check

int middle = (left+right)/2;
if (x < A[middle])

return BinarySearch(A,x,left middle-1);
else if (x > A[middle])

return BinarySearch (A,x,middle+1l,right) ;

return middle;
} // end of if
return -1; // not found

National Tsing Hua University



Easy If Problem Recursively Defined
-

® Binomial coefficient

n!
m! (n-m)!

C(n, m) =

can be computed by the recursive formula:

C(n, m) = C(n-1, m) + C(n-1, m-1)

where C(0, 0) =C(n, n) =1

National Tsing Hua University



Recursive Binomial Coefficients

int BinoCoeff (int n, int m)
{
// termination conditions
if (m==n) then return 1;
else if (m==0) then return 1;

// recursive step

else
return BinoCoeff (n-1,m)+BinoCoeff (n-1,m-1) ;

ational Tsing Hua University



Hints for Recursive Algorithms
" ...

To ensure a feasible recursive algorithm, you must stick
to the following principles:

® Termination conditions:

— Your function should return a value or stop at certain
condition and stop calling itself

® Decreased parameters:

— Your parameters should be continuously decreased so that
each call brings us one step closer to a termination
condition.

ational Tsing Hua University



Outline
;S ST

® Data structure and algorithm

® Designing algorithms

® Performance, analysis and measurement

— Time/space complexity, asymptotic performance, concept
of Big-O

ational Tsing Hua University



You Are Given a Task/Problem

® Make 100,000 arrows in 3 days

/ X 10%

National Tsing Hua University



You Are Considering Two Options

® Hire 1000 workers, each makes 100 arrows in 3 days,
including find and chop the woods

® Borrow the arrows from your enemy (3 #5415 %T)

— Use 20 boats, each has 30 soldiers and 50 straw figures on
the sides

Which option is
better?

ational Tsing Hua University



This is called
performance comparison

(We are comparing efficiency of
algorithms)

* National Tsing Hua University



Before You Can Compare Performance
" ...

® You must define what you mean by “better”

— Usually you use some quantitative values to express the
goodness, called performance metrics

— Common metrics: time (latency/throughput), space,
power, cost, ...

— How to define goodness for making arrows?

® You must be able to analyze/measure performance
— How to analyze the cost of making arrows?
— How to measure the cost of making arrows?

%

National Tsing Hua University



Comparison May Be Meaningless

® |f the problem size is too small, performance
comparison may not be meaningful or even
misleading

® Suppose you only need to make 10 arrows in 3 days
® How about 1000 arrows in 3 days?
® How about 100,000 arrows in 3 days?

— Apparently, there is a break even point w
>

The comparison is meaningful only if the
problem size is large enough

National Tsing Hua University



To compare performance,
you should consider very large
problem size and focus on the

effects of growth rate

(You should learn to sharpen your skills in
developing large, robust programs)

tional Tsing Hua University



Same for Comparing Program/Algorithm
" ...

® Criteria for performance:
— Space complexity: How much memory space is used?
— Time complexity: How much running time is needed?
— Power/energy
=» Must be considered against problem size

® Two approaches:
— Performance analysis
e Machine independent, a prior estimate

— Performance measurement

e Machine dependent, a posterior testing

ational Tsing Hua University



Space Complexity

e
® Space complexity: S(P) = C + Sy(l)
® Cis a fixed part:

— Independent of the number and size of input and output

— Including code space, space for simple variables, fixed-size
structured variables, constants

® S,(I) is a variable part:

— Dependent on the particular problem instance, or Instance
Characteristics (1) (problem size)

— Including space of referenced variables and recursion stack
space

National Tsing Hua University



Analyzing Space Complexity
e
® Should concentrate on estimating S,(l)
- need to first determine how to quantize instance

characteristics

— Commonly used instance characteristic (I) include number
and magnitude of input and output of the problem

Ex. 1: sorting(A[], n)
Then I= number of integers = n

Ex. 2: find the shortest path
Then I= number of nodes/edges in the graph

National Tsing Hua University



Space Complexity: Iterative Summing

float Sum(float *a, const int n)
{ £float s = 0;
for(int i=0; i<n; i++)
s += a[1i];
return s;

