
2962 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

On RANC ARQ for Wireless Relay Networks:
From the Transmission Perspective
Jung-Chun Kao, Member, IEEE, and Fu-Wen Chen, Student Member, IEEE

Abstract—The relay-assisted, network-coding (RANC) auto-
matic repeat request (ARQ) protocols are ARQ protocols that
leverage both opportunistic retransmission and network coding
for wireless relay networks. This paper proposes two single-relay
RANC ARQ protocols, the listen-and-supersede (LS) protocol
and the hold-and-proceed (HP) protocol. LS offers a fundamental
limit to any single-relay RANC ARQ protocol. HP is a simple
yet efficient RANC ARQ protocol with near-zero overhead.
Moreover, we analyze saturation throughput and segment delay
for both LS and HP. Their performances are compared with a
representative cooperative ARQ protocol, the opportunistically
forwarding (OF) protocol. Through extensive analysis and sim-
ulation results, we show that HP has a performance close to LS
and outperforms OF significantly.

Index Terms—Cooperative ARQ, opportunistic retransmission,
network coding, queueing model, wireless network.

I. INTRODUCTION

W IRELESS communication is inherently error-prone due
to path loss, fading, noise, interference, etc. In such an

error-inclined environment, it is of paramount importance to
achieve efficient and reliable data delivery. Advanced wire-
less communication and networking systems such as cellular
networks (e.g., 3G cellular networks, WiMAX, LTE, and
LTE-Advanced) often utilize automatic repeat request (ARQ)
methods along with relaying mechanisms, at the link layer.
By relaying, low-rate (or unreliable) direct communication be-
tween source and destination can be replaced by high-rate (or
reliable) source-relay and relay-destination transmissions, thus
enhancing coverage, reliability, and throughput. Recently, link-
layer network coding [1], [2] and opportunistic retransmission
[3], [4] have been hot research topics to further improve
network performance.

Opportunistic retransmission presented in [3] is a link-layer
technique that leverages the broadcasting nature of wireless
communication and the benefit of multi-path transmission:
Data packets not reaching the destination node will be re-
transmitted by close-by relay nodes that overhear the data
packets. Such an opportunistic use of multi-path transmission
can extend coverage and bring performance gain because
appropriately chosen relay nodes have stronger connectivity
to destination nodes than source nodes have. To enable source
and relay nodes aware of missed data packets, opportunistic re-
transmission relies on the per-packet acknowledgement (ACK)

Manuscript received September 12, 2012; revised January 13, 2013; ac-
cepted March 13, 2013. The associate editor coordinating the review of this
paper and approving it for publication was J. Wu.

The authors are with the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan (e-mail: jungchuk@cs.nthu.edu.tw,
richarticle.chen@gmail.com).

Digital Object Identifier 10.1109/TWC.2013.050613.121394

S

R

D
b1�b2�

b
1 �

(a)

S b1� b2�

b1�

b3�

b2�
ACK

R

D
b3�

(b)

Fig. 1. (a) A three-node network containing source S, destination D, and
relay R. The source node and relay node send out coded blocks, denoted by
b′i, and recoded blocks, denoted by b′′i , respectively. (b) A high-level overview
of RANC ARQ protocols.

function. However, the experiments in [5] suggests that 802.11
ACKs contribute to over 20% overhead in 802.11 networks.
In addition, according to [1], ACK loss due to poor or varying
channel condition may cause the ARQ timeout, which triggers
a redundant retransmission of the same data packet and causes
a significant communication overhead.

Network coding offers an elegant solution to this challenge,
because of its ability to removing the need for per-packet
ACKs. Indeed, a link-layer network coding technique is on
a per-segment basis, where a segment consists of a number
of blocks. Instead of simply sending out individual blocks,
a sender mixes all or a subset of the blocks it has by a
network coding technique and then sends out these mixed
blocks. This way, regardless which packets (i.e., mixed blocks)
are lost in transit, as long as a sufficient number of packets
reach the receiver, the receiver can retrieve the entire segment.
No specific packet will be retransmitted. Per-segment ACKs,
rather than per-packet ACKs, are used to notify senders of the
ends of segment transmissions. The number of needed ACKs
is reduced to one per segment from one per packet.

A. Introduction to RANC ARQ

This paper aims to analyze performance and fundamental
limit of relay-assisted, network-coding (RANC) ARQ proto-
col, which is a technique combining opportunistic retransmis-
sion and link-layer network coding. Particularly, the focus is
on one-way wireless relaying systems in order to be read-
ily implementable in a wide variety of today’s technologies
without requiring any specific traffic pattern. Fig. 1 gives a
high-level overview of a RANC ARQ protocol. Messages are
transmitted on a per-segment basis, where a segment consists
of K original blocks, denoted by b1, b2, . . . , bK . The original
blocks are not transmitted over wireless channels. Instead, a
source node keeps sending out coded blocks, denoted by b′1, b

′
2,

and so forth. The coded blocks are produced using a coding
technique, for example, by taking linear combinations of the
original blocks over a finite field GF(2m).

1536-1276/13$31.00 c© 2013 IEEE

KAO and CHEN: ON RANC ARQ FOR WIRELESS RELAY NETWORKS: FROM THE TRANSMISSION PERSPECTIVE 2963

A relay node does not forward the coded blocks it overhears.
Instead, when needed, the relay node produces a number
of recoded blocks (denoted by b′′1 , b′′2 , and so forth) by, for
example, taking linear combinations of all or a subset of the
overheard coded blocks over a finite field GF(2m). After that,
the recoded blocks are sent out to the destination node.

Any coded block and recoded block may or may not reach
the destination node, depending on the varying channel con-
dition. Regardless which blocks are lost, the destination node
can retrieve the entire segment back from the received (coded
and recoded) blocks, for example, by Gaussian elimination,
as long as a sufficient number of blocks reach the destination
node. Once the destination node retrieves the entire segment,
a segment transmission completes. Then a per-segment ACK
is sent out by destination, notifying the source node of the
termination of the segment transmission.

B. Our Contributions

So far, little effort has been devoted to studying RANC
ARQ protocols designed for one-way wireless relaying sys-
tems at the link layer, especially from an analysis perspective.
In this paper, we propose and analyze two single-relay RANC
ARQ protocols—LS and HP. LS offers a fundamental limit to
any single-relay RANC protocol. HP is a simple yet efficient
RANC protocol that achieves a performance close to the
fundamental limit, while having near-zero overhead.

We derive saturation throughput and average segment delay
for both LS and HP. The segment delay is defined as the time
elapsed from the moment when the source node generates a
segment to the moment when the destination node can retrieve
the entire segment. A segment in reality often represents a
message that could be, for example, a video frame at the
application layer or a datagram at the network layer. Original
blocks typically are fragmented transmission units at the link
layer, each of size not exceeding the maximum transmission
unit (MTU). From this perspective, decoding of a complete
segment is often more meaningful than decoding of a single
block.

Saturation throughput is defined as the expected number
of blocks successfully decoded at the destination per second,
assuming that source’s transmission buffer is always full. In
a time division multiple access (TDMA) system, which is in-
herently collision-free, saturation throughput can be regarded
as the maximum service rate in the sense that an increase in
the segment arrival rate increases the actual throughput until
saturation throughput is achieved.

Our analysis on saturation throughput and average seg-
ment delay applies to collision-free wireless networks, in
which all the nodes share the radio medium using their
own orthogonal resources. The orthogonal resources can be
exclusive time slots (in TDMA), non-overlapping frequency
bands (in FDMA), or a combination thereof. For a contained
presentation, saturation throughput and average segment delay
are specifically derived for the TDMA case only, although they
can be adjusted to fit other schemes.

In our analysis framework, any single-relay ARQ protocol
for the TDMA case essentially behaves as an M/G/1 queue
with vacation—various protocols differ in their distributions

of service time. Multiple flows are allowed to deliver their
data concurrently. Each node can play multiple roles, acting
as source, destination, and/or relay. For example, a source node
can generate and send out its own packets in some time slot of
a time frame, while helping other nodes for their information
deliveries at other time slots.

A constraint in our analysis framework is that at most one
relay is involved in each segment transmission. The reason
for focusing on the single-relay case is to minimize control
overhead and protocol complexity. The case of having multiple
relays, although might be approximated by the single-relay
case with some modifications, is out of the scope of this paper.

For comparison purpose, the proposed RANC ARQ pro-
tocols are evaluated and compared against the OF protocol,
which represents cooperative ARQ protocols with a single
relay. OF is essentially the Type-I/II cooperative ARQ protocol
[4] with an explicit ACK loss handling mechanism added. OF
can be also regarded as a modification of the decode-and-
forward scheme [6] by adding an ACK function and by not
redundantly forwarding the packets that have been success-
fully delivered to destination. Numerical results obtained from
our analysis and simulation help to learn how much RANC
ARQ protocols yield superior performance.

The remainder of this paper is organized as follows. In
Section II, we review related work. Section III introduces the
network model we consider. Section IV presents two RANC
ARQ protocols we develop for wireless relaying systems and
one cooperative ARQ protocol used for comparison purpose.
Saturation throughput and segment delay for these protocols
are derived in Section V. Section VII shows the performance
of the protocols by theoretical and simulation results. Section
VIII presents some concluding remarks.

II. RELATED WORK

Network coding has been an active research topic in wire-
less networks. Many studies have shown that network coding
brings performance gains [7], [8], particularly in specific sce-
narios with multicast traffic [9]–[11], with two-way flows [12],
[13], or with multiple unicast flows [14]. Only few work in the
field of network coding are designed for the one-way relaying
scenario. For one-way relaying systems, Li et al. in [1] showed
that the MAC-layer random network coding (MRNC) protocol
excels hybrid ARQ in WiMAX systems. According to [2], the
MRNC protocol is a special case of the N-in-1 retransmission
with network coding scheme (abbreviated as N-in-1 ReTX).
By utilizing random linear network coding [15], [16], N-in-1
ReTX [2] distributes overhead of retransmission over multiple
frames, which makes N-in-1 ReTX outperform MRNC.

