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Abstract—To defend against reconnaissance activity in ad hoc wireless networks, we propose transmission power control as an

effective mechanism for minimizing the eavesdropping risk. Our main contributions are given as follows. First, we cast the wth-order

eavesdropping risk as the maximum probability of packets being eavesdropped when there are w adversarial nodes in the network.

Second, we derive the closed-form solution of the first-order eavesdropping risk as a polynomial function of the normalized

transmission radius. This derivation assumes a uniform distribution of user nodes. Then, we generalize the model to allow arbitrary

user nodes distribution and prove that the uniform user distribution minimizes the first-order eavesdropping risk. This result plays an

essential role in deriving analytical bounds for the eavesdropping risk given arbitrary user distributions. Our simulation results show

that, for a wide range of nonuniform traffic patterns, the difference in their eavesdropping risk values from the corresponding lower

bounds is 3 dB or less.

Index Terms—Wireless network security, transmission power control, wireless ad hoc networks.
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1 INTRODUCTION

AN ad hoc wireless network consists of a collection of
autonomous nodes, all capable of transmitting and

receiving packets. Such a network can operate in a
standalone fashion (with the ability of self-configuration)
or can connect to the Internet. Minimal configuration time
and quick deployment make ad hoc networks suitable for
emergency situations like natural or human-induced
disasters, military conflicts, emergency situations, and so
forth. In addition, the migration of wireless networks from
hot spots to multihop ad hoc networks is an important step
toward self-organized global routing [1], [2].

During data transmission, a node dissipates a finite
amount of energy to send packets over wireless channels.
Due to the existence of noise and interference in the wireless
environment (for example, the signal-to-interference-plus-
noise ratio), the transmission range cannot be infinitely large.
A node can receive a packet only if it is located within the
transmission range of the sending node.

Although most of the autonomous nodes in an ad hoc
network are user nodes, adversarial nodes may also exist. If an
adversarial node intercepts the transmitted packets, it can
attack the network and produce damage, depending on the
actual information contained in the eavesdropped packets. In
fact, according to US-CERT, reconnaissance activity is the
most frequent incident on computer networks since 2002 [3]
and many attacks (including DoS attacks and unauthorized
access incidents) are preceded by reconnaissance activity [4].

Reconnaissance activity can be classified into active
scanning and passive eavesdropping. Scanning activity
may perform port scanning and probing, looking for
vulnerable services to attack or ways to gain a detailed
map of available hosts and open ports. Firewalls, intrusion-
detection systems, and early warning systems (for example,
Recon [5]) can usually detect the scanning activity. On the
contrary, the eavesdropping activity is not detectable. It is
important to note that the information gathered from the
eavesdropped packets (for example, identity and privacy
information) can be of critical importance since it can be
used later to compromise the network by identifying
potential victims, conducting target-specific attacks, or
breaking the cryptographic key in use. Such follow-up
attacks (referred to as hear-and-fire attacks) result in what we
call eavesdropping risk.

Eavesdropping risk causes a more severe security
problem in ad hoc wireless networks compared to single-
hop wireless networks or fixed wired networks. Indeed,
due to the absence of an underlying communication
infrastructure, the source and destination nodes in ad hoc
wireless networks heavily rely on the intermediate nodes to
relay their data. This makes the nodes more susceptible to
attacks based on the information contained in the eaves-
dropped packets.

The existing defense mechanisms against the hear-and-
fire attacks in ad hoc wireless networks can be categor-
ized into cryptographic techniques, secure routing, and
anonymous routing. Recent research on cryptographic
techniques [6] focuses on developing a robust efficient
cryptosystem for protecting the data confidentiality under
resource constraints. Important issues in designing such
cryptosystems include key management [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], authentication [18], hash
functions, and encryption/decryption algorithms [19].
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These cryptographic techniques facilitate the design of
secure and anonymous routing protocols in the presence of
adversarial nodes. The adversarial nodes may compromise
the network operation by exhibiting a Byzantine behavior
[20] while being able to corrupt, replay, and fabricate the
routing packets. A secure routing protocol (for example,
[21]) is one that not only ensures data confidentiality but
also prevents the attacks mounted by the adversarial nodes
from disrupting the connections between source-destina-
tion ðS-DÞ pairs.

Conceptually, anonymous routing can be regarded as an
extension of secure routing. In addition to guaranteeing
successful data transmission from source to destination in
the presence of adversarial nodes, an anonymous routing
protocol in a loose sense (for example, [22], [23], [24]) needs
to preserve identity privacy. In a strict sense, an anonymous
routing protocol requires preserving identity privacy,
location privacy, and route anonymity (see [25] for the
definitions of these three terms).

Unlike previous cryptography-based work that causes
high overhead in terms of processing delay [22], packet size
[26], and energy consumption [27], we propose the use of
transmission power control as an effective mechanism for
improving the network security. This security improvement
is achieved by decreasing the eavesdropping risk probability.
The basic idea is to adapt the transmission range in a way
that helps to reduce sniffing. More precisely, as illustrated
in Fig. 1, instead of directly sending a packet from source to
destination using the maximum transmission range, a better
way that makes the adversaries less likely to eavesdrop the
packet is to forward the packet via multiple hops, each of
them using a smaller transmission range.

However, assessing the impact of transmission power
control on the eavesdropping risk is not a trivial problem.
The simple intuition that using the smallest transmission
power minimizes the probability of a random packet being
eavesdropped is not true in general. Indeed, the actual
distribution of user nodes has a significant impact on how a
transmission power control scheme affects the eavesdrop-
ping risk. Contrary to Fig. 1, which shows that, given the
uniform user distribution, using minimum transmission

range makes an adversary less likely to sniff the transmitted
packet, Fig. 2 shows a counterexample where sending a
packet at the minimum transmission power actually makes
it easier for an adversary to intercept the transmitted
packet; this is due to the long detour during packet
transmission.

By mentioning the complex nature of transmission
power control on a single packet, we point out the inherent
difficulty of investigating the impact of transmission power
control on the entire network in terms of eavesdropping risk.
This leads to the need for a rigorous analysis since intuitive
explanations are insufficient and may appear contradicting
to each other.

In practice, the power amplifiers used in commercial
transceivers—even those designed for short-range and low-
power communication standards like Bluetooth [28] and
ZigBee [29]—have the capability of controlling the output
power. This transmission power control capability is
necessary for connectivity and energy conservation, but,
at the same time, this provides an opportunity for
improving the network security.

Our proposal for transmission power control for security
improvement has beneficial side effects on throughput,
energy conservation, and quality-of-service support. At the
same time, the techniques targeting the network perfor-
mance improvement (for example, [30], [31], [32], [33], [34],
[35], [36], [37]) usually also reduce the eavesdropping risk.
This is because the techniques that improve spatiotemporal
reuse of wireless channels usually help to reduce inter-
ference and transmission power, and vice versa. For
example, the COMPOW protocol [36], which transmits
packets at the lowest possible power for throughput
purposes, actually enhances the network security, in a
statistical sense, according to our quantitative analysis.

As the main theoretical contribution, we analyze the
impact of transmission power control on the eavesdropping
risk as follows:

. First, given an arbitrary geographical distribution of
user nodes, we define the wth-order eavesdropping
risk as the maximum probability of packets being
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Fig. 1. An example illustrating that controlling the transmission range
helps reduce the probability of a packet being eavesdropped. (a) The
case when a packet is transmitted using the maximum transmission
range. Due to its location within the transmission range, the adversary
can eavesdrop the packet. On the contrary, the adversary in (b) (where
the packet is forwarded via multiple hops at small transmission range)
cannot sniff the packet since this adversary lies outside any transmis-
sion range.

Fig. 2. A counterexample disproving the intuition that minimizing
transmission power always reduces the probability of a packet being
eavesdropped. When a packet is sent from node S to node D at
minimum transmission power (say, the transmission radius R ¼ 1), it is
relayed via nodes 1; 2; . . . ; 6 and an adversary residing in the green
shadow can eavesdrop the packet. When the transmission radius is
doubled (that is, R ¼ 2), the packet arrives at the destination directly and
an adversary can intercept the packet only if it resides in the red
hexagon. The ratio of these two areas is 30:24, which is contrary to the
intuition described above. For clarity reasons, we use triangle cells
(equivalently, the hexagonal transmission range), but the same idea can
be illustrated with the circular or square transmission ranges.



eavesdropped when there are w adversarial nodes in
the ad hoc wireless network. The eavesdropping risk
is defined as a “maximum” probability because we
assume that the adversarial nodes are able to move
around for maximizing the probability of listening to
packets transmitted over the wireless channels.