}

® | = n (humber of elements to be summed)
® C =code space + space for a, n = constant
® S. () =0 (astores only the address of array)
= S(Sum) =C+S._(l) =constant

Sum

National Tsing Hua University



Space Complexity: Recursive Summing

float Rsum(float *a, const int n)
{ float s = a[n-1];
if (n<=l) return s;
else return s = s + Rsum(a, n-1);

}

® | = n (number of elements to be summed)
® C = constant

® Each recursive call “Rsum” requires 4 words
— Space for n, a, return value, return address

® # of calls: Rsum(a, n) 2 ... 2 Rsum(a, 1) = n calls
=» S(Rsum) =C + S . (n) = constant + 4 words x n

National Tsing Hua University



Time Complexity
T

® Time complexity: T(P) = C+ Ty(l)
® Cis a constant part:

— Compile time, program load time, ...; independent of
instance characteristics

® T,(l) is a variable part:
— Running time

Focus on run time T(l)

ational Tsing Hua University



Time Complexity
...

® How to evaluate T,(l) ?
— Count every Add, Sub, Multiply, ... etc.

— Practically infeasible because each instruction takes
different running time at different machines

® Use “program step” to estimate T(l)

— “program step” = a segment of code whose execution time
is independent of instance characteristics (l)
for(i=0; i<n, i++) = one program step
a=2; —> one program step

Yes, they have different execution times. But, when we
-compare large problem sizes, the differences are immaterial

National Tsing Hua University



Time Complexity: Iterative Summing

float Sum(float *a, const int n)
{ float s = 0; // 1 step
for (int i=0; i<n; i++) // n+l steps
s += al[i]; // n steps
return s; // 1 step
}

® | = n (humber of elements to be summed)
T, (I)=1+(n+l)+n+1=2n+3 steps
=>» T(Sum) = C+ T, (n) = constant + (2n+3) steps

- For large problem sizes, n dominates the execution time

National Tsing Hua University



Time Complexity: Recursive Summing

float Rsum(float *a, const int n)
{ if (n<=1) // 1 step
return a[0]; // 1 step
else return (Rsum(a, n-1) + a[n-1]); // 1 step

}

® | = n (humber of elements to be summed)

®T. (n)="7

Rsum

Y + 8

National Tsing Hua University



Time Complexity: Recursive Summing

float Rsum(float *a, const int n)
{ if (n<=1) // 1 step
return a[0]; // 1 step
else return (Rsum(a,n-1) + a[n-1]); // 1 step

}

® | = n (hnumber of elements to be summed)
® Tr.mll) =2 steps

® TRsum(n) =2+ TRsum(n_l)
=2+(2+T;,,(n-2))

=£.(n—1)+T

Recurrence relations

(1) =2n steps

Rsum

National Tsing Hua University



Observation on Step Counts
...

® In the previous examples:
Te,m(n) =2n + 3 steps
Teumln) = 2n steps
® Can we say that Rsum is faster than Sum ?
— No!
— The execution time of each step is inexact and different
® Instead, we focus on “Growth Rate” to compare the
time complexities of programs

— “How the running time changes with changes in the
instance characteristics?”

National Tsing Hua University



Program Growth Rate
-

® For Sum program, T, .(n)=2n+3
- when n is tenfold (10X), T....(n) is tenfold (10X)

— We say that the Sum program runs in linear time

Sum

® T.. (n)=2nalsorunsin linear time

Rsum

® Since T, (n) and T;.,.(n) have the same growth
rate, we say that they are equal in time complexity

® Whatif T, (n)=2""7

Rsum

’* National Tsing Hua University



Mere Growth Rate Is Insufficient

® Two programs with time complexities
, 2
- Pl:C,N“+¢C,nN
~ P2:C3 N
Which one runs faster?

® Casel:c,=1,c,=2,and c, =100

— P1(n%?+ 2n) £ P2(100n) for n <98 - P1 is faster!
® Case 2: ¢, =1, c,=2,and c;=1000

— P1(n? + 2n) £ P2(1000n) for n £998 - P1 is faster

® No matter what values c,, ¢, and c; are, there will be
an n beyond which ¢; n? + ¢, n > ¢, n and P2 is faster

National Tsing Hua University



Asymptotic Performance
...