Link-layer protocols exploiting opportunistic retransmis-
sion are also known as cooperative ARQ protocols or C-
ARQ protocols. Fundamental concepts, theoretical bounds,
and practical protocols of C-ARQ mechanisms have been ex-
tensively studied in the literature. The concept of cooperative
diversity—source and relay nodes cooperate to form a virtual
antenna array that exploits transmissions over a statistically
independent relay path—is proposed by Laneman et al. [6]. In
[6], several C-ARQ protocols with single relay are developed
and analyzed in terms of the mutual information and outage

2964 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

probability. Note that all the protocols in [6] do not really take
link-layer retransmissions into account.

Extending the work in [6], Zimmermann et al. [17] intro-
duced a number of modified versions of the C-ARQ protocols
proposed in [6] and derived the outage probabilities and SNR
gains for these protocols. Rong and Ephremides [18] studied
stability region and throughput region for a simplified case
where two source nodes send packets to a common destination
and the source closer to the destination helps to relay packets
for the other source. Still these above works do not consider
link-layer retransmissions.

A few works have considered the aspect of link-layer re-
transmissions. For example, Zimmermann et al. [19] simulated
the average number of retransmissions of a single-relay C-
ARQ protocol. Cerutti et al. [4] derived the first delay model
for C-ARQ protocols with single relay and proved that C-
ARQ protocols have performance gain over hybrid ARQ in
terms of throughout and delay. Sadek et al. [20] analyzes the
maximum stable throughput region and the delay performance
of two cognitive multiaccess protocols for a TDMA system, in
which the cognitive relay common to all source nodes senses
whether time slots are being used and retransmits lost packets
in the unused time slots. Si et al. [21] proposed relay selection
protocols with interference taken into account. All the above
works consider a three-node topology in which there is one
relay node for each source-destination pair.

Having more than one relay node for a source-destination
pair often improves overall performance. Indeed, Maham et
al. [22], [23] derived the exact outage probability of a multi-
relay delay-limited system and showed full diversity in the
proposed multi-relay networks. However, multi-relay systems
also bring additional challenges. To have multiple relay nodes
cooperate in a distributed fashion, there have been a number
of C-ARQ protocols developed in the literature [3], [24]–
[27]. For example, Steenkiste et al. [3] proposed a distributed
relay selection algorithm to choose a set of eligible relays and
a relay prioritization mechanism to make sure high-priority
relays transmit with high probability. These works are based
on the IEEE 802.11 Distributed Coordination Function (DCF)
and thus inherit the inefficiency of DCF when the contention
window is not well adjusted to the number of relays. To solve
this problem, Alonso-Zarate et al. proposed in [28] a multiple-
relay C-ARQ scheme whose operation is almost independent
of the number of relays and analyzed this scheme in [29].

Leveraging either network coding or opportunistic retrans-
mission is beneficial; nevertheless, it would be more beneficial
for an ARQ protocol to utilize both. The ARQ protocols
that utilize both techniques are referred to as RANC ARQ
protocols. As stated by Skianis et al. [30] in 2012, there are
few works that study the link-layer aspect of network coding-
based cooperative communication.

In the following, related works for the two-way relaying,
multicast, and one-way relaying scenarios are reviewed re-
spectively. For the two-way relaying scenario, several IEEE
802.11-compatible RANC ARQ protocols with single or mul-
tiple relays are proposed in [30]–[32], which are shown to
outperform C-ARQ protocols in terms of throughput and
total delay through simulation and analytical results. These
analyses in [30]–[32] focus on the saturation situation where

1 2 … F 1 2 … F 1 2 … F

TF

Fig. 2. TDMA scheme with F flows.

a certain number of active and saturated sources attempt to
send packets.

For the multicast scenario, Fan et al. [33] in 2009 studied the
network coding gains with the use of XOR retransmissions,
in terms of throughput, delay and queue length. Fanous and
Ephremides [34] in 2010 investigated the impact of random
linear network coding on the stable throughput. Song et al.
[35] in 2012 studied the coding gains for applying XOR
retransmissions at both source and relay nodes in the case
with two sources and many destinations. Shrader et al. [36]
in 2011 focused on the proxy case, in which destinations are
formed into multiple clusters and destinations can act as relays
for other destinations in the same cluster. In the proxy case, the
benefit of cooperative strategies for multicasting over wireless
lossy links is explored, particularly in terms of the number of
packets sent by source and relays.

The above works focus on either the two-way relaying
scenario or the multicast scenario; none of them involves
one-way relaying systems. Indeed, there has been little effort
devoted to the one-way relaying scenario. Among the very
few related works, Kao et al. [37] in 2011 proposed an
IEEE 802.11-compatible RANC ARQ protocol and evaluated
its performance through simulation; while Abuzainab and
Ephremides [38] in 2012 analyzed energy efficiency and min-
imum stable throughput, considering the use of RANC ARQ
at the link layer on top of Alamounti coding at the physical
layer. Nevertheless, the delay aspect of RANC protocols,
particularly when nodes are not always saturated, has not
been analyzed yet. This motivates the main objective of this
paper—developing and analyzing RANC ARQ protocols at
the link layer for the one-way relaying scenario. To our best
knowledge, we present the first analysis of RANC protocols
in terms of segment delay and buffer occupancy.

III. SYSTEM MODEL

We consider a wireless network in which all the nodes are
in close proximity. There are F flows (or source-destination
pairs) sharing the same channel in a TDMA manner. As shown
in Fig. 2, exclusive and cyclic time slots are assigned to
each flow. A single data packet (i.e., a block) is transmitted
in a time slot. ACKs are short enough to fit in the same
time slots allotted to the associated blocks; or they are
sent in the reverse direction in separate channels (FDD) or
time slots (TDD). These are often seen settings in various
wireless communication systems. For example, LTE provides
information about successful/failed reception by a single-bit
feedback acknowledgment with a fixed-timing relation to the
corresponding transmission attempt [39].

A flow in the network involves a source and a destination,
possibly with help of the third device, a relay. A node is
allowed to play more than one role simultaneously, acting as
source, destination, and/or relay. For example, a node can be a
source node generating its own traffic; meanwhile it can be a

KAO and CHEN: ON RANC ARQ FOR WIRELESS RELAY NETWORKS: FROM THE TRANSMISSION PERSPECTIVE 2965

S

R

D

PSR

PSD

PRD

(a)

S

R

DPDS,ACK

PDR,ACK

(b)

Fig. 3. (a) Link reception probabilities of blocks (denoted by PSD , PSR,
and PRD), for a given source-destination pair. (b) Reception probabilities of
per-packet ACKs originated from the destination node (denoted by PDS,ACK
and PDR,ACK).

relay node helping other flow(s). We consider the scenario that
a relay helps a certain flow using the time slots allocated to that
flow: After overhearing packets sent by the source, the relay
may opportunistically send some coded version of overheard
information in the flow’s own time slots. In this way, multiple
concurrent flows are allowed to choose the same relay node.

Because an appropriately chosen relay node has better
connectivity to the destination node than the source node has,
the relay is assumed to have higher priority than the source:
If both relay and source have packets waiting to be sent, the
relay acquires access to the next time slot allocated to the
flow. Such source-relay cooperation can be implemented, for
example, by a single-bit feedback from relay to source or by
the capture effect. The capture effect is a phenomenon that
stronger signal (relay’s transmission) suppresses weaker signal
(source’s transmission) and thus the stronger signal (relay’s
transmission) will be demodulated.

Original blocks are assumed to be generated at each source
node in accordance with a Poisson arrival process with
random-sized segments. That is, arrival times of segments
follow a Poisson process and each segment consists of a
random number of blocks. The segment size in blocks, denoted
by K , can be arbitrarily distributed with finite mean and finite
variance. The mean of K is denoted by E[K] or K.

Considering the error-prone nature of wireless links over
which data packets (i.e., blocks) may or may not be delivered
successfully, link receptions for blocks are modeled by erasure
channels. The channels are assumed to undergo independent
block fading across different links. Fig. 3(a) illustrates the link
reception probabilities from source to destination (denoted by
PSD), from source to relay (denoted by PSR), and from relay
to destination (denoted by PRD), respectively. It is assumed
that the relay node is appropriately chosen1 and hence the relay
has stronger connectivity to the destination than the source has.
Equivalently, PRD > PSD .

The destination node could indicate success or failure of a
reception by broadcasting an ACK to the source and relay.
There are two types of ACKs—per-segment ACKs (which
are used by all RANC ARQ protocols to notify the ends of
segment transmissions) and per-packet ACKs (which are used

1Although relay selection is beyond the scope of this paper, we note that for
the LS and HP protocols, a brute force algorithm that selects the optimal relay
(in terms of either saturation throughput or segment delay) can be of a linear
complexity O(n), where n is the total number of possible candidates for relay.
This is because all the formulas in theorems 1, 2, 3, and 4 are independent of n
and consequently the brute force algorithm simply uses the given formulas to
calculate the throughput or delay for all possible candidates and then selects
the optimal one. Such an optimal and low-complexity algorithm for relay
selection can be used by the LS and HP protocols.

by conventional ARQ protocols at the link layer but may or
may not be used by a RANC ARQ protocol). Reproduced from
[6] in which a justification is given, it is assumed that all (per-
packet and per-segment) ACKs are perfectly received by the
relay. For the same reasons, per-segment ACKs are assumed to
be perfectly received by the source. Per-packet ACKs instead
could be lost (i.e., either undetected or corrupt) in transit to the
source. In a word, per-segment ACKs are perfectly received
by both the relay and the source; while per-packet ACKs are
perfectly received by the relay but they could fail to reach the
source. Fig. 3(b) illustrates the reception probabilities for per-
packet ACKs, where PDR,ACK = 1 and PDS,ACK is a fractional
number.