. Second, in order to simplify the multiple access
control problem, we use the unit torus model that is
a generalization of El Gamal et al.’s model [38].1

Similarly to El Gamal et al.’s model, our model is able
to capture the geographical structure and interference
properties of the ad hoc wireless networks. Under the
unit torus model, we consider a random network of
uniformly distributed nodes and then derive a closed-
form solution of the first-order eavesdropping risk as
a function of the transmission radius.

. Finally, we generalize the user distribution to allow
for arbitrary distributions and study their impact on
the eavesdropping risk. To this end, we prove that
the uniform user distribution minimizes the first-
order eavesdropping risk. Therefore, the uniform
user distribution represents the best-case scenario for
reducing the eavesdropping risk. As shown later in
this paper, the best-case analysis not only helps
future security research based on power-controlled
topology synthesis in ad hoc wireless networks but
also plays a crucial role in deriving the first known
bounds for the eavesdropping risk.

The remainder of this paper is organized as follows: In
Section 2, we formulate the problem of eavesdropping risk.
We present analytical results on the relationship between
transmission power control and the eavesdropping risk in
Section 3 and simulation results in Section 4. Finally, in
Section 5, we present some concluding remarks.

2 THE EAVESDROPPING RISK PROBLEM

The main objective of this section is to formulate the
eavesdropping risk problem in ad hoc wireless networks.
To this end, we first introduce the model of the parameter-
ized cell-partitioned unit torus, abbreviated as the unit torus

model. This model is a generalization of El Gamal et al.’s
model proposed in [38] in the sense that the user nodes can
be arbitrarily distributed; it also allows the use of directional

antennas.

2.1 The Unit Torus Model

As shown in Fig. 3, the network region described as a
parameterized cell-partitioned unit torus is divided into
several cells. A cell is a square of area aðnÞ containing a set
of distinct nodes, where n is the total number of user nodes.
The user nodes can be arbitrarily distributed as long as each
cell in the unit torus has at least one user node, thus
guaranteeing successful transmission. Each user node has a
randomly chosen destination. Each cell can support at most
one active link transmission per time slot and a node can
only transmit (or listen) to the nodes within the same cell or
in its adjacent cells.

Unlike El Gamal et al.’s model, which assumes that the
packets are transmitted omnidirectionally, we allow the
directional broadcast mode. In practice, all antennas have
directional properties and, therefore, they do not radiate
power in all directions equally. For example, a typical Yagi
antenna radiation pattern is drawn in Fig. 4 (reproduced
from [43]), which contains a main lobe and several side
lobes. Figs. 5a and 5b illustrate that, for a directional
broadcast to either an orthogonally neighboring cell or a
diagonally neighboring cell, it is reasonable to assume that
only the nodes within the cell(s) where either the
transmitter or receiver resides can hear the directional
broadcast.

Therefore, one can define the normalized transmission
range as the cell area aðnÞ and the normalized transmission
radius r ¼

ffiffiffiffiffiffiffiffiffiffi
aðnÞ

p
as the square root of the transmission

range.2 Note that both the normalized transmission range
and normalized transmission radius are fractional numbers
in the interval ð0; 1�. The extreme case, aðnÞ ¼ 1, corre-
sponds to a configuration in which any node can reach all
other nodes directly.

We assume that the packets originating from the source
nodes always pass through the route(s) with the least
number of hops when traveling toward their destinations.
For instance, the S0-D0 pair in Fig. 3 is two hops away,
whereas the S00-D00 pair is four hops away. It is possible to
have multiple routes with the smallest hop count between
any S-D pair. For example, the solid and the dotted routes
between the S00-D00 pair have the same number of hops. In
such a case, a route is randomly chosen with an equal
probability �. Hence, the probability of the S0-D0 pair
passing through the shaded cell in Fig. 3 is � ¼ 1, whereas
the probability of the S00-D00 pair passing through the shaded
cell is � ¼ 1=2.

2.2 Problem Formulation

A packet will be eavesdropped if and only if it passes
through cells where adversarial nodes reside. An S-D pair
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1. Similar models are used for investigating other important issues (for
example, network capacity, delay, power/rate allocation, energy minimiza-
tion, and coverage) in [38], [39], [40], [41], [42].

2. Other possible definitions can make the normalized transmission
range a multiple of the cell area and the normalized transmission radius a
multiple of the square root of the transmission range.

Fig. 3. As in El Gamal et al.’s model, the unit torus is divided into cells of

size aðnÞ. Several S-D lines passing through the shaded cell are shown

using solid lines.



may be eavesdropped in cell i if and only if there is an
adversarial node located in cell i and the S-D pair passes
through cell i with a probability greater than zero. In
general, the probability that an S-D pair passes through a
certain cell can be 0, 1, or a fraction between 0 and 1. This is
because, although an S-D pair can have multiple routes
with a minimal number of hops, only a few of these routes
may actually pass through cell i.

Now, we give the definitions of the passing volume and
the probability of packets being eavesdropped.

Definition 1. Given an arbitrary user/adversary distribution, the

probability of packets being eavesdropped is defined as

the number of packets that pass through any of the cells with
one (or more) adversarial node divided by the total number of

(originating) packets.

Definition 2. Given an arbitrary user/adversary distribution, the

passing volume is defined as the probability of packets being

eavesdropped multiplied by the number of S-D pairs.

Proposition 1. If the traffic volume of all S-D pairs follows a

common distribution (for example, Gaussian, exponential, and
so forth), then the passing volume is equal to the sum of

probabilities of the S-D pairs passing through any of the cells

with adversarial node(s).

We note that the adversarial nodes are allowed to move
around in order to maximize the traffic volume they can
eavesdrop. Since each S-D pair is assumed to have an
identical traffic pattern in a statistical sense, maximizing the
eavesdropped traffic volume then becomes equivalent to
maximizing the probability of packets being eavesdropped;
this, in turn, is equivalent to maximizing the probability of
S-D pairs being eavesdropped. This equivalence relation-
ship allows us to define the wth-order eavesdropping risk

problem as follows:
Given an arbitrary user distribution and w adversarial nodes

present in an ad hoc wireless network, find the adversary

distribution such that the probability of packets being eaves-

dropped is maximized.

Definition 3. Given an arbitrary user distribution, the

wth eavesdropping risk is defined as the maximum
probability of packets being eavesdropped for all possible

distributions of w adversarial nodes in an ad hoc wireless

network.

Definition 4. Given an arbitrary user distribution, the

wth-order eavesdropping volume is defined as the

wth-order eavesdropping risk multiplied by the number of
S-D pairs.

Proposition 2. If the traffic volume of all S-D pairs follows a
common distribution, then the wth-order eavesdropping
volume is equal to the maximum passing volume for all
possible distributions of w adversarial nodes in an ad hoc
wireless network.

One should note that the larger the wth-order eaves-
dropping risk is, the more likely the adversarial nodes
eavesdrop the packets transmitted over the wireless
channels. Whereas the adversarial nodes are able to move
around in order to maximize the eavesdropping risk, for
security concerns, the user nodes tend to minimize the
eavesdropping risk by relying on some basic defense
mechanisms. For example, two such mechanisms for
reducing the eavesdropping risk are transmission power
control and topology optimization.

Although of potential interest, physical-layer techniques
(for example, frequency hopping and spread spectrum
communication) are not considered in this paper. These
techniques do not improve the network security under the
assumption that, compared to a user node, an adversarial
node uses an identical transceiver and has better computa-
tional capabilities. Routing may help reduce the eavesdrop-
ping risk, but the complexity of optimizing a routing
algorithm is exponential. Therefore, in this paper, we focus
on the analysis of the transmission range.