® \We should compare the complexity in terms of
growth rate for a sufficiently large value of n

® Big-O notation:
f(n) = O(g(n)) iff there exist positive constants c and
ny>0 such that f(n) <cg(n) foralln>n,

® Ex1.:3n+ 2 =0(n)
— 3n+2<4n foralln =22
® Ex2.:100n + 6 = O(n)
— 100n+6 <101n foralln>10
® Ex3.: 10n2+4n + 2 = O(n?)
— 10n?+4n+2<11n? foralln>5

National Tsing Hua University



Properties of Big-O
-l
® f(n) = O(g(n)) states g(n) is an upper bound of f(n)
— n=0(n) =0(n?>) =0(n3)

— For the Big-O notation to be informative, g(n) should be as
small a function of n as possible!

— Big-O refers to as worst-case running time of a program

® Omega (Q) notation: lower bound or best-case
f(n) = Q(g(n)) iff these exist ¢, n,>0 such that f(n) = c
g(n) for all all n 2 n,

® Theta (©) notation: tight bound or average-case
f(n) = ©(g(n)) iff f(n) = O(g(n)) and f(n) = Q(g(n))

%

’* National Tsing Hua University



Big-O for Polynomial Functions
" ...

® Theorm 1.2:
If f(n)=a, n™+..+a,n+a, then f(n) =0(nm)
— 3n+2=0(n)
— 100n + 6 = O(n)
— 6n*+ 1000 n3 + n?=0(n%
® Since Big-O estimates worst-case performance, the
“worst term” dominates other terms
— leading constants and lower-order terms do not matter
— n?+nlogn=0(?)
— 0O(2") + O(n10000) = O(?)

%

National Tsing Hua University



Names of Common Functions

Complexity Name
O(1) Constant time
O(log n) Logarithmic time
O(n log n) O(log n) £.<0(n?%)
O(n?) Quadratic time
O(n3) Cubic time
O(n1%9) Polynomial time
O(2") Exponential time

When n is large enough, the lower terms
take more time than the upper ones

National Tsing Hua University



Running Times on Computers

® Running times on a 1-billion-steps-per-second
computer (1 billion = 10°)

f(n)
n n nlog, n n? n3 i 2n
10 .01 us .03 us 1 us 1 us 10s Tus
20 .02 us .09 us 4 us 8 us 2.84h 1ms
30 .03 us 15 us 9 us 27 us 6.83d 1s
40 .04 us 21 us 1.6 us 64 us 121d 18m
20 .05 us 28 us 2.5 us 125 us 3.1y 13d
100 10 us .66 us 10 us 1ms 3171y 4*1Q13y
103 1 us 9.96 us 1 ms 1s  3.17*1013%y  32*10%83y
104 10 us 130us 100ms 16.67m  3.17*10%3y
10° 100 us 1.66 ms 10s 11.57d  3.17*1033y
106 1ms 19.92ms  16.67m 31.71y  3.17*10%y

us = microsecond = 10-second; ms =milliseconds = 10-3seconds

s = seconds; m = minutes; h = hours; d

= days; y = years;

Algorithm impractical if complexity is exponential or high degree polynomial

ational Tsing Hua University



Performance Measurement

-
® Obtain actual space and time requirement when
running d Program
® How to do time measurement?
— Use system functions such as time()

— How many data points to measure?

— To time a short program, it is necessary to repeat it many
times, and then take the average

® How to measure average/worst-case time?

® How to determine a sufficiently large instance for
asymptotic performance?

National Tsing Hua University



Performance Measurement
s,

® Use time(), measured in seconds

#include <time.h>
void main|()

{
time t start = time (NULL) ;

// main body of program comes here!

time t stop = time (NULL) ;
double duration=(double)difftime (stop,start);

National Tsing Hua University



Summary
T

® An algorithm is a finite set of instructions to solve a
computational problem

— Take some inputs and produce some outputs
— Right choice of data structures affects algorithm efficiency

® Divide-and-conquer is a common strategy for
developing algorithms

— Recursion is handy for expressing certain type of such algo

® Algorithms are often evaluated using time/space

— Evaluated using instance characteristics, considering
growth rate and large problem size

— Concept of Big-O

National Tsing Hua University