IV. PROTOCOLS DESCRIPTION

In this section, we describe one C-ARQ protocol, OF, and
two RANC ARQ protocols, LS and HP. The OF protocol is
presented for comparison purpose. The LS protocol offers a
fundamental limit to any single-relay RANC ARQ protocol.
The HP protocol is a simple yet efficient RANC ARQ pro-
tocol with near-zero overhead. These protocols are described
respectively in the following subsections. Their performance
will be analyzed in Section V and compared in Section VII.

A. Comparative C-ARQ Protocol: The OF Protocol

The opportunistically forwarding protocol, abbreviated as
OF, represents C-ARQ protocols belonging to the stop-and-
wait family and can be regarded as the decode-and-forward
protocol [6] or the Type-I/II C-ARQ protocol [4], with a per-
packet acknowledgement function added at the destination:
A source sends a block and, every time when the relay suc-
cessfully overhears a block but does not hear a corresponding
(positive) per-packet ACK, the relay will forward the block to
the destination in the next time slot allocated to the flow. The
destination indicates each success reception by broadcasting
a per-packet ACK to the source and relay. As described in
Section III, it is assumed that per-packet ACKs are reliably
received by the relay but might be lost in transit to the
source. It is also assumed that the relay has higher priority
than the source and hence collisions caused by simultaneous
transmissions from any source-relay pair never happen. In
case the source does not receive a (positive) ACK, regardless
because the ACK was lost or no ACK was sent, the source will
retransmit the same block later in the time slots allocated to
the flow. Retransmission may take one or several times2 until
the source receives a (positive) ACK. After that, the source
transmits the next block if it needs.

B. RANC ARQ Protocol 1: The LS Protocol

Among all possible single-relay RANC ARQ protocols, the
listen-and-supersede protocol, abbreviated as LS, is optimal in
terms of efficiency of channel usage. The basic idea behind
this protocol is that since the relay has better connectivity
to the destination than the source has, it would be optimal

2The maximum retry limit in the mathematical analysis later in Section V
is set to infinity. In practice, the maximum retry limit can be any appropriate
integer.

2966 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

b2�

b3�

b4�

b1�

Source Relay Destination

b3�

b2�

b1�

1s
t

st
ag
e

2n
d

st
ag
e

Fig. 4. An illustrative example of the LS protocol with the segment size of
four. Dotted lines depict direct communications from source to destination.

for the relay to take over from the source, once the relay and
destination together become able to retrieve the entire segment
cooperatively.

Based on the aforementioned idea, the segment transmission
process of LS consists of two stages. In the first stage,
the source keeps sending out coded blocks for the segment
without waiting for per-packet ACKs back. Meanwhile, the
relay listens to the coded blocks sent by the source and
learns immediately which blocks have successfully reached
the destination node through feedback (i.e., per-packet ACKs)
from the destination. Once the union of the blocks overheard
by relay and destination is sufficient to retrieve the entire
segment, the first stage finishes.

In the second stage, the relay takes over from the source.
The source no longer sends any blocks. Instead the relay keeps
sending out recoded blocks, which are encoded over all the
blocks it has overheard, until the destination can retrieve the
entire segment on its own. Then the destination sends out a
per-segment ACK, which notifies the source and relay of the
end of the segment transmission.

Fig. 4 illustrates a segment transmission process with a
segment size of four. In the first stage, the source node sends
out coded blocks, b′1, b

′
2, . . . , one by one. The source might

send out more than four blocks due to packet loss. At the
moment the dashed horizontal line indicates, the destination
has received {b′1, b′2} and the relay has overheard {b′1, b′3, b′4}.
With their union {b′1, b′2, b′3, b′4}, relay and destination nodes
together become able to decode the entire segment, because
the union has a cardinality equal to the segment size. At this
point, the second stage starts, in which the relay sends out
recoded blocks, b′′1 , b′′2 , and so forth. Upon receiving b′′3 , the
destination has accumulated four (coded and recoded) blocks,
{b′1, b′2, b′′1 , b′′3}, and thus becomes able to decode the entire
segment on its own. This completes the segment transmission.

The source and relay send coded/recoded blocks instead of
original blocks; the below presents an optimal coding scheme
that is essentially a Reed-Solomon based algorithm. In the first
stage, the source generates coded blocks as b′n =

∑K
i=1 n

ibi.
Each coded block corresponds to a linear equation in the K
variables. Having any distinct K coded blocks can decode
the entire segment. This is because the corresponding system
of linear equations has coefficients forming a Vandermonde
matrix and thus its determinant is non-zero.

Define MSD as the number of coded blocks successfully
received by the destination in the first stage. Because the
first stage finishes once the relay and destination have K

distinct coded blocks in all, the number of the coded blocks
overheard by the relay that are missed by the destination in
the first stage is K−MSD. The relay learns these blocks by
constantly hearing per-packet ACKs sent by the destination
through the feedback channel.3 Denote these missing blocks
by c1, c2, . . . , cK−MSD . The relay generates recoded blocks in
the second stage as b′′n =

∑K−MSD

i=1 nici. For the same reason
aforementioned, reception of any distinct K−MSD recoded
blocks enables the destination to decode c1, c2, . . . , cK−MSD .
With these K−MSD coded blocks obtained in the second
stage and the MSD coded blocks received in the first stage,
the destination itself can decode the entire segment.

We note that under the LS protocol, relay nodes have to
continuously learn what blocks have been delivered to the
destination through a feedback channel. This requires a tight
cooperation among relay and destination nodes, which may
incur control overhead to some extent and increases protocol
complexity. To minimize control overhead and dependency on
the destination-to-relay feedback, we develop the HP protocol.

C. RANC Protocol 2: The HP Protocol

The hold-and-proceed protocol, abbreviated as HP, is a
RANC ARQ protocol. It aims to cause near-zero overhead and
to reduce protocol complexity by removing the dependency
of destination-to-rely feedback, while retaining a performance
close to the optimum. HP does not need per-packet ACKs (sent
by the destination) at all. The basic idea behind this protocol is
for relay nodes to hold quiescent for a while before proceeding
to send recoded blocks in a way independent of destination-
to-relay feedback. Whether or not the relay sends a recoded
block after overhearing a coded block depends only on the
relay’s own state.

The segment transmission process of HP consists of two
stages. In the first stage, a source node keeps sending coded
blocks in the time slots allotted to the flow; meanwhile, the
associated relay node holds silently and saves the overheard
blocks in its buffer, until the relay has (successfully) received
h coded blocks. After that, the second stage starts, in which
each successful reception of coded blocks at the relay triggers
a transmission of recoded block in the next time slot allocated
to the flow. The source still attempts to send coded blocks in
the time slots allocated to the flow. However, because the relay
node has higher priority over the source node, the source has
to wait while the relay is sending. The second stage continues
until the destination itself becomes able to retrieve the entire
segment with its received (coded and recoded) blocks. Then
the destination sends out a per-segment ACK, which notifies
the source of the end of the segment transmission.

As illustrated in Fig. 5, the relay keeps silent in the first
stage. At the moment the dashed horizontal line indicates, the
first stage of HP completes because the relay has overheard
h = 1 coded blocks. After that, every time when overhearing
a coded block, the relay sends out a recoded block. Upon
receiving b′′3 , the destination has accumulated four blocks,
{b′1, b′2, b′′1 , b′′3}, and thus becomes able to retrieve the entire
segment. This completes the segment transmission.

3The LS protocol requires the destination to send per-packet ACKs in the
first stage. On the contrary, HP does not need per-packet ACKs at all.

KAO and CHEN: ON RANC ARQ FOR WIRELESS RELAY NETWORKS: FROM THE TRANSMISSION PERSPECTIVE 2967

b2�

b3�

b5�

b4�

Source Relay Destinationb1�

b1�

b2�

1s
t

st
ag
e

2n
d

st
ag
e

b3�

Fig. 5. An illustrative example of the HP protocol with the segment size of
four and h = 1. Dotted lines depict direct communications from source to
destination.

In the below, we present a coding scheme at source and
at relay, which is a modification of the Reed-Solomon based
algorithm used in the LS protocol (cf. Section IV-B). The
source generates coded blocks as b′n =

∑K
i=1 n

ibi, in both
the first and second stages. Denote the coded blocks the relay
receives in chronological order by c′1, c

′
2, The relay keeps

silent in the first stage. Upon each successful reception of
coded blocks in the second stage, the relay generates recoded
blocks using all the coded blocks it has overheard by that
moment. The n-th recoded block is b′′n =

∑n+h
i=1 nic′i.

4

Ideally, it would be great for a coding scheme to hold the
innovation property—any K (distinct) blocks received by the
destination are innovative to each other and hence K received
blocks allows the destination to decode the entire segment.
However, in reality any coding scheme for the HP protocol,
including the one aforementioned and even an optimal coding
scheme, may fail to hold the innovative property in some
circumstances. The reason is irrelevant to the coding scheme
itself; instead, it is coupled with what blocks are received at
relay and at destination.

Take the extreme case in which PSD = 1 and h = 0 as
an example. In this extreme case, because all blocks sent by
the source reach the destination successfully, the relay cannot
really provide any help. All recoded blocks generated upon
receptions of coded blocks at the relay are non-innovative,
regardless of what coding scheme is used.

To make as many blocks received at destination innovative
as possible and to make channel usage efficient, the value of
h must be appropriately chosen with channel quality taken
into account. The way to choosing an appropriate value for
h is discussed later in Section VI. Through simulation, it is
observed that using the coding scheme aforementioned with
such an appropriate value h, almost all of the blocks received
by the destination are innovative.

V. PERFORMANCE ANALYSIS

In this section, the following performance metrics are
derived for all the ARQ protocols described in Section IV.

• η: The saturation throughput (in blocks per second)
• T : The average segment delay (i.e., the expected time

elapsed between a segment’s arrival at node S and the
segment’s complete retrieval at node D)

4The information about which blocks are combined is sent to the destination
as a field of the packet.