3 ANALYTICAL RESULTS

The main objective of this section is to analyze the impact of
transmission power control on the eavesdropping risk. Our
approach is described as follows: We first consider a
uniform distribution of user nodes, which is a common
assumption [38], [39], [44], [45] in ad hoc wireless networks,
and derive the closed-form solution for the first-order
eavesdropping risk as a function of the normalized transmis-
sion radius. This uniform case is then generalized to allow
for arbitrary node distributions. We prove that the result
derived for the uniform case provides a lower bound for
such general scenarios. The tightness of this lower bound
will be investigated later, in Section 4, by simulations over a
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Fig. 4. This is a polar plot of the 10-element Yagi antenna and shows

the side lobes of the antenna relative to the main beam in decibels

(from [43]). Fig. 5. This figure shows that, for a directional broadcast to a node in any
neighboring cell, it is reasonable to assume that only the nodes within
the cell(s) in which either the transmitter or receiver resides can hear the
directional broadcast. (a) The directional broadcast to one of the four
orthogonally nearest cells. (b) The directional broadcast to one of the
four diagonally nearest cells.



wide range of traffic patterns and a wide range of node
distributions.

3.1 Uniform Distribution of User Nodes

Theorem 1 below gives the closed-form formula of the first-
order eavesdropping risk when user nodes are uniformly
deployed.

Theorem 1. In a random network consisting of n nodes
distributed independently and uniformly over a unit torus
whose normalized transmission radius is r, the first-order
eavesdropping risk is given as follows:

1. If s is odd, then the first-order eavesdropping risk is
R�1ðrÞ ¼ s2þ3s�1

3s3 ¼ 1
3 rþ r2 � 1

3 r
3 and

2. if s is even, then the first-order eavesdropping risk is

R�1ðrÞ ¼
s2þ3sþ1

2

3s3 ¼ 1
3 rþ r2 þ 1

6 r
3,

where s ¼ 1=r is the number of cells along a single edge of the
unit torus.

Proof. Consider an arbitrary S-D pair, say, S-D pair j, where
1 � j � nðnþ 1Þ=2.3 Let Hj and Dj be the number of
hops and the displacement between S-D pair j, respec-
tively. The displacement is defined as Dj ¼ 0 if the two
ends of S-D pair j are within the same cell; otherwise, the
displacement is equal to the hop count, that is, Dj ¼ Hj.
Define the Bernoulli random variables Y h

j for any hop h,
0 � h � Hj, to be equal to 1 if and only if hop h of S-D
pair j ends at a cell where an adversarial node resides.4

Note that, for all h0 6¼ h ð1 � h0; h � HjÞ, the event Y h0
j ¼ 1

is mutually exclusive to the event Y h
j ¼ 1; this is because a

single adversarial node cannot reside in two cells. Define
the random variable Yj as Y 0

j þ
PDj

h¼1 Y
h
j . Due to mutual

exclusion, the eventYj ¼ 1 is equivalent to the event that S-
D pair j is eavesdropped by the adversarial node. There-
fore, the (conditional) probability that S-D pair j is
eavesdropped, given its displacement Dj, is

E½YjjDj� ¼ E Y 0
j þ

XDj

h¼1

Y h
j

���Dj

" #

¼
XDj

h¼0

E½Y h
j � ¼ ðDj þ 1Þ �E½Y 1

j � ¼ ðDj þ 1Þ � aðnÞ;

ð1Þ

where the third equality follows from the fact that, due to
the symmetry of the torus, each hop of an S-D pair is
equally likely to end at the cell in which an adversarial
node resides.

Note that, since the user nodes are randomly deployed
with uniform distribution, the conditional probabilities
YjjDjs, 1 � j � nðnþ 1Þ=2, are identically distributed.
Since S-D pair j is arbitrarily chosen, the first-order
eavesdropping risk R�1ðrÞ is equal to the (unconditional)
probability of S-D pair j being eavesdropped:

R�1ðrÞ ¼E½Yj� ¼ EDj
½E½YjjDj��

¼EDj
½ðDj þ 1Þ � aðnÞ� ¼ aðnÞ � ðE½Dj� þ 1Þ;

ð2Þ

where the third equality follows from (1).

The only thing left to complete this proof is to find the
value of E½Dj�. We calculate E½Dj� as follows:

1. When s is odd, the probability that the displace-
ment associated with S-D pair j is d is5

PrðDj ¼ dÞ ¼
1
s2 if d ¼ 0
8d
s2 if d ¼ 1; 2; . . . ; s�1

2
0 otherwise:

8<
:

Therefore, the expectation of Dj is

E½Dj� ¼
Xs�1

2

d¼0

d � Pr½Dj ¼ d� ¼
s2 � 1

3s
:

By using (2), the eavesdropping risk is

R�1ðrÞ ¼ aðnÞ � ðE½Dj� þ 1Þ ¼ s
2 þ 3s� 1

3s3
: ð3Þ

2. When s is even, similarly to the odd case, we get

PrðDj ¼ dÞ ¼

1
s2 if d ¼ 0
8d
s2 if d ¼ 1; 2; . . . ; s2� 1
2s�1
s2 if d ¼ s

2

0 otherwise;

8>>><
>>>:

E½Dj� ¼
s2 þ 1

2

3s
;

and

R�1ðrÞ ¼
s2 þ 3sþ 1

2

3s3
: ð4Þ

By substituting s with 1=r in both (3) and (4), we
prove this theorem. tu

3.2 Arbitrary Distribution of User Nodes

The next step is to generalize the node distribution and

allow for arbitrary distributions. In this section, we prove

that the results provided in Theorem 1 actually serve as

lower bounds for arbitrary distributions of user nodes. This

implies that the uniform case represents the best-case

scenario of the eavesdropping problem.
Before delving into details, it is important to note that the

following naive justification of the best case scenario—if the

distribution of the users is not uniform, then the attacker(s)

will go to the most crowded cell(s) to intercept the highest

volume of communication and, therefore, the uniform

distribution of user nodes minimizes the eavesdropping

risk—is simply wrong. Fig. 6 shows a counterexample of

why this intuition is wrong. Assume that there are 2m user

nodes residing in each dark-gray cell, m user nodes in each

light-gray cell, and 0 user node in other cells. By this

intuition, the attacker maximizes the eavesdropping

KAO AND MARCULESCU: MINIMIZING EAVESDROPPING RISK BY TRANSMISSION POWER CONTROL IN MULTIHOP WIRELESS ... 1013

3. The destination node is allowed to be the source node. Therefore, the
total number of S-D pairs is nðn� 1Þ=2þ n ¼ nðnþ 1Þ=2.

4. Although hop 0 does not exist physically, we define that hop 0 ends at
the source node.

5. Without loss of generality, PrðDj ¼ dÞ can be computed by assuming

that the source node is given. The total number of cells in the unit torus is s2.

In order to have a displacement of d, where d ¼ 1; 2; . . . ; s�1
2 , the destination

node must reside in one of ð2dþ 1Þ2 � ð2d� 1Þ2 ¼ 8d cells. Therefore,

PrðDj ¼ dÞ ¼ 8d=s2.



volume (in terms of the number of S-D pairs eavesdropped
by the adversarial node) by moving to a dark-gray cell.
However, in doing so, the first-order eavesdropping
volume ð2mÞ2=2þ ð2mÞðmþ 2mÞ ¼ 8m2 is not maximal
because an attacker residing in a light-gray cell can
eavesdrop m2=2þmð4mÞ þ ð2mÞð2mÞ ¼ 8:5m2 S-D pairs.6

This shows that we need a rigorous proof, as given below
for Theorem 3.

As we discuss later, the eavesdropping risk problem
given an arbitrary node distribution is very complex from a
mathematical point of view. Even the (simplest) first-order
eavesdropping risk has the form of a min-max formula
consisting of a large number of quadratic multivariable
polynomials. For clarity, we present the proof in the
following manner: We first study the corresponding
problem using 1D torus, instead of dealing with the
ordinary 2D torus directly. The proof consists of a
combination of algebraic and geometric techniques. With
minimal modifications, these techniques can be also applied
to the 2D torus.

3.2.1 Notation

To give a rigorous proof, we first introduce a few terms
defined over a unit torus. Consider a network consisting of
n user nodes and w adversarial nodes. The network is
modeled by the unit torus model and partitioned into cells
of area aðnÞ. Let us number the cells 0; 1; . . . ; k� 1 in a left-
to-right and, then, top-to-bottom manner, where k ¼ 1=aðnÞ
is the total number of cells in the network.