• L: The buffer occupancy (i.e., the expected number of
segments buffered at node S)

The above performance metrics of all the ARQ protocols
are analyzed using a unified framework: Each ARQ protocol in
the TDMA system described in Section III essentially behaves
as an M/G/1 queue with vacation. Different ARQ protocols
has distinct distributions of service times, thereby resulting in
different performances. Indeed, the service time of an ARQ
protocol depends on the first and second moments of N , where
N is the random variable representing the total number of
blocks sent by either source or relay for a segment (until the
segment is fully decoded at destination).
N and N2 for each ARQ protocol described in Section III

will be derived in later subsections. In the following, Theorem
1 lists the fundamental formulas used commonly in the unified
analysis framework. Its proof can be found in Appendix A.

Theorem 1: Given the arrival rate of segments (λs) and the
first and second moments of N (N and N2), the segment delay
T , the buffer occupancy L, and the saturation throughput η for
the TDMA system are

T =
λs N2 TF

2

2(1− λsNTF)
+ (N − F − 1

F
+

1

2
)TF

L = λsT =
λs

2 N2 TF
2

2(1− λsNTF)
+ λs(N − F − 1

F
+

1

2
)TF

η =
K

N TF

where F is the number of time slots per time frame; TF is
the length of a time frame; K is the average segment size.

With the above formulas commonly used when calculating
segment delay, saturation throughput and buffer occupancy for
any specific protocol, what is left is to derive N and N2 for
that protocol. Before deriving N and N2 for the OF, LS, and
HP protocols in the following subsections, we list below a few
symbols, each representing a random variable frequently used
in this section.

• N : The number of blocks per segment sent by either
source or relay (until a segment is fully decoded at
destination)

• NS : The number of blocks per segment sent by source
• NR: The number of blocks per segment sent by relay
• MSD: The number of blocks per segment sent by source

that successfully reach the destination
• MRD: The number of blocks per segment sent by relay

that successfully reach the destination
• Ni: The number of blocks per segment sent in the i-th

stage of a RANC ARQ protocol

A. The OF Protocol

This subsection aims to analyze the saturation throughput,
average segment delay, and buffer occupancy for the OF
protocol. With the commonly used formulas listed in Theorem
1, what we need to do is to derive N and N2 for OF.

Under the OF protocol, a block can reach the destination
either through the direct link SD or along the relaying path
S→R→D. After transmitting a block, the source learns the
transmission successful if it receives an ACK. The probability

2968 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

that the source learns a block transmission successful is p =
(1 − (1− PSD)(1 − PSRPRD))PDS,ACK. After a failed block
transmission, the source will retransmit the same block until
it learns the block transmission successful.

Because a segment consists of K original blocks and the
probability that the source receives a (positive) ACK after
sending a block is p, the number of blocks sent by source, NS ,
is a negatively binomially distributed random variable. More
precisely, given the value of K , NS ∼ NB(p,K). Using the
well-known formulas for the mean and the second moment of
a negative binomial distribution, NS and NS

2 can be derived
as follows:

NS = E
[
E[NS |K]

]
= E

[
K/p

]
=

K

p
(1)

NS
2 = E

[
E[NS

2|K]
]

= E
[K2 +K(1− p)

p2

]
=

K2 +K(1− p)

p2
(2)

The relay forwards an overheard block only if the cor-
responding direct transmission from source to destination is
failed. The probability that a direct transmission is failed is
1− PSD and the probability that the relay overhears a block
sent by source is PSR. Therefore, every time after the source
sends a block, the probability that the relay will forward the
block is p′ = PSR(1 − PSD). Since the source sends NS

blocks in all, the total number of blocks the relay forwards
is NR =

∑NS

i=1 Xi, where Xi ∼ Bernoulli(p′) is a Bernoulli
random variable with the success probability of p′. Xis are
independent and identically distributed (iid).

Because NR =
∑NS

i=1 Xi, NR is a Binomial random
variable given the value of NS . That is, given the value of NS ,
NR ∼ Binomial(p′, NS). By the well-known formulas for the
mean and the second moment of a binomial distribution, NR

and NR
2 can be derived as follows:

NR = E[NR|NS] = E[p′ ·NS] = p′ ·NS (3)

NR
2 = E[NR

2|NS] = E[NS · p′(NS · p′ + 1− p′)]

= (p′)2NS
2 + p′(1− p′)NS (4)

Now we are ready to derive N and N2 for the OF protocol.
Theorem 2: Given the first and second moments of segment

size (K and K2), N and N2 for the OF protocol are

N =
K

p
(1 + p′)

N2 = (1 + p′)2
K2 +K(1− p)

p2
+ p′(1− p′)

K

p

where p = (1 − (1 − PSD)(1 − PSRPRD))PDS,ACK is the
probability of the source learning a block transmission suc-
cessful and p′ = PSR(1−PSD) is the probability of the relay
forwarding blocks.

Proof:
By definition, N = NS+NR. Summing up (1) and (3) gets

N = NS +NR =
K

p
(1 + p′)

Next we derive N2 = NS
2 +NR

2 + 2NSNR. Since NS
2

and NR
2 have been derived in (2) and (4), what is left is to

derive NSNR. To this end, we define the centralized random
variable Yi � Xi − X = Xi − p′. Yis are iid. NSNR can
be derived with the help of Wald’s second equation. Applying
Wald’s second equation to (

∑NS

i=1 Yi)
2, we get

var(Yi) ·NS = E

[(NS∑
i=1

Yi

)2
]

Because Yi = Xi − p′ and Xi ∼ Bernoulli(p′), we know
var(Yi) = var(Xi) = p′(1− p′). So

p′(1− p′) ·NS = E

[(NS∑
i=1

(Xi − p′)
)2

]

= E

[(NS∑
i=1

Xi − p′NS

)2
]

= E
[
(NR − p′NS)

2
]

= NR
2 − 2p′NSNR + (p′)2NS

2

Substituting (4) into the above equation, we get NSNR after
some arithmetic manipulation:

NSNR =
(p′)2NS

2 +NR
2 − p′(1 − p′)NS

2p′

= p′NS
2 (5)

By (4) and (5), we get

N2 = NS
2 +NR

2 + 2NSNR

= (1 + p′)2NS
2 + p′(1− p′)NS

After substituting (1) and (2) into the above equation, we have

derived N2 = (1 + p′)2 K2+K(1−p)
p2 + p′(1− p′)Kp .

Here we give an interpretation of how N for the OF protocol
comes from. The source keeps sending blocks until it learns K
transmissions successful; so the source takes K

p transmissions
on average. The probability of the relay forwarding blocks is
p′; therefore, the relay takes K

p p
′ transmissions on average.

Summing up the two numbers of transmissions, we know that
the source and relay nodes in all take N = K

p (1 + p′) trans-
missions. This interpretation can be regarded as a verification
of the above proof.

With Theorem 2, it is easy to obtain the saturation through-
put, average segment delay, and buffer occupancy for the OF
protocol, simply by substituting N and N2 given in Theorem
2 into the formulas in Theorem 1.

B. The LS Protocol

This subsection aims to analyze the saturation throughput,
average segment delay, and buffer occupancy for the LS
protocol. With the commonly used formulas listed in Theorem
1, what we need to do is to derive N and N2 for LS.

To derive N and N2 for the LS protocol, we consider
the behavior of source and relay nodes. The source sends
out coded blocks in the first stage and then keeps silent in
the second stage. The first stage finishes when relay and
destination nodes collectively receive K distinct blocks. As

KAO and CHEN: ON RANC ARQ FOR WIRELESS RELAY NETWORKS: FROM THE TRANSMISSION PERSPECTIVE 2969

a result, given the value of K , the number of blocks sent
by source, NS , is a random variable following the negative
binomial distribution:

NS ∼ NB(q,K)

where q = PSD + PSR − PSDPSR is the probability that
a single transmission sent by source reaches either relay or
destination (or both). We call such a transmission helpful.

Among helpful transmissions, a part of them reach the relay
node but fail to reach the destination node. Denote the number
of such transmissions by W . Given the value of K , W is a
binomially-distributed random variable:

W ∼ Binomial(q′,K)

where q′ = PSR(1−PSD)/q is the conditional probability that
source’s transmission fails to reach the destination given the
transmission is helpful. q′ can be also regarded as the fraction
of helpful transmissions that fail to reach the destination.

At the end of the first stage, the destination missed the
W blocks. Because the source does not send any block in
the second stage, it is relay’s responsibility to deliver the
information carried by these W blocks to the destination. (The
relay supplements the missing information by sending out
recoded blocks.) The value of W affects the actual number
of recoded blocks sent by relay, NR. Obviously, given the
value of W , NR is negatively binomially distributed:

NR ∼ NB(PRD,W)

Using the well-known formulas of the means and the second
moments of a binomial distribution and a negatively binomial
distribution, we can derive the first and second moments of
NS and W as:

NS = E[E[NS |K]] = E[K/q] = K/q (6)

NS
2 = E

[
E[NS

2|K]
]
= E

[
K2 +K(1− q)

q2

]

=
1

q2
K2 +

1− q

q2
K (7)

W = E[E[W |K]] = E[q′K] = q′K (8)

W 2 = E
[
E[W 2|K]

]
= E [Kq′(Kq′ + 1− q′)]

= (q′)2K2 + q′(1− q′)K (9)

By W given in (8), W 2 given in (9), and the well-known
formulas of the mean and the second moment of a negatively
binomial distribution, we can derive NR and NR

2 as:

NR = E[E[NR|W]] = E[W/PRD] =
W

PRD
=

q′

PRD
K

(10)

NR
2 = E

[
E[NR

2|W]
]
= E

[
W 2 +W (1− PRD)

PRD
2

]

=
1

PRD
2W

2 +
1− PRD

PRD
2 W

=
(q′)2

PRD
2K

2 +
q′(2 − q′ − PRD)

PRD
2 K (11)

Next, we derive N and N2 based on the above observations.

Theorem 3: Given the first and second moments of segment
size (K and K2), N and N2 for the LS protocol are

N =

(
1

q
+

q′

PRD

)
K

N2 =

(
1

q2
+

(q′)2

PRD
2

)
K2

+

(
1− q

q2
+

q′(2− q′ − PRD)

PRD
2

)
K +

2q′

qPRD
(K)2

where q = PSD+PSR−PSDPSR is the probability of helpful
transmissions and q′ = PSR(1−PSD)/q is the probability of
helpful transmissions failing to reach the destination.

Proof: By definition, N = NS +NR, which implies that
N = NS +NR and N2 = NS

2 +NR
2 + 2NSNR. Using (6)

and (10), it is straightforward to derive N as:

N = NS +NR =

(
1

q
+

q′

PRD

)
K

To derive N2 = NS
2 + NR

2 + 2NSNR, what is left is to
derive NSNR, since NS

2 and NR
2 are given in (7) and (11)

respectively. In Appendix B, we prove NSNR = NS ·NR. So
NSNR can be obtained by multiplying (6) and (10):

NSNR = NS ·NR =
q′

qPRD
(K)2 (12)

Substituting (7), (11), and (12) into N2 = NS
2 + NR

2 +
2NSNR, we get

N2 =

(
1

q2
+

(q′)2

PRD
2

)
K2

+

(
1− q

q2
+

q′(2− q′ − PRD)

PRD
2

)
K +

2q′

qPRD
(K)2

Therefore, we have proven this theorem.
Here we give an interpretation of how N for the LS

protocol comes from. The source keeps sending blocks until
there are K helpful transmissions. So the source takes K/q
transmissions on average. Helpful transmissions fail to reach
the destination with probability q′ and it is the relay’s re-
sponsibility to deliver these missing blocks to the destination
over link RD. On average, there are Kq′ missing blocks.
Because a transmission over link RD reaches the destination
with probability PRD , the relay takes Kq′/PRD transmissions
on average. Summing up the two numbers of transmissions,
we get that the total number of transmissions the source and
relay nodes take is N = (1q +

q′

PRD
)K. This interpretation can

be regarded as a verification of the above proof.
With Theorem 3, it is easy to obtain the saturation through-

put, average segment delay, and buffer occupancy for the LS
protocol, simply by substituting N and N2 given in Theorem
3 into the formulas in Theorem 1.

C. The HP Protocol

This subsection aims to analyze the saturation throughput,
average segment delay, and buffer occupancy for the HP
protocol. With the commonly used formulas listed in Theorem
1, what we need to do is to derive N and N2 for HP.

For a contained presentation, N and N2 for HP are derived
in this subsection, assuming all segments are of a constant size

2970 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

k. Note that these results under this assumption can be easily
generalized to the case of having random-sized segments, by
unconditioning E[N |K = k] and E[N2|K = k] over all
possible segment sizes as:

N =

∞∑
k=1

Pr(K = k)E[N |K = k]

N2 =
∞∑
k=1

Pr(K = k)E[N2|K = k]

Starting here, we assume that all segments are of equal size
k. For a tractable analysis, we make two simplifications:

• In the first stage, the source sends h/PSR coded blocks
and the destination receives �h/PSR ·PSD� coded blocks.

• In the second stage, the destination needs to receive k′ =
k−�h/PSR·PSD� = �k−h/PSR·PSD� blocks to retrieve
a complete segment.

The above simplifications implies N = h/PSR+N2, where
the first term h/PSR is a constant and the second term N2

is the number of blocks sent by either source or relay in
the second stage until the destination receives k′ blocks. To
derive N and N2, what we need to do is to derive N2 and
N2

2. Because the destination receives k′ blocks in the second
stage, we know N2 = N2(k

′), where N2(x) is defined as the
random variable representing the number of blocks sent (either
by source or relay) for the destination to receives x blocks in
the second stage. It is defined that N2(−1) = N2(0) = 0
because no block would be sent out if the destination does
not have to receive any block. N2(x) and N2

2(x) are defined
as the mean and the second moment of N2(x), respectively.
By this definition, N2 = N2(k′) and N2

2 = N2
2(k′).

To analyze N2(x) and N2
2(x), we observe the second

stage for the three-node (source-relay-destination) network.
The second stage is split into the first round and the remaining
rounds. The first round finishes right before source transmits
the second coded block in the second stage; the remaining
rounds starts upon source’s second transmission and finishes
at the end of the second stage.

The first round has six possible outcomes. Each represents
a combination that i) the coded block sent by the source may
or may not reach the destination, ii) the relay may or may not
overhear the coded block, and iii) if the relay overhears the
coded block, the recoded block sent by the relay may or may
not reach the destination. Considering the six outcomes and
using the law of total expectation, N2(x) can be formulated
into the following recursive expression for x ≥ 1:

N2(x) = PSD(1− PSR) 1 +N2(x− 1)

+ PSDPSRPRD 2 +N2(x− 2)

+ PSDPSR(1 − PRD) 2 +N2(x− 1)

+ (1− PSD)(1− PSR) 1 +N2(x)

+ (1− PSD)PSRPRD 2 +N2(x− 1)

+ (1− PSD)PSR(1− PRD) 2 +N2(x) (13)

where each term at the right-hand side corresponds to one of
the six outcomes. Take the first term as an example. The first
term corresponds to the outcome when the coded block sent

(by source) in the first round reaches the destination but not
the relay. The probability of this outcome is PSD(1−PSR). In
this case, the total number of blocks sent in the first round is
1, because a relay sends a recoded block only if it overhears a
coded block. The destination, which needs to receive x blocks
in total and has already received one block in the first round,
will receive x−1 blocks in the remaining rounds. This is how
we get the first term of N2(x)’s recursive expression; the other
five terms can be derived in a similar way.

Similarly, N2
2(x) can be formulated into the following

recursive expression for x ≥ 1:

N2
2(x) = PSD(1− PSR) (1 +N2(x− 1))2

+ PSDPSRPRD (2 +N2(x − 2))2

+ PSDPSR(1 − PRD) (2 +N2(x− 1))2

+ (1− PSD)(1− PSR) (1 +N2(x))2

+ (1− PSD)PSRPRD (2 +N2(x− 1))2

+ (1− PSD)PSR(1− PRD) (2 +N2(x))2 (14)

Based on the above observations, we can exploit a recur-
rence solving technique called annihilation to derive N2(x)

and N2
2(x). The derivation is shown in Theorem 4. With

N2(x) and N2
2(x) as well as the formula of N = h/PSR +

N2(k
′), it is easily to obtain N = h/PSR + N2(k′) and

N2 = (h/PSR)
2
+ 2(h/PSR)N2(k′) +N2

2(k′).
Theorem 4: If all segments are of an equal size k, N2(x),

N2
2(x), N , and N2 for the HP protocol are

N2(x) =
−r′(1− r)

(2− r)2
(r − 1)x +

r′(1− r)

(2− r)2
+

r′

2− r
x

N2
2(x) = α(r − 1)x + βx(r − 1)x + γ + δx+ εx2

N = h/PSR +N2(k′)

N2 = (h/PSR)
2
+ 2(h/PSR)N2(k′) +N2

2(k′)

where the constants are

k′ = �k − h/PSR · PSD�
r =

PSD + PSRPRD − 2PSDPSRPRD

PSD + (1− PSD)PSRPRD

r′ =
1 + PSR

PSD + (1− PSD)PSRPRD⎡
⎢⎢⎢⎢⎣
α
β
γ
δ
ε

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
(r−1)-1 -1(r−1)-1 1 -1 (-1)2

(r−1)0 0(r−1)0 1 0 02

(r−1)1 1(r−1)1 1 1 12

(r−1)2 2(r−1)2 1 2 22

(r−1)3 3(r−1)3 1 3 32

⎤
⎥⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎣

0
0

N2
2(1)

N2
2(2)

N2
2(3)

⎤
⎥⎥⎥⎥⎥⎦

and N2
2(1), N2

2(2), and N2
2(3) can be computed by (16).

Proof: What we need to do is to derive the closed forms
of N2(x) and N2

2(x). The two closed forms can be obtained
by annihilating the recursive expressions of N2(x) and N2

2(x)
shown in (13) and (14), respectively.

Step 1: Derivation of the closed form of N2(x).

KAO and CHEN: ON RANC ARQ FOR WIRELESS RELAY NETWORKS: FROM THE TRANSMISSION PERSPECTIVE 2971

After some algebraic manipulations on (13), we get

N2(x) =
1 + PSR

PSD + (1− PSD)PSRPRD

+
PSD + PSRPRD − 2PSDPSRPRD

PSD + (1− PSD)PSRPRD
N2(x− 1)

+
PSDPSRPRD

PSD + (1− PSD)PSRPRD
N2(x− 2)

The above equation is equivalent to the below recurrence for
x ≥ −1.

N2(x+ 2)− rN2(x+ 1)− (1 − r)N2(x) = r′ (15)

Denote the shift operator by E.5 Regarding N2(x) as a
function of x, the recurrence (15) can be rewritten as(

E−(r − 1)
)(
E−1

)
N2(x) = r′

Observing the above equation, becasue (E−1) annihilates the
constant r′, we know (E−(r−1))(E−1)2 annihilates N2(x).
So we get the generic solution for x ≥ −1:

N2(x) = a · (r − 1)x + b · 1x + c · x 1x = a(r − 1)x + b+ cx

where a, b, c are constants that satisfy the system of equations
corresponding to the boundary conditions at x = −1, 0, 1:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
N2(−1) = 0 =

1

r − 1
a+ b− c

N2(0) = 0 = a+ b

N2(1) = r′ = (r − 1)a+ b+ c

N2(−1) and N2(0) both equal zero, because N2(−1) =
N2(0) = 0 by definition. N2(1) = r′ can be easily obtained
by substituting x by -1 into (15).