A user distribution is denoted by the k-tuple
N ¼ ðn0; n1; . . . ; nk�1Þ, where ni, 0 � i � k� 1, is the num-
ber of user nodes located in cell i. Define INk

n as the set of all
k-tuples of natural numbers (excluding 0) whose k compo-
nents sum up to n. Because n user nodes are distributed
over k cells and each cell has at least one user node, N is a
valid user distribution if and only if N 2 INk

n.
Similarly, we can denote an adversary distribution by the

k-tuple W ¼ ðw0; w1; . . . ; wk�1Þ, where wi is the number of
adversarial nodes located within cell i. Note that, under the
unit torus model, multiple adversarial nodes within a cell
cannot eavesdrop more S-D pairs than a single adversarial
node in the same cell. Therefore, for any cell i, wi is set to
either 0 or 1.

The normalized user distribution X ¼ ðx0; x1; . . . ; xk�1Þ is
defined as xi ¼ ni=n for 0 � i � k� 1. The property of xis
summing up to 1 implies that X 2 IFk

1, where IFk
1 is defined

as the set of all k-tuples of fractional numbers in ð0; 1Þwhose

k components sum up to 1.
Given a specific user distribution N (and, thus, k), the

wth-order eavesdropping risk and the wth-order eavesdrop-

ping volume are denoted by RX
w ðkÞ and V N

w ðkÞ, respectively.

When the user distribution is not specified but n and k are

given, the best-case scenario is defined as the user distribu-

tion that minimizes the eavesdropping risk without any

prior knowledge of the adversary distribution. We denote

the wth-order eavesdropping risk for the best-case scenario

by R�wðkÞ without explicitly showing the parameter n.

Similarly, we also denote the wth-order eavesdropping

volume for the best-case scenario by V �wðkÞ.

3.2.2 Eavesdropping Risk for the 1D Torus

A 2D torus can be constructed from a rectangle by gluing

the opposite edges together. Observing a torus only along

one dimension, say, the x-axis, makes the 2D torus

degenerate into a 1D torus that is, topologically speaking,

a ring. We note that a segment on the ring corresponds to a

cell in the ordinary torus. The remaining terminology

defined over a ring (for example, passing volume, prob-

ability of packets being eavesdropped, eavesdropping risk,

and so forth) is based on definitions similar to the ones used

for the ordinary 2D torus. By analogy with the torus model,

the nodes on a ring can only transmit packets to the nodes

on the same segment or adjacent segments.
We illustrate the first-order eavesdropping risk pro-

blem over a ring by using a simple example shown in

Fig. 7. Consider a ring consisting of five segments ðk ¼
5Þ and a set of user nodes with the geographical

distribution N ¼ ðn0; n1; n2; n3; n4Þ. If the adversarial node

is located on segment 0, then the passing volume is

n0ðn� n0Þ þ n0

2

� �
þ n0

1

� �
þ n1n4 ¼ n0n� 1

2n
2
0 þ 1

2n0 þ n1n4. 7

All of the S-D pairs that pass through segment 0 in this

example are drawn in Fig. 7 as lines or self-loops. Similarly,

we can get the respective passing volumes when the

adversarial node resides on segments 1, 2, 3, and 4. Because

the adversarial node is able to detect the user distribution, it

will move to some segment such that the passing volume is

maximized. Therefore, the first-order eavesdropping vo-

lume is calculated as the maximum over the five passing

volumes:
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6. For simplicity of exposition, we only present the highest-order terms. 7. We assume here that the source node can transmit packets to itself.

Fig. 6. A counterexample to disprove the naive intuition that the reason

for uniform user distribution minimizing the eavesdropping risk is

because otherwise the attacker will go to the most crowded cell to

intercept the most communication.

Fig. 7. An example of the 1D torus, which is topologically a ring. In this
example, the ring is partitioned into k ¼ 5 segments, each represented
by a fan-shaped sector. ni is the number of user nodes in segment i. All
of the S-D pairs passing through segment 0 (the shaded one) are drawn
as lines or self-loops. If the adversarial node resides in segment 0, it can
hear all of these communications passing through segment 0.



V N
1 ð5Þ ¼ max

�
n0n� 0:5n0ðn0 � 1Þ þ n1n4;

n1n� 0:5n1ðn1 � 1Þ þ n2n0;

n2n� 0:5n2ðn2 � 1Þ þ n3n1;

n3n� 0:5n3ðn3 � 1Þ þ n4n2;

n4n� 0:5n4ðn4 � 1Þ þ n0n3

�
:

The best-case scenario is the case when the user distribu-
tion minimizes the first-order eavesdropping volume with-
out any knowledge of the precise locations of adversarial
nodes. Therefore, for this simple example, one can express
the first-order eavesdropping volume under the best-case
scenario as

V �1 ð5Þ ¼ min
N2IN5

n

max
�
n0n� 0:5n0ðn0 � 1Þ þ n1n4;

n1n� 0:5n1ðn1 � 1Þ þ n2n0; . . . ; n4n� 0:5n4ðn4 � 1Þ þ n0n3

�
:

As shown above, even for such a simple example, the
first-order eavesdropping risk problem is difficult to solve
because V �1 ð5Þ has the form of a min-max formula consisting
of five quadratic multivariable polynomials. To solve the
general case of the first-order eavesdropping risk under the
best scenario over a ring, that is, R�1ðkÞ, where k is an
arbitrary natural number, we first divide the eavesdropping
risk problem into two categories—one for an odd number of
segments and the other one for an even number of
segments—and solve them separately. Then, we take a
geometrical approach and treat each category as a graph in
a ðk� 1Þ-dimensional space. This way, we are able to prove
the existence and uniqueness of the local minimum of the
graph. Due to its uniqueness, the local minimum also
represents the global minimum. Since this global minimum
point corresponds to the uniform distribution, we prove
that the uniform user distribution is indeed the best-case
scenario. The closed-form solution of the first-order eaves-
dropping risk under the best scenario is simply the value of
this global minimum.

Lemma 1 below deals with the case of an odd number of
segments on a ring, whereas Lemma 2 targets the case of an
even number of segments. These two lemmas give the
closed-form solutions of R�1ðkÞ and show that the uniform
user distribution minimizes the first-order eavesdropping
risk over a ring. We present in detail the proof of Lemma 1
and only sketch the proof of Lemma 2 due to their
similarity.

Lemma 1. Given n user nodes, the first-order eavesdropping risk
over a ring with an odd number k of segments is greater than
or equal to

R�1ðkÞ ¼ �
k2 þ 4k� 1

8k2
;

where � ¼ 2n2

nðnþ1Þ . The equality holds when ni ¼ n=k for

0 � i � k� 1. That is, when the ring is partitioned into an

odd number of segments, the uniform user distribution

minimizes the first-order eavesdropping risk.

Proof. Step 1. Consider the first-order eavesdropping risk
problem over a ring with the user distribution N and
an odd number k of segments. Because the packets

exchanged between any S-D pair are transmitted along
the route with the least number of hops, any S-D pair is
at most t ¼ bk=2c hops away. If the adversarial node is
located on segment i, then the passing volume is8

nin� 0:5niðni � 1Þ þ
Xt�1

a¼1

Xt�a
b¼1

niþani�b: ð5Þ

Given N , the first-order eavesdropping volume V N
1 ðkÞ

is the maximum passing volume over all possible
adversary distributions. Since the first-order eavesdrop-
ping volume for the best-case scenario V �1 ðkÞ is the
minimum of V N

1 ðkÞ over all possible user distributions
N 2 INk

n, we get

V �1 ðkÞ ¼ min
N2INk

n

max
�
n0n� 0:5n0ðn0 � 1Þ þ

Xt�1

a¼1

Xt�a
b¼1

nan0�b;

n1n� 0:5n1ðn1 � 1Þ þ
Xt�1

a¼1

Xt�a
b¼1

n1þan1�b;

. . .

nin� 0:5niðni � 1Þ þ
Xt�1

a¼1

Xt�a
b¼1

niþani�b;

. . .