Solving the above system of equations, we get the constants

a =
−r′(1 − r)

(2− r)2
, b =

r′(1− r)

(2− r)2
, c =

r′

2− r

and hence

N2(x) =
−r′(1− r)

(2− r)2
(r − 1)x +

r′(1− r)

(2− r)2
+

r′

2− r
x

Step 2: Derivation of the closed form of N2
2(x).

After some algebraic manipulations on (14), we get

N2
2(x) =

1

PSD + (1− PSD)PSRPRD

{
1 + 3PSR

+ 2(1− PSD)(1 + PSR − 2PSRPRD)N2(x)

+ 2(PSD+PSDPSR+2PSRPRD−4PSDPSRPRD)N2(x−1)

+ 4PSDPSRPRDN2(x− 2)

+ (PSD + PSRPRD − 2PSDPSRPRD)N2
2(x− 1)

+ PSDPSRPRDN2
2(x− 2)

}
(16)

The above equation is equivalent to the below recurrence for
x ≥ −1.

N2
2(x+ 2)− rN2

2(x + 1)− (1− r)N2
2(x)

= c′ + c2N2(x + 2) + c1N2(x+ 1) + c0N2(x) (17)

5The (linear) shift operator E is, for any function f , (E f)(x) = f(x+1)
for all x. More generally, for any positive integer n, the operator En shifts
its argument n times. That is, En f(x) = f(x+n). The compound operator
E−1 is defined by setting (E−1)f = E f + (−1)f for any function f .
(E−1)2 is shorthand for (E−1)(E−1), which applies (E−1) twice.

where c′, c2, c1, c0 are constants.
Regarding N2(x) and N2

2(x) as functions of x, the recur-
rence (17) can be rewritten as(

E−(r − 1)
)(
E−1

)
N2

2(x)

= c′ +
(
c2 E

2 +c1 E+c0
)
N2(x) (18)

In Step 1, we know (E−1) annihilates any constant and
(E−(r−1))(E−1)2 annihilates N2(x). Therefore, (E−(r−
1))(E−1)2 annihilates the right-hand side of the above equa-
tion, which implies the left-hand side is also annihilated. Thus,
N2

2(x) is annihilated by [(E−(r− 1))(E−1)2] · [(E−(r−
1))(E−1)] = (E−(r − 1))2(E−1)3.

So we get the generic solution for x ≥ −1:

N2
2(x) = α(r − 1)x + βx(r − 1)x + γ + δx+ εx2

where α, β, γ, δ, ε are constants that satisfy the system of
equations representing the boundary conditions at x =
−1, 0, 1, 2, 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N2
2(-1) = (r−1)-1α+ (-1)(r−1)-1β + γ + (-1)δ + (-1)2ε

N2
2(0) = (r−1)0α+ 0(r−1)0β + γ + 0δ + 02ε

N2
2(1) = (r−1)1α+ 1(r−1)1β + γ + 1δ + 12ε

N2
2(2) = (r−1)2α+ 2(r−1)2β + γ + 2δ + 22ε

N2
2(3) = (r−1)3α+ 3(r−1)3β + γ + 3δ + 32ε

N2
2(−1) = N2

2(0) = 0 because N2(−1) = N2(0) = 0 by
definition. The values of N2

2(1), N2
2(2), and N2

2(3) can be
computed using (16).

Solving the above system of equations, we get the constants
α, β, γ, δ, and ε. So far, we have proven this theorem.

VI. DISCUSSIONS ON HP

It is desirable that the HP protocol performs comparably
well to the LS protocol. In particular, we hope that HP has
the same saturation throughput as LS has. Because saturation
throughput mainly depends on N (cf. Theorem 1), we attempt
to make the value of N of the HP protocol equal that of the
LS protocol. A key to this goal is to choose an appropriate
value for h.

Under the LS protocol, given the segment K = k, the
average numbers of blocks that node S and node R send out
are respectively

N (LS)
S =

1

q
k =

1

PSD + PSR − PSDPSR
k

and

N (LS)
R =

q′

PRD
k =

PSR(1 − PSD)

PRD(PSD + PSR − PSDPSR)
k

Under the HP protocol, a relay node does not start to send
out recoded blocks until it has received h coded blocks. To
make HP achieve a performance comparable to LS, we hope
that in the next time slot after node S sends the N (LS)

S -th coded
block, node R sends out the N (LS)

R -th recoded block and the
segment transmission completes. Because the probability of

2972 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

node R overhearing a block sent by node S is PSR, node R
should hold quiescent until it has overheard

h = N (LS)
S PSR −N (LS)

R =
PSR(PSD + PRD − 1)

PRD(PSD + PSR − PSDPSR)
k

(19)

coded blocks. After that, it sends out a recoded block each
time it overhears a coded block.6

We note that by observing (19), a challenge occurs when
PSD + PRD < 1. In this situation, a negative value of h
implies that a relay node should not only start to help from
the very first but also help the source node more aggressively
than the HP protocol could. That is, instead of sending out a
recoded block each time when overhearing a coded block,
the relay node probably should send out more than one
recoded block. To this end, we develop an advanced RANC
ARQ protocol, called the work-based opportunistic RANC
protocol. The preliminary work about the work-based protocol
is published in [37] and is beyond the scope of this paper.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the RANC protocols—LS and
HP—and the C-ARQ protocol—OF—in terms of saturation
throughput and average segment delay. The LS protocol can
be regarded as an ideal scheme, offering a performance bound.
The OF protocol is representative of C-ARQ protocols. The
performance of LS and HP is compared with OF to see
performance gains brought by a RANC ARQ protocol over
a C-ARQ protocol. The performance of HP is compared with
LS to see how much room left for a RANC ARQ protocol
without the need of per-packet ACKs to be further improved.
This section presents both theoretical results and simulation
results. The simulation results are obtained using the in-house
simulator we develop.

For a specific RANC ARQ protocol, the throughput gain
is defined as its saturation throughput (η) divided by OF’s
saturation throughput (ηOF):

Gη =
η

ηOF

Throughput gain is the greater the better. A value greater than
one implies outperformance against the OF protocol.

While related work has shown that C-ARQ protocols out-
perform conventional ARQ protocols, this section intends to
show that RANC protocols can even perform better than
C-ARQ protocols. The reasons that the two RANC ARQ
protocols, LS and HP, are expected to outperform the C-
ARQ protocol, OF, are two-fold. First, both LS and HP
indeed take link reception probabilities into consideration
(explicitly or implicitly) and therefore, they transmit packets
more efficiently than OF does. Second, the use of network
coding minimizes unneeded retransmissions caused by ACK
loss.

In the following subsections, the RANC ARQ protocols and
the C-ARQ protocol are extensively evaluated and compared
with each other, by theoretical results and through simulations
under various environments. Comparing theoretical results and

6The number of received blocks cannot be negative. So, for both analysis
and simulations, h is set to 0 if (19) turns out to be a negative number.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PSR

η

LS (analysis)
LS (simulation)
HP (analysis)
HP (simulation)
OF (analysis)
OF (simulation)

Fig. 6. Theoretical/simulated saturation throughput. PSD = 0.3. PRD =
min(1.5− PSR, 1). K = 100.

simulation counterparts helps to ensure the analysis’s validity.
In addition to the performance evaluation under generic envi-
ronments presented in sections VII-A, we also present a case
study in Section VII-B.

A. Generic Environments

In the first analysis/simulation setup, we show theoretical
results and simulation counterparts in the case where link
probabilities PSR and PRD vary in such a way that a relay
node near the source node has a high PSR but a low PRD ,
while a relay node close to the destination node has a low
PSR but a high PRD . More precisely, PRD is assumed to be
either 1.5−PSR or one, whichever smaller. F is set to eight,
that is, there are eight flows (source-destination pairs) in this
simulation setup.

In this setup, saturation throughput (η) and throughput gain
(Gη) are shown in Fig. 6 and Fig. 7, respectively. As one
can observe, the theoretical results of all protocols match
extremely well to their simulation counterparts, except HP.
For HP, due to a few simplifications mentioned in Section V-C,
there is a small difference between the theoretical results and
simulation counterparts. The difference is less than 1% mostly
and less than 5% for the largest one. This helps ensure the
validity of the performance analysis derived in Section V.

Let us rank the protocols according to their saturation
throughput. As observed in Fig. 6 and Fig. 7, LS performs
best, which is expected. The second place is HP; HP’s
performance is very close to LS’s performance. OF performs
worst among these protocols. As observed, our proposed
RANC protocols, LS and HP, significantly outperform the C-
ARQ protocol, OF, in terms of saturation throughput from
both absolute and relative perspectives. This matches our
aforementioned expectation and explanation.

Fig. 6 and Fig. 7 also show that the performance of HP
is quite close to the performance of LS. This makes HP
attractive. In other words, HP is a simple yet efficient RANC
protocol.

A phenomenon of turnaround is observed in Fig. 6: Along
the x-axis, the saturation throughput first increases and then
decreases after a certain point. This turnaround phenomenon
is relevant to how the location of the relay node affects the

KAO and CHEN: ON RANC ARQ FOR WIRELESS RELAY NETWORKS: FROM THE TRANSMISSION PERSPECTIVE 2973

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

PSR

G
η

LS (analysis)
LS (simulation)
HP (analysis)
HP (simulation)
OF (analysis)
OF (simulation)

Fig. 7. Theoretical/simulated throughput gain. PSD = 0.3. PRD =
min(1.5− PSR, 1). K = 100.

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

PSR

T

LS (analysis)
LS (simulation)
HP (analysis)
HP (simulation)
OF (analysis)
OF (simulation)

Fig. 8. Segment delay vs. PSR. PSD = 0.3. PRD = min(1.5−PSR, 1).
K = 100. F = 8. TF = 1. The average packet arrival rate is set to 0.1.

performance. If the relay node is chosen to be close to the
source but far away from the destination, PRD is small; such
a relay is not a good choice, because the packets it sends out
are not very likely to reach the destination. If the relay node
is chosen to be close to the destination but far away from the
source, PSR is small; such a relay does not help much, either,
because the relay seldom overhears the packets sent by the
source. A good relay node would lie close to the midpoint
of the source and destination. This explains the turnaround
phenomenon.