nk�1n� 0:5nk�1ðnk�1 � 1Þ þ
Xt�1

a¼1

Xt�a
b¼1

nk�1þank�1�b

�
:

Define fiðXÞ as the probability of packets being
eavesdropped when the normalized user distribution is
X and the adversarial node resides on segment i. Dividing
the corresponding passing volume in (5) by the total
number of S-D pairs nðn� 1Þ=2þ n ¼ nðnþ 1Þ=2, we get

fiðXÞ ¼ � xi � 0:5x2
i þ

Xt�1

a¼1

Xt�a
b¼1

xiþaxi�b

 !
;

where � ¼ 2n2

nðnþ1Þ . The above equation neglects 0:5xi=n

because it equals 0 as n!1. Similarly, dividing V �1 ðkÞ
by nðnþ 1Þ=2, we get the first-order eavesdropping risk
for the best-case scenario:

R�1ðkÞ ¼
V �1 ðkÞ

nðnþ 1Þ=2

¼ min
X2IFk

1

maxðf0ðXÞ; f1ðXÞ; . . . ; fk�1ðXÞÞ:

Step 2. Denote

gðXÞ ¼ maxðf0ðXÞ; f1ðXÞ; . . . ; fk�1ðXÞÞ:

It is obvious that R�1ðkÞ ¼ min
X2IFk

1

gðXÞ. In other words,

R�1ðkÞ is the global minimum of gðXÞ in the domain IFk
1.

Note that xk�1 ¼ 1�
Pk�2

a¼0 xa and gðXÞ is a function of

k� 1 arguments x0; x1; . . . ; xk�2; however, we keep the

notation xk�1 in formulas for simplicity of exposition. In

this step, we present some important properties of fiðXÞ
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8. For simplicity of exposition, the “modulo k” operation applies to the
subscripts of the symbols ni and xi unless otherwise stated. For instance,
n�kþ1 and x2k�2 mean n1 and xk�2, respectively.



and give a geometric interpretation, which will help find

the global minimum of gðXÞ in the next two steps.
We first prove that, for 0 � i � k� 1, there exists no

point X 2 IRk
1 such that the gradient9 of fi at X is equal to

~0, where~0 is defined as the k-tuple of all zeros, and IRk
1 is

the set of k-tuples of real numbers whose components
sum up to 1:

1. For 0 � i � t� 2, we can write fiðXÞ as

fiðXÞ ¼ � xi � 0:5x2
i þ xk�1

Xt�1

a¼iþ1

xa þRemainder
 !

;

where Remainder collects all of the terms not
containing xi and xk�1. Note that xiþt does not
appear in Remainder because it does not appear
in fiðXÞ either. Taking the partial derivatives of
fiðXÞ and using the fact that @xk�1

@xi
¼ �1 for all

0 � i � k� 2, we get

@fiðXÞ
@xi

¼ � 1� xi �
Xt�1

a¼iþ1

xa

 !

and

@fiðXÞ
@xiþt

¼ ��
Xt�1

a¼iþ1

xa

 !
:

The above two partial derivatives of fiðXÞ cannot
both be equal to 0. Therefore, rfiðXÞ 6¼~0 for
0 � i � t� 2.

2. For t� 1 � i � k� t� 1, fiðXÞ does not have any
term containing xk�1. Therefore,

@fi
@xi
¼ �ð1� xiÞ > 0

and we know that rfiðXÞ 6¼~0 for
t� 1 � i � k� t� 1.

3. For k� t � i � k� 2, we can write fiðXÞ in the
form of

fiðXÞ ¼

� xi � 0:5x2
i þ xk�1

Xi�1

a¼k�t�1

xa þRemainder
 !

:

For the same reason as in the case where
0 � i � t� 2, the Remainder is a function not
containing xi, xk�1, and xi�t. Taking the partial
derivatives of fiðXÞ, we get

@fiðXÞ
@xi

¼ � 1� xi �
Xi�1

a¼k�t�1

xa

 !

and

@fiðXÞ
@xi�t

¼ ��
Xi�1

a¼k�t�1

xa

 !
:

The above two partial derivatives of fiðXÞ cannot

both be equal to 0. Therefore, the gradient

rfiðXÞ 6¼ 0 for k� t � i � k� 2.
4. For i ¼ k� 1, fiðXÞ has one term containing xk�1,

but has no term containing xt�1. Therefore,

@fiðXÞ
@xt�1

¼ ��ð1� xiÞ < 0

and rfiðXÞ 6¼~0 for i ¼ k� 1.

Based on the above arguments, we proved that, for
0 � i � k� 1, rfiðXÞ 6¼~0 in the domain IRk

1. Therefore,
fiðXÞ has no critical point (extreme or saddle points).
Because IFk

1 is a subset of IRk
1, this result also applies to

fiðXÞ in domain IFk
1.

Here, we give the geometrical interpretation of the
nonexistence of the critical point (extreme or saddle point).
Consider the graph z ¼ fiðXÞ in a ðk� 1Þ-dimensional
space (x0; x1; . . . ; xk�2 for the k� 1 dimensions). Because
fiðXÞ has no local extremum, a contour (also called a level
or equipotential curve) of fiðXÞ, 0 � i � k� 1, does not
form a closed curve. Because of the nonexistence of
saddle points, a contour of fiðXÞ does not cross over any
other contour.

We note a useful property of fiðXÞ in the domain of

IFk
1. That is, each rfiðXÞ has at least one component

keeping its sign regardless of the value of X. For

example, @fiðXÞ@xi
> 0 for 0 � i � k� 2 and @fk�1

@xt�1
< 0 within

the domain IFk
1. We call this property polarity persistency.

We will use this property to prove the uniqueness of the

minimum of gðXÞ inside the domain IFk
1 in Step 4.

Step 3 (Existence of a local minimum). Because gðXÞ is
defined as the maximum of fiðXÞs, 0 � i � k� 1, we can
consider the graph z ¼ gðXÞ consisting of patches. Each
patch is simply a part of the graph z ¼ fiðXÞ, which takes
a value greater than or equal to all other fjðXÞs,
0 � j � k� 1. We note two properties of gðXÞ: 1) gðXÞ
is continuous and so are the contours of gðXÞ and 2) gðXÞ
has no saddle point. The former property holds true due
to the continuity of each fiðXÞ. The latter property
follows from the fact that the contours of fiðXÞ do not
cross over each other. Any one of the fiðXÞs has no
extremum in the domain IRk

1; however, gðXÞ may have
local extrema because a set of patches may enclose a local
extremum point.

If gðXÞ has one (or more) local extremum, that local
extremum point must be at the intersections of patches.
(This is because each fiðXÞ has the property of polarity
persistency.) In other words, gðXÞ has an extremum at X,
only if there exist some i and j such that fiðXÞ ¼ fjðXÞ,
i 6¼ j. Actually, the intersection of any less than k patches
cannot identify an extremum point of gðXÞ because gðXÞ
has k� 1 variables (that is, x0; x1; . . . ; xk�2) and needs all
of the k� 1 equalities f0ðXÞ ¼ f1ðXÞ ¼ f2ðXÞ ¼ � � � ¼
fk�1ðXÞ to determine the extreme point.
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9. In a Cartesian coordinate with bases x0; x1; . . . ; xn�1, the gradient of a

function f is given by rf ¼ ð @f@x0
; @f@x1

; . . . ; @f
@xn�1
Þ.



Now, consider the point X� ¼ ð1=k; 1=k; . . . ; 1=kÞ. It is

straightforward to show that X� is at the intersection of

all k patches because f0ðX�Þ ¼ f1ðX�Þ ¼ � � � ¼ fk�1ðX�Þ.
Since @fiðX�Þ

@xi
is positive and @fk�1ðX�Þ

@xi
is negative for

0 � i � k� 2, we know that gðX�Þ is smaller than the

neighbors of X� in the þxi directions and �xi directions,

0 � i � k� 2. Because the contours of gðXÞ are contin-

uous and do not cross over to each other, this fact

ensures that gðXÞ has a local minimum at X�.

Step 4 (Uniqueness of the local minimum in the domain

IFk
1). So far, we have proved the existence of a local

minimum at X� ¼ ð1=k; 1=k; . . . ; 1=kÞ. Now, let us prove

that gðX�Þ is the only local minimum in the domain IFk
1.

Note that a contour surrounding a local minimum
point must be closed; otherwise, there exists a point in
the hole of the contour surface such that the value of
gðXÞ at that point is less than the local minimum value,
and this would contradict the definition of the local
minimum. To give an illustration, Fig. 8 shows the
contour of gðXÞ ¼ 0:4� in the case of k ¼ 4, which forms
a closed surface surrounding the minimum point
X� ¼ ð0:25; 0:25; 0:25Þ, where gðX�Þ ¼ 0:25�.

Now, let us assume that there exists more than one
local minimum point in the domain IFk

1 and denote the
minimum point closest to X� by X��. Because X� is a
local minimum point, each contour of gðXÞ around X�

forms a closed surface. For the same reason, this closure
property of contours surrounding X�� holds as well. The
level value of contours is gradually increasing when
contours move away from the local minimum point X�

(and X��). Because of the continuity of the contours of
gðXÞ, there exist two contours—each moving away from
X� and X��—merging into a single contour somewhere
in between X� and X��; this is shown as the dotted curve
in Fig. 9. Consider some point X� on the dotted curve
that is lying on a patch, say, a fraction of the graph
z ¼ fiðXÞ. It is obvious that rgðX�Þ approaching from
one side (shown as an arrow in Fig. 9) is the negative of
rgðX�Þ approaching from the other side (shown as the
other arrow in Fig. 9). However, a contradiction occurs
because this violates the property of polarity persistency
of fiðXÞ in IFk

1. Therefore, gðXÞ has a unique local
minimum X� ¼ ð1=k; 1=k; . . . ; 1=kÞ in the domain IFk

1.
This minimum value gðX�Þ ¼ � k2þ4k�1

8k2 is the first-order

eavesdropping risk R�1ðkÞ for the best-case scenario over
a ring with an odd number of segments. tu

Lemma 2. Given n user nodes, the first-order eavesdropping risk
over a ring with an even number k of segments is greater than
or equal to

R�1ðkÞ ¼ �
kðkþ 4Þ

8k2
;

where � ¼ 2n2

nðnþ1Þ . The equality holds when ni ¼ n=k. That is,
the uniform user distribution minimizes the first-order
eavesdropping risk over a ring when the ring is partitioned
into an even number of segments.

Proof. Similarly to the previous case when a ring is
partitioned into an odd number of segments, the first-
order eavesdropping risk over a ring with an even
number k of segments is bounded below by that for the
best-case scenario:

R�1ðkÞ ¼ min
X2IFk

1

maxðf0ðXÞ; f1ðXÞ; . . . ; fk�1ðXÞÞ;

where

fiðXÞ ¼ � xi � 0:5x2
i þ

Xt�1

a¼1

Xt�a
b¼1

�ðaþ bÞxiþaxi�b

 !

and

�ðzÞ ¼
1 if 2 � z � t� 1
1
2 if z ¼ t
0 otherwise:

8<
:

Using a similar approach to Lemma 1, we can prove
that all of the properties introduced in the proof of
Lemma 1 also hold when k is even. These properties are
sufficient to prove the existence and uniqueness of the
local minimum point X� ¼ ð1=k; 1=k; . . . ; 1=kÞ in the
domain IFk

1. Therefore, we can follow Steps 3 and 4 in
Lemma 1 above and get the following closed-form
formula:

R�1ðkÞ ¼ RX�

1 ðkÞ

¼ �kðkþ 4Þ
8k2

;

which is a lower bound for the first-order eavesdropping
risk over a ring with an even number of segments. tu
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Fig. 9. This figure illustrates a contour plot with two local minimum points
X� and X��. The darker the color is, the smaller the value it represents.
The dotted curve is a common contour shared by the left contours
enclosing X� and the right contours enclosing X��. X� is a point lying on
the dotted curve. The left arrow and the right arrow represent the
gradient at X� approaching from the left-hand side and the gradient at
X� approaching from the right-hand side, respectively.

Fig. 8. The contour of gðXÞ ¼ 0:4� in a ring with four segments. The

axes are x0, x1, and x2. The contour forms a closed surface surrounding

the minimum point X� ¼ ð0:25; 0:25; 0:25Þ.



Lemmas 1 and 2 lead to the following theorem:

Theorem 2. Given n user nodes, the first-order eavesdropping
risk over a ring is minimized under the uniform user
distribution.

3.2.3 Eavesdropping Risk for the 2D Torus

Now, we are ready to study the eavesdropping risk for the
unit torus model. First, we prove that the uniform user
distribution minimizes the first-order eavesdropping risk
over a torus.

Theorem 3. Given n user nodes, which are deployed arbitrarily,
the first-order eavesdropping risk in the unit torus model is
minimized when user nodes are uniformly deployed.

Proof. Step 1. In this step, we derive the formula of
eavesdropping risk given the user distribution N .

Consider the first-order eavesdropping risk problem
in a unit torus with the distribution N of user nodes and
the cell area aðnÞ. Since the total area of a unit torus is 1,
the total number of cells in a unit torus is k ¼ 1=aðnÞ.
Assuming that the adversarial node is located in cell i,
the passing volume is

nin� 0:5n2
i þ 0:5ni þ

X
0�a<b�k�1

a;b6¼i

�iða; bÞnanb;

where �iða; bÞ is the probability of S-D pairs passing
through cell i, given that cell a and cell b are the two ends
of the S-D pairs. If these S-D pairs have (at least) one
route with the least number of hops passing through
cell i, �iða; bÞ is positive and less than or equal to 1.
Otherwise, �iða; bÞ is equal to 0.

Similarly to the 1D torus case, given the normalized
distribution X of user nodes, the probability of packets
being eavesdropped when the adversarial node resides
in cell i can be derived as follows:

fiðXÞ ¼ � xi � 0:5x2
i þ

X
0�a<b�k�1

a;b 6¼i

�iða; bÞxaxb

0
B@

1
CA;

where � ¼ 2n2

nðnþ1Þ is the total number of S-D pairs divided

by n2. Obviously, the first-order eavesdropping risk

given the normalized distribution X of user nodes,

RX
1 ðkÞ ¼ maxðf0ðXÞ; f1ðXÞ; . . . ; fk�1ðXÞÞ;

is bounded below by the eavesdropping risk for the best-
case scenario:

R�1ðkÞ ¼ min
X2IFk

1

maxðf0ðXÞ; f1ðXÞ; . . . ; fk�1ðXÞÞ:

Note that xk�1 is not a variable because
xk�1 ¼ 1�

Pk�2
a¼0 xa; however, we keep the notation xk�1

in this proof for reasons of simplicity.
Step 2. The main goal of this step is to extend the

results derived for the 1D torus and prove that the two
properties of fiðXÞ—the nonexistence of critical points
and polarity persistency—also hold on a (regular) torus.

Assume that the adversarial node resides in cell i and
consider the S-D pairs originating from (or having
destination at) cell i0, where

i0 ¼ iþ tþ t
ffiffiffi
k
p

ðmod kÞ

and t ¼ b
ffiffiffi
k
p

=2c. Because the packets exchanged in any
S-D pair are always transmitted along the route with the
smallest hop count, the two ends of any S-D pair in a unit
torus are at most t hops away from each other. Since cell
i is t hops away from cell i0, any S-D pair originating
from (or having destination at) cell i0 does not pass
through cell i unless cell i is the other end of that S-D
pair. Hence, fiðXÞ does not have any term containing xi0 .

Similarly to the 1D torus case, for 0 � i � k� 2, we

can calculate the two partial derivatives @fiðXÞ
@xi

and @fiðXÞ
@xi0

as follows by using the fact that xk�1 ¼ 1�
Pk�2

a¼0 xa and
@xk�1

@xi
¼ �1:

@fiðXÞ
@xi

¼ � 1� xi �
X

0�a�k�2
a6¼i

�iða; k� 1Þxa

0
B@

1
CA;

@fiðXÞ
@xi0

¼ ��
X

0�a�k�2
a 6¼i

�iða; k� 1Þxa:

Since @fiðXÞ
@xi

and @fiðXÞ
@xi0

cannot both be equal to 0, we have

proved that rfiðXÞ 6¼~0. Therefore, fiðXÞ has no critical

point in the domain IRk
1.