The same comparison conclusions drawn in terms of sat-
uration throughput also apply in terms of segment delay. As
shown in Fig. 8, all the theoretical results match well to the
simulation counterparts; even HP only has a difference less
than 5%. The ranking order is LS best, HP second place, and
OF worst. LS and HP outperform OF drastically; meanwhile,
HP has a performance almost comparable to LS.

In the second analysis/simulation setup, we evaluate the
impact of packet arrival rate on T . The packet arrival rate
is equal to the segment arrival rate (λs) times the average
segment size (K). As one can observe in Fig. 9, LS performs
best again, in terms of segment delay. The second place, which
tightly follows the champion, is still HP. And OF remains
the worst one among these protocols. As the packet arrival

0.05 0.1 0.15 0.2 0.25 0.3
200

300

400

500

600

700

800

900

packet arrival rate (block/s)

T

LS (analysis)
LS (simulation)
HP (analysis)
HP (simulation)
OF (analysis)
OF (simulation)

Fig. 9. Segment delay vs. packet arrival rate. PSD = 0.3. PSR = 0.7.
PRD = 0.8. K = 100. F = 8. TF = 1.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SR distance (m)

η

LS (analysis)
LS (simulation)
HP (analysis)
HP (simulation)
OF (analysis)
OF (simulation)

Fig. 10. Saturation throughput vs. source-relay distance in the case study.

rate increases, T increases with an increasing slope for all the
protocols.

B. Case Study

In this subsection, a case study is presented to evaluate,
in a WiMAX system, the performance gains of our proposed
RANC ARQ protocols compared to the representative C-ARQ
protocol, OF. Consider a base station (i.e., source) in the
WiMAX system communicating to a subscriber (i.e., destina-
tion) or vice versa, with the help of a relay station (i.e., relay).
Suppose that path loss and fading affect communications
between source and destination, between source and relay, and
between relay and destination. The channel parameters as well
as modulation and coding are set according to pages 75-76 in
[40]. In this setup, the probability of successful transmission
over a link of length dij (which connects nodes i and j) is

pij = Q

(
24.7 + 30 log10dij

6

)
where Q(·) is the Gaussian Q-function.

In this simulation setup, a relay station is located somewhere
on the line segment connecting the base station and the
subscriber. The distance between the base station and the
subscriber is set to 400 meters.

Fig. 10, Fig. 11, and Fig. 12 show saturation throughput,
throughput gain, and segment delay in this simulation setup,

2974 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

0 50 100 150 200 250 300 350 400

1

1.5

2

2.5

SR distance (m)

G
η

LS (analysis)
LS (simulation)
HP (analysis)
HP (simulation)
OF (analysis)
OF (simulation)

Fig. 11. Throughput gain vs. source-relay distance in the case study.

0 50 100 150 200 250 300 350 400
200

300

400

500

600

700

800

SR distance (m)

T

LS (analysis)
LS (simulation)
HP (analysis)
HP (simulation)
OF (analysis)
OF (simulation)

Fig. 12. Segment delay vs. source-relay distance in the case study.

respectively. As one can observe, the theoretical results and
the simulation counterparts match extremely well to each
other, except HP. For HP, the difference between theoretical
results and simulation counterparts is small—less than 3% in
saturation throughput and less than 4% in segment delay. In
this case study, it is observed that the performance ranking is
the same as previous subsection. LS performs best, HP is the
second place, and OF performs worst. It is also observed that
as long as the relay station is not far away from the subscriber
(i.e., destination), the performance of HP is almost comparable
to that of LS.

VIII. CONCLUSION

In this paper, the framework of the relay-assisted network-
coding (RANC) ARQ protocols, which leverage both network
coding and opportunistic retransmission, has been addressed.
In particular, two RANC ARQ protocols—the LS protocol
which offers a fundamental limit to any single-relay RANC
ARQ protocol and the HP protocol which is simple yet
efficient—have been proposed.

Moreover, an analysis framework for single-relay RANC
ARQ protocols in TDMA-based networks has been presented,
which essentially behave as a M/G/1 queues with vacation.
We have derived saturation throughput and average segment
delay for LS and HP, as well as for the OF protocol which
is representative of C-ARQ protocols. Extensive analysis and

TF

1 2 … F 1 2 … F 1 2 … F 1 2 … F

22 2 2

Fig. 13. The rectangles with thick edges represent the service rounds for
flow 2, which are shifted time frames.

simulations show that the two proposed RANC ARQ protocols
bring significant performance gains over the representative C-
ARQ protocol.

APPENDIX A
PROOF OF THEOREM 1

It is known in textbooks that a conventional TDMA (and
TDM) system, in which a source node sends each of its
Poisson arrival packets directly to its destination node once,
can be modeled as an M/G/1 queue with fixed-length vacation:
When the queue is empty, the server takes a vacation of length
TF . If the queue is still empty after a vacation, the server takes
another vacation of equal length.

Different from the conventional TDMA system, the TDMA
system described in Section III allows relay nodes to help
and also allows source and relay nodes to send the same
packets (or some version of the same packets) multiple times.
In order to connect such a TDMA system to the M/G/1 model
with vacation, let us observe one flow (i.e., one source-relay-
destination triple) at a time. In particular, we observe service
rounds for a certain flow. Take flow 2 as an example. The
rectangles with thick edges in Fig. 13 represent service rounds
for flow 2, where the service rounds for a certain flow begin
at the starts of time slots allocated to that flow. Each of the
service rounds for a certain flow is essentially a shifted time
frame. So the length of a service round is TF .

One can regard the source and relay for a certain flow as
a single entity, since the relay helps the source only in the
flow’s time slots. For a certain flow in the TDMA system,
if the source and relay have no block to send at the start of
a service round for the flow, they cannot send any block in
that service round, even if a new block may arrive during the
service round. This time period of length TF is a “vacation”,
in which the source and relay cannot send any block. Focusing
on the service rounds for a certain flow, the TDMA system we
consider essentially behaves as an M/G/1 queue with vacation.

In an M/G/1 queue with vacation, the average waiting
time (excluding the service time), denoted by WQ, can be
computed:

WQ =
λs E[X2]

2(1− λs E[X])
+

E[V 2]

2E[V]
(20)

where X and V are random variables representing the service
time and the vacation length, respectively.

In the TDMA system we consider, X depends on the
actual number of service rounds, which is equal to N . More
precisely, X = NTF . The vacation length is V = TF .
Substituting these values into (20), we get

WQ =
λs ·N2 · TF

2

2(1− λsNTF)
+

TF

2
(21)

KAO and CHEN: ON RANC ARQ FOR WIRELESS RELAY NETWORKS: FROM THE TRANSMISSION PERSPECTIVE 2975

The segment transmission finishes earlier than the last ser-
vice round ends. Observing Fig. 13, the segment transmission
is done upon the end of the first time slot in the last service
round. So we know that the segment delay is the length of
the first N − 1 service rounds plus the length of the first time
slot in the last service round. Using (21), the average segment
delay is

T = WQ +

(
(N − 1) +

1

F

)
TF

=
λs ·N2 · TF

2

2(1− λsNTF)
+

(
N − F − 1

F
+

1

2

)
TF

Using Little’s formula, we can derive the buffer occupancy

L = λsT =
λs

2 ·N2 · TF
2

2(1− λsNTF)
+ λs

(
N − F − 1

F
+

1

2

)
TF

The saturation throughput is the maximum departure rate
which is equal to the average service rate. Since the average
service rate is 1/(NTF) segments per second and a segment
consists of K blocks on average, we know

η = K/(NTF)

So far we have proven Theorem 1.

APPENDIX B
PROOF OF NSNR = NS ·NR FOR THE LS PROTOCOL.

We prove NSNR = NS ·NR by showing that NS and NR

are independent to each other.
Let us observe the three-node (source-relay-destination) net-

work only at the moments when helpful transmissions are tak-
ing place. The source in total sends K helpful transmissions,
all in the first stage. Hence there are K time epochs observed.
Denote the K time epochs by t1, t2, . . . , tK . Observing the
network at these K time epochs, we get:

W = w1 + w2 + . . .+ wK

NS = n1 + n2 + . . .+ nK

where ni is the number of coded blocks sent (by source) in
the time interval (ti−1, ti], and wi is a binary random variable
indicating whether the helpful transmission at ti fails to reach
the destination. wi = 1 if the helpful transmission at ti reaches
the relay, not the destination. wi = 0 otherwise.

It is straightforward that nis are iid geometrically-
distributed random variables with parameter q = PSD+PSR−
PSDPSR. This is because a coded block reaches either relay
or destination with probability q.

Now let us pay attention to the random variable wi. By
definition, wi depends only on the helpful transmission at the
time moment ti and thus is independent of ni. Regardless of
the value of ni, wi is irrelevant to the first ni−1 transmissions
in the time interval (ti−1, ti] at all; it depends only on the last
transmission. In fact, wis are iid Bernoulli trials, each with a
successful probability q′ = PSR(1 − PSD)/q.

The above argument implies that all wis and njs, 1 ≤ i, j ≤
K , are independent of each other, which implies that W and
NS are independent of each other. Because NR depends on
W only and is independent of any of the values of nis, NR

and NS are independent of each other. Therefore, NSNR =
NS ·NR.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers and the editor
for their many helpful suggestions. This research was sup-
ported in part by National Science Council, Taiwan, under
grants 100-2219-E-007-003 and 101-2221-E-007-017.

REFERENCES

[1] J. Jin, B. Li, and T. Kong, “Is random network coding helpful in
WiMAX?” in Proc. 2008 IEEE INFOCOM.

[2] Z. Li, Q. Luo, and W. Featherstone, “N-in-1 retransmission with network
coding,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2689–2694,
Sept. 2010.