If we narrow down the domain of interest to IFk
1 for

0 � i � k� 2, fiðXÞ satisfies the property of polarity
persistency because @fiðXÞ

@xi
> 0 in the domain IFk

1. Indeed,

@fiðXÞ
@xi

¼ � 1� xi �
X

0�a�k�2
a 6¼i

�iða; k� 1Þxa

0
B@

1
CA

� � 1� xi �
X

0�a�k�2
a 6¼i

xa

0
B@

1
CA > 0:

For i ¼ k� 1, fiðXÞ has one term containing xk�1 but
has no term containing xi0 . The partial derivative,

@fiðXÞ
@xi0

¼ ��;

is negative. Therefore, fiðXÞ has no critical point and is
polarity persistent.

From the above arguments, it results that fiðXÞ has no
critical point and satisfies the polarity persistency for
0 � i � k� 1.

Steps 3 and 4. We omit here the details of the approach
we use to prove the existence and uniqueness of the local
minimum in the domain IFk

1 because it is similar to the
approach used in the 1D torus case. (Please see Steps 3
and 4 in the proof of Lemma 1 for details.)

We have proved that the uniform user distribution
minimizes the first-order eavesdropping risk in the unit
torus model. tu

We believe that, when the total number of user nodes
and the total number of cells are large, the uniform user
distribution also minimizes the higher order eavesdropping
risks. This conjecture is based on the fact that the more
random the traffic between user nodes is, the less benefit
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the adversarial nodes can gain by changing their locations

in order to maximize the traffic volume they can listen to.

The formal proof is left for future research.
Theorem 3 proves that the uniform user distribution

minimizes the first-order eavesdropping risk and Theorem 1

gives its closed-form formulas. Combining these two

theorems together results in the following general theorem.

Theorem 4. In a random network consisting of n nodes deployed

arbitrarily, the first-order eavesdropping risk is bounded below

by 1
3

ffiffiffiffiffiffiffiffiffiffi
aðnÞ

p
, where aðnÞ is the normalized transmission range.

Proof. Since s ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
aðnÞ

p
is always greater than or equal to

1, both s2 þ 3s� 1 and s2 þ 3sþ 1
2 are greater than s2.

Therefore, by using (3) and (4), we know that

R�1ðkÞ > s2

3s3 ¼ 1
3

ffiffiffiffiffiffiffiffiffiffi
aðnÞ

p
. tu

4 SIMULATION RESULTS

4.1 The First-Order Eavesdropping Risk Given
Uniform User Distribution

In this section, we show that, for the first-order eavesdrop-

ping risk, the theoretical bounds and the simulation results

under uniform traffic are consistent with each other. The

simulation configurations are as follows: In each iteration,

an S-D pair is chosen at random. Then, a packet of unit size

is transmitted from the source node to the destination node

along a least hop count route. (In case there are multiple

shortest routes, one of them is chosen randomly.) This route

is recorded. At the end of simulation, the simulator

identifies the cell where an adversarial node can grab the

maximum number of packets and calculates the values of

the first-order eavesdropping risks.
The total number of iterations is set to be proportional to

the number of cells, but has an upper limit, 108. This limit

helps us get reasonably accurate results while bounding the
simulation time by a threshold.

As one can see in Fig. 10, the simulated first-order
eavesdropping risk values under uniform traffic are very
close to their corresponding theoretical counterparts. Fig. 10
also shows that a significant reduction in the eavesdropping
risk can be achieved by decreasing the normalized
transmission range. This justifies the idea of using transmis-
sion power control to improve the network security,
especially in a large-scale ad hoc wireless network where
the normalized transmission range is very small.

4.2 Nonuniform Distributions

Theorem 3 proves that the uniform distribution minimizes
the first-order eavesdropping risk. In other words, non-
uniformity increases the eavesdropping risk. In this section,
we consider a few nonuniform distributions and investigate
their quantitative impact on the eavesdropping risk. We
start with the 2D Gaussian distribution (Section 4.2.1),
which can be regarded as a distribution with a single
cluster, and then move to distributions with multiple
clusters (Section 4.2.2). The simulation results also validate
the correctness of our proposed lower bounds (in addition
to the mathematical proof in Section 3) and show how close
our derived lower bound can be when the user nodes are
deployed nonuniformly.

4.2.1 Nonuniform Cases with 2D Gaussian Distribution

We first investigate the impact of the 2D Gaussian
distribution on the eavesdropping risk. In this simulation
setup, a number of nodes are Gaussian distributed around a
center with zero mean and a covariance matrix �2 1 0

0 1

� �
,

where the location of the center is randomly chosen.
As shown in Fig. 11, regardless of the transmission

range, the eavesdropping risk for the 2D Gaussian distribu-
tion is never smaller than the theoretical lower bound. This
shows the correctness of the theoretical bound. In addition,
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Fig. 10. This figure shows the consistency between the theoretical first-
order eavesdropping risks under uniform traffic and the corresponding
simulation results. In this log-log scale plot, the curve rises linearly when
aðnÞ is small enough. This is because, as aðnÞ ! 0, the first-order
eavesdropping risk approximates to 1=3

ffiffiffiffiffiffiffiffiffiffi
aðnÞ

p
. Note that, as implied in

Fig. 2, the increasing property under uniform user distributions is not
necessarily applicable to nonuniform user distributions. However, the
derived lower bound can be applied to all user distributions.

Fig. 11. This figure shows the first-order eavesdropping risk for the
2D Gaussian distribution with zero mean and � ¼ 0:25. Although the
bell-shaped Gaussian distribution is different from the uniform distribu-
tion, the eavesdropping risk for the Gaussian distribution can be
reasonably approximated by our proposed lower bound (with a
difference of about 3 dB).



although the Gaussian distribution is different from the
uniform distribution, the eavesdropping risk can be reason-
ably approximated by the theoretical bound with a 3 dB
difference.

4.2.2 Nonuniform Cases with Cluster Distribution

In this simulation setup, we focus on a 10	 10 unit torus

(that is, its normalized transmission range is aðnÞ ¼ 0:01). In

addition to the user nodes that are deployed uniformly and

independently, we add a few extra nodes around c cluster

centers. The locations of these c cluster centers are chosen

randomly. The number of the extra nodes are Poisson

distributed with a mean equal to i� 1 times the number of

nodes per cell that were deployed uniformly (where the

cluster intensity i is a measure of the relative node density

of the regions around the cluster centers compared to the

regions far away from the cluster centers). Moreover, the

displacements of these extra nodes from their cluster

centers follow an uncorrelated Gaussian distribution with

a mean of zero and a covariance matrix K2aðnÞ 1 0
0 1

� �
, where

the spreading factor K determines how scattered the extra

nodes are. For simplicity of exposition, we call this a cluster

distribution with three parameters: the number of cluster

centers c, the cluster intensity i, and the spreading factor K.

Note that, when c ¼ 0 or i ¼ 1, the cluster distribution

degenerates to a uniform distribution.
In order to assess the impact of cluster distributions on

the eavesdropping risk, we simulate the individual eaves-
dropping risk for cluster distributions with different
parameters, as shown in Figs. 12 and 13. It is observed that
the first-order eavesdropping risk increases rapidly as c
starts to increase. This is because the more concentrated the
network nodes are, the easier the sniffing activity becomes.
In other words, the nonuniformity of node distribution
increases the eavesdropping risk. For the same reason,
increasing the cluster intensity i and decreasing the

spreading factor K result in the increase of the eavesdrop-
ping risk. However, further increasing the value of c makes
the eavesdropping risk saturated (or even creates ripples)
because randomly adding an exceedingly high number of
clusters into the 100-cell torus actually smooths out the
aggregate node distribution.

As we see in Figs. 12 and 13, the eavesdropping risk for
various cluster distributions is never smaller than the
theoretical lower bound. This shows the correctness of the
theoretical bound. Moreover, the difference of the simulated
eavesdropping risk values under various cluster distribu-
tions from the derived lower bound is less than 3 dB,
although the cluster distributions are not uniform. From the
above arguments, we conclude that our proposed lower
bound is sufficiently tight for a wide range of node
distributions.

4.3 Traffic with Various Batch Sizes

As explained in Section 4.2, nonuniformity is a major
factor in determining the eavesdropping risk value. In
general, there are two main sources of nonuniformity: the
node distribution over the network and traffic pattern per
S-D pair. Whereas Section 4.2 has represented the quanti-
tative impact of node distributions on the eavesdropping
risk value, the main objective of this section is to investigate
the impact of the traffic patterns among S-D pairs on the
eavesdropping risk.

Scaling up/down the traffic volume of all S-D pairs
linearly does not affect the eavesdropping risk value because
the linear factor will be canceled out during computing the
eavesdropping risk. On the contrary, the variation of traffic
volume among S-D pairs does matter. In one extreme case
where only one S-D pair communicates and other pairs keep
quiet, the first-order eavesdropping risk value is equal to the
maximum value 1 because an adversarial node residing in the
same cell where the source node resides can eavesdrop all the
packets. In the other extreme case, where all S-D pairs
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Fig. 13. This figure shows the first-order eavesdropping risk for the
cluster distributions with the number of cluster centers c ¼ f0; 1; . . . ; 20g,
the cluster intensity i ¼ f3; 5; 10g, and the spreading factor K ¼ 0:25 in a
10	 10 unit torus network. Although the user distributions in this
simulation setup are different from the uniform distribution, the
eavesdropping risk for cluster distributions can be reasonably approxi-
mated by our proposed lower bound (with a difference up to 2.9 dB).

Fig. 12. This figure shows the first-order eavesdropping risk for the
cluster distributions with the number of cluster centers c ¼ f0; 1; . . . ; 20g,
the cluster intensity i ¼ f3; 5; 10g, and the spreading factor K ¼ 1 in a
10	 10 unit torus network. Although the user distributions in this
simulation setup are different from the uniform distribution, the
eavesdropping risk for cluster distributions can be reasonably approxi-
mated by our proposed lower bound (with a difference up to 1.8 dB).



communicate at a constant traffic volume, the eavesdropping
risk is minimized, as proven in Theorem 3. In practice, any
node is allowed to communicate with any other node.
Therefore, we concentrate our investigation in this section
on the cases when the traffic volume of all S-D pairs
follows a common distribution. More specifically, since
the absolute value of traffic volume does not matter, we
study the impact of the traffic burstiness on the eavesdrop-
ping risk by simulation.

In this simulation setup, we focus on a 10	 10 unit torus.
The batch size per S-D pair (in terms of the number of
packets sent from source to destination) is modeled as a
Gaussian variable with a mean of � ¼ 100 packets and a
standard deviation � ranging from 1 to 10,000.10 A batch of
packets is transmitted to the destination node along the
same path. The larger the standard deviation is, the more
bursty the traffic patterns are. For each given standard
deviation value, we generate 500 network instances accord-
ing to the cluster distributions with various parameters. For
each network instance, a large number of batches of packets
are injected into the network instance according to the
common Gaussian distribution. The individual eavesdrop-
ping risk values are computed over these 500 network
instances in order to observe how the traffic burstiness
impacts the eavesdropping risk.

One might think that the traffic burstiness increases the
eavesdropping risk because large batches have a greater
impact than the small batches have. However, our simula-
tion results show that this guess is not true. As shown in
Fig. 14, when a large number of batches are injected into the
network, the impact of the traffic burstiness is insignificant
because, regardless the standard deviation of the batch size,
the eavesdropping risk values are almost identical. To
assert this observation with stronger evidence, we list in
Table 1 not only the mean of the simulated eavesdropping

risk values but also their entropy11 and central moments of
several orders.

An explanation of the above phenomenon is given as
follows: Having packets transmitted in short uneven spurts
affects the transient behavior of a network. However, since
the total traffic volume per S-D pair from a long-run
perspective is independent of traffic burstiness, the traffic
burstiness does not affect the eavesdropping risk. This
phenomenon is analogous to the fact that, in an M/G/1
queue, the variation of service time affects queuing delay
but does not affect throughput.

As shown in Fig. 14, the eavesdropping risk for all traffic
patterns is greater than the theoretical lower bound. This
shows the correctness of the theoretical bound. Moreover,
the simulated eavesdropping risk values have the same
order of magnitude as the derived lower bound, although
their traffic patterns are very different compared to the
uniform traffic. From the above arguments, we conclude
that our proposed lower bound is tight for a wide range of
traffic patterns.

4.4 Higher Order Eavesdropping Risk

In this section, we consider the higher order eavesdropping
risk under uniform traffic. In this simulation setup, a packet
originates from a randomly chosen source node and has a
random destination node, according to the uniform user
distribution. Each eavesdropped packet is counted only
once. This is because each eavesdropped packet has an
equal contribution to the eavesdropping risk, regardless of
how many adversarial nodes actually eavesdrop it. The
simulation results of first to fourth-order eavesdropping
risk are shown in Fig. 15.
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Fig. 14. This figure shows the first-order eavesdropping risk (for cluster
distribution) under Gaussian traffic in a 10	 10 unit torus network (that
is, aðnÞ ¼ 0:01). Please note that the eavesdropping risk in this
simulation setup can be appropriately approximated by our proposed
lower bound (with a difference up to 1.8 dB).

TABLE 1
When Nodes Are Deployed According to Cluster Distributions
with Parameters c ¼ 5, i ¼ f3; 5; 10g, and K ¼ 1, and the Size of

Batches of Packets Varies with a Standard Deviation ð�Þ

This table lists the mean ð�Þ, the second and third-order central
moments (�2 and �3), and the entropy ðHÞ of the simulated eavesdrop-
ping risk over 500 network instances. Because all of these metrics are
very close, it is observed that the variation of batch size does not affect
the eavesdropping risk when batch size per S-D pair follows a common
distribution. This observation holds true for cluster distributions with
different parameters; however, the statistics are omitted here to save
space.

10. If the Gaussian variable takes a value greater than 1, the batch size is
rounded to the nearest integer. Otherwise, the batch size is set to 1.

11. We first group the 500 simulated eavesdropping risk values into bins
of interval length 0.001 and then calculate the entropy of these bins.



As observed in Fig. 15, the wth-order eavesdropping risk
is an increasing function with respect to w, but its value is at
most w times as large as the first-order eavesdropping risk.
This is because the more adversarial nodes exist, the more
packets can be eavesdropped. Actually, when the normal-
ized transmission range is large (that is, close to 1), a small
set of adversarial nodes can receive all packets transmitted
over the wireless network. On the contrary, given w 2 IN,
decreasing the normalized transmission range reduces the
wth-order eavesdropping risk significantly. Our simulations
also show that, when the normalized transmission range is
small enough, the wth-order eavesdropping risk is approxi-
mately w times larger than the first-order eavesdropping
risk. This (approximately) linear dependency supports the
idea of using transmission power control in a wide large-
scale ad hoc wireless network where multiple adversarial
nodes exist.

5 CONCLUSION

In this paper, the issue of transmission power control for
security improvement in ad hoc wireless networks has been
addressed. In particular, we have analyzed the impact of
the transmission range and user distribution on the
eavesdropping risk when there are one or more adversarial
nodes.

As a main contribution, we have defined the
wth-eavesdropping risk as the probability of packets being
eavesdropped when there are w adversarial nodes in a
network. We have derived a closed-form formula for the first-
order eavesdropping risk under uniform traffic as a function
of normalized transmission radius. For nonuniform traffic,
we have identified the best-case scenario (in terms of the first-
order eavesdropping risk) and proved a lower bound over all
possible user distributions. Furthermore, our simulation
results show the tightness of this lower bound for a wide
range of user distributions and traffic patterns. We have also

shown that adjusting the transmission range reduces the
eavesdropping risk significantly.

In a more general context, transmission power control
can not only help to better protect the network security by
reducing the probability of packets being eavesdropped but
also improve the network throughput, energy conservation,
and quality of service. Whereas related work in the
literature attempts to improve either the network security
by cryptography-based approaches (at the cost of consider-
able overhead) or the network performance by transmission
power control (without taking security into consideration),
our results provide the first analytical treatment of using
transmission power control as a defense mechanism against
the reconnaissance activity.
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