[3] M.-H. Lu, P. Steenkiste, and T. Chen, “Design, implementation and
evaluation of an efficient opportunistic retransmission protocol,” in Proc.
2009 ACM MobiCom.

[4] I. Cerutti, A. Fumagalli, and P. Gupta, “Delay models of single-source
single-relay cooperative ARQ protocols in slotted radio networks with
Poisson frame arrivals,” IEEE/ACM Trans. Netw., vol. 16, no. 2, pp.
371–382, Apr. 2008.

[5] D. Murray, T. Koziniec, and M. Dixon, “Solving ACK inefficiencies in
802.11 networks,” in Proc. 2009 IEEE Intl. Conf. Internet Multimedia
Syst. Architecture Applications.

[6] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[7] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
July 2000.

[8] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[9] S. Bhadra, S. Shakkottai, and P. Gupta, “Min-cost selfish multicast with
network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 5077–
5087, Nov. 2006.

[10] M. Ghaderi, D. Towsley, and J. Kurose, “Reliability gain of network
coding in lossy wireless networks,” in Proc. 2008 IEEE INFOCOM.

[11] X.-B. Liang, “Matrix games in the multicast networks: maximum
information flows with network switching,” IEEE Trans. Inf. Theory,
vol. 52, no. 6, pp. 2433–2466, June 2006.

[12] Q.-T. Vien, L.-N. Tran, and H. X. Nguyen, “Network coding-based ARQ
retransmission strategies for two-way wireless relay networks,” in Proc.
2010 Intl. Conf. Software Telecommun. Comput. Netw.

[13] S. Fu, K. Lu, Y. Qian, and M. Varanasi, “Cooperative network coding
for wireless ad-hoc networks,” in Proc. 2007 IEEE GLOBECOM.

[14] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: practical wireless network coding,” in Proc. 2006
ACM SIGCOMM.

[15] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[16] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[17] E. Zimmermann, P. Herhold, and G. Fettweis, “On the performance
of cooperative relaying protocols in wireless networks,” Eur. Trans.
Telecommun., vol. 16, no. 1, pp. 5–16, Jan.–Feb. 2005.

[18] B. Rong and A. Ephremides, “Cooperation above the physical layer: the
case of a simple network,” in Proc. 2009 IEEE International Symp. Inf.
Theory.

[19] E. Zimmermann, P. Herhold, and G. Fettweis, “The impact of coop-
eration on diversity-exploiting protocols,” in Proc. 2004 IEEE VTC –
Spring.

[20] A. K. Sadek, K. J. R. Liu, and A. Ephremides, “Cognitive multiple
access via cooperation: protocol design and performance analysis,” IEEE
Trans. Inf. Theory, vol. 53, no. 10, pp. 3677–3696, Oct. 2007.

[21] J. Si, Z. Li, and Z. Liu, “Threshold based relay selection protocol for
wireless relay networks with interference,” in Proc. 2010 IEEE ICC.

[22] B. Maham, A. Hjorungnes, and M. Debbah, “Outage probability analysis
of multi-relay delay-limited hybrid-ARQ channels,” in Proc. 2010 IEEE
VTC – Fall.

[23] B. Maham, A. Behnad, and M. Debbah, “Analysis of outage probability
and throughput for half-duplex hybrid-ARQ relay channels,” IEEE
Trans. Veh. Technol., vol. 61, no. 7, pp. 3061–3070, Sept. 2012.

[24] X. Wang and C. Yang, “A MAC protocol supporting cooperative
diversity for distributed wireless ad hoc networks,” in Proc. 2005 IEEE
PIMRC.

2976 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 2013

[25] J. Alonso-Zarate, E. Kartsakli, C. Verikoukis, and L. Alonso, “Persistent
RCSMA: a MAC protocol for a distributed cooperative ARQ scheme in
wireless networks,” EURASIP J. Advanced Signal Process., Dec. 2008.

[26] S. S. N, C.-T. Chou, and M. Ghosh, “Cooperative communication MAC
(CMAC)—a new MAC protocol for next generation wireless LANs,” in
Proc. 2005 Intl. Conf. Wireless Netw., Commun. Mobile Comput..

[27] N. Agarwal, N. Agarwal, L. N. Kannan, M. Tacca, and A. Fumagalli,
“IEEE 802.11b cooperative protocols: a performance study,” in Proc.
2007 IFIP/TX6 NETWORKIG 2007.

[28] J. Alonso-Zarate, E. Kartsakli, C. Verikoukis, and L. Alonso, “A
novel near-optimum medium access control protocol for a distributed
cooperative ARQ scheme in wireless networks,” in Proc. 2008 IEEE
PIMRC.

[29] J. Alonso-Zarate, L. Alonso, C. Skianis, and C. Verikoukis, “Analysis
of a distributed queuing medium access control protocol for cooperative
ARQ,” in Proc. 2010 IEEE GLOBECOM.

[30] A. Antonopoulos, C. Skianis, and C. Verikoukis, “Network coding-based
medium access control protocol for cooperative wireless networks,” in
Proc. 2012 IEEE ICC.

[31] K. Tan, Z. Wan, H. Zhu, and J. Andrian, “CODE: cooperative medium
access for multirate wireless ad hoc network,” in Proc. 2007 IEEE
SECON.

[32] A. Antonopoulos and C. Verikoukis, “Network coding-based cooperative
ARQ scheme,” in Proc. 2011 IEEE ICC.

[33] P. Fan, Z. Chen, W. Chen, and K. B. Letaief, “Reliable relay assisted
wireless multicast using network coding,” IEEE J. Sel. Areas Commun.,
vol. 27, no. 5, pp. 749–762, June 2009.

[34] A. Fanous and A. Ephremides, “Network-level cooperative protocols
for wireless multicasting: stable throughput analysis and use of network
coding,” in Proc. 2010 IEEE Information Theory Workshop.

[35] Q. Song, Y. Li, Z. He, and J. Lin, “On reliable multicast with network
coding-ARQ for relay cooperation cells,” in Proc. 2012 IEEE VTC –
Spring.

[36] B. Shrader and T. C. Royster, “Cooperative multicast strategies under
heterogeneous link loss rates,” in Proc. 2011 IEEE GLOBECOM.

[37] J.-C. Kao, F.-W. Chen, M.-H. Yang, and T.-L. Wang, “Coverage
enhancement to IEEE 802.11p using work-based opportunistic relay-

assisted network-coding ARQ,” in Proc. 2011 IEEE Asia Pacific Wire-
less Commun. Symp.

[38] N. Abuzainab and A. Ephremides, “Energy efficiency of cooperative
relaying over a wireless link,” IEEE Trans. Wireless Commun., vol. 11,
no. 6, pp. 2076–2083, June 2012.

[39] A. Larmo, M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, and
H. Wiemann, “The LTE link-layer design,” IEEE Commun. Mag.,
vol. 47, no. 4, pp. 52–59, Apr. 2009.

[40] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX:
Understanding Broadband Wireless Networking. Prentice Hall, 2007.

Jung-Chun Kao (S’04, M’09) received the B.S.
degree in electrical engineering from National Tai-
wan University, Taipei, in 1999; the M.S. degree in
electrical engineering from University of Southern
California, Los Angeles, in 2003; and the Ph.D.
degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, in 2008. He
joined the faculty of the Department of Computer
Science, National Tsing Hua University, Taiwan, in
August 2008. His research interests include wireless
ad-hoc and sensor networks, cooperative communi-

cations, network coding, and design and analysis of communication protocols.
He is a member of the IEEE.

Fu-Wen Chen (S’09) received the BS degree
from the Department of Computer Science, National
Tsing Hua University (NTHU), Hsinchu, Taiwan,
R.O.C., in 2008. One year after his master’s study
in the same department, he transferred to the Ph.D.
program due to academic excellence. He is currently
a Ph.D. candidate. His research interests include
wireless ad-hoc and sensor networks, cooperative
communications, network coding, distributed algo-
rithms, and performance evaluation. He is a student
member of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslonPro-Bold
 /ACaslonPro-BoldItalic
 /ACaslonPro-Italic
 /ACaslonPro-Regular
 /ACaslonPro-Semibold
 /ACaslonPro-SemiboldItalic
 /AdobeFangsongStd-Regular
 /AdobeHeitiStd-Regular
 /AdobeKaitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobeSongStd-Light
 /AGaramondPro-Bold
 /AGaramondPro-BoldItalic
 /AGaramondPro-Italic
 /AGaramondPro-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirchStd
 /BlackadderITC-Regular
 /BlackoakStd
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BrushScriptStd
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ChaparralPro-Bold
 /ChaparralPro-BoldIt
 /ChaparralPro-Italic
 /ChaparralPro-Regular
 /CharlemagneStd-Bold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlackStd
 /CooperBlackStd-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EccentricStd
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GiddyupStd
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboStd
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /KozGoPro-Bold
 /KozGoPro-ExtraLight
 /KozGoPro-Heavy
 /KozGoPro-Light
 /KozGoPro-Medium
 /KozGoPro-Regular
 /KozMinPro-Bold
 /KozMinPro-ExtraLight
 /KozMinPro-Heavy
 /KozMinPro-Light
 /KozMinPro-Medium
 /KozMinPro-Regular
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LithosPro-Black
 /LithosPro-Regular
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MesquiteStd
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinionPro-Bold
 /MinionPro-BoldCn
 /MinionPro-BoldCnIt
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Medium
 /MinionPro-MediumIt
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /NuevaStd-BoldCond
 /NuevaStd-BoldCondItalic
 /NuevaStd-Cond
 /NuevaStd-CondItalic
 /Nyala-Regular
 /OCRAExtended
 /OCRAStd
 /OldEnglishTextMT
 /Onyx
 /OratorStd
 /OratorStd-Slanted
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /PoplarStd
 /PrestigeEliteStd-Bd
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RosewoodStd-Regular
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /StencilStd
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldExt
 /TektonPro-BoldObl
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

