
Game-Based Broadcast over
Reliable and Unreliable Wireless

Links in Wireless Multihop Networks
Fu-Wen Chen, Student Member, IEEE, and Jung-Chun Kao, Member, IEEE

Abstract—This paper addresses the minimum transmission broadcast problem in wireless networks and presents efficient solutions,

including an optimal broadcast scheme and a distributed game-based algorithm. Distinct from related work in the literature which

typically assumes wireless links are reliable, we address the issue of broadcasting over both reliable wireless links and unreliable

wireless links. Our main contributions are as follows: We first formulate the minimum transmission broadcast problems over reliable

links and over unreliable links as two mixed integer linear programming (MILP) problems, respectively. This way, optimal broadcast

schemes can be easily obtained using any existing MILP solver, for small-scale networks. For large-scale networks, we propose a

distributed game-based algorithm and prove that the game-based algorithm achieves Nash Equilibrium. Using simulation, we confirm

that compared with existing algorithms in the literature and optimal solutions obtained by our MILP techniques, the proposed game-

based algorithm performs very well in terms of delivery ratio, the number of transmissions, and convergence speed.

Index Terms—Broadcast, wireless ad hoc networks, mixed integer linear programming, game theory

Ç

1 INTRODUCTION

BROADCASTING, in which a node sends a message to all
other nodes in the network, is a common and vital

operation in wireless ad hoc networks. Broadcasting is
required by many on-demand routing protocols such as
AODV [1] in their route discovery processes. Besides,
broadcasting is widely used for sending safety messages to
nodes over the entire network or a certain region in
vehicular ad hoc networks and wireless sensor networks.

Naive broadcast schemes are inefficient in wireless
networks [2]. A representative example is flooding, in
which each node rebroadcasts a message when receiving
that message for the first time. Pure flooding often causes
too many unnecessary packet transmissions and may lead
to broadcasting storm [3]. To avoid the broadcasting storm
problem, a crucial issue is to develop a broadcast scheme
with the minimum number of transmissions. This problem
is referred to as the minimum transmission broadcast
(MTB) problem [2].

In the MTB problem, network models, particularly link
models, play an important role and may affect performance
significantly. There are two fundamental types of link
models—the reliable-link model and the unreliable-link model.
Packets transmitted over any reliable link are always
delivered provided that there is no collision. On the
contrary, packets transmitted from one end of an unreliable
link reach the other end at a probability—an unreliable link
sometimes delivers packets but sometimes does not. Since
wireless links are inherently error-prone due to a number of

dynamic factors such as noise, fading and interference,
unreliable links are so pervasive in ad hoc radio networks.
Although studying the MTB problems for both the models,
this paper focuses on providing reliable broadcasting over
unreliable wireless links.

Most of related work in the literature instead assumes the
reliable-link model. Under the reliable-link model, the MTB
problem is equivalent to the maximum leaf spanning tree
(MLST) problem [4] and the minimum connected dominat-
ing set (MCDS) problem. Packets can be optimally broadcast
along the constructed spanning tree or connected dominat-
ing set (CDS). Because the MLST and MCDS problems have
been proven NP-hard [5], a number of approximation
algorithms [6], [7], [8] and suboptimal broadcast schemes
[9], [10], [11], [12], [13] have been proposed.

The MLST and MCDS problems have been extensively
studied [6], [7], [8]. There are some approximation algo-
rithms that can guarantee a constant approximation ratio.
One of the best approximation algorithms is the three-
approximation algorithm proposed by Lu in [6] for the
MLST problem. And in [7], [8], a few distributed algorithms
are developed for the MCDS problem. For example, Wan’s
algorithm [7] is an 8-approximation algorithm.

Among the suboptimal broadcast schemes, Wu and Li [9]
proposed a CDS-based broadcast scheme in which a node
belongs to the CDS if it has two neighbor nodes
unconnected. Only nodes in the CDS need to rebroadcast
the broadcast messages. In this scheme, each node requires
knowing two-hop neighbor information to determine
whether it belongs to the CDS.

Bako et al. [10] use two-hop neighbor information to
know the number of potential forwarders, which in turn
determines the forwarding probability. Both [9] and [10]
require two-hop neighbor information and thus induce high
overhead especially in highly dynamic networks, as
claimed in [13].

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 8, AUGUST 2013 1613

. The authors are with the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan, R.O.C.
E-mail: richarticle.chen@gmail.com, jungchuk@cs.nthu.edu.tw.

Manuscript received 21 July 2011; revised 24 Feb. 2012; accepted 18 May
2012; published online 31 May 2012.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-07-0405.
Digital Object Identifier no. 10.1109/TMC.2012.133.

1536-1233/13/$31.00 � 2013 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

In [11], [12], [13], the knowledge of mere one-hop
neighbors is leveraged for efficient broadcasting in mobile
ad hoc networks. Whereas getting two-hop (or higher hop)
neighbor information incurs higher overhead, one-hop
neighbor information can be easily obtained. In Edge
Forwarding [11], nodal transmission coverage is divided
into six equal-size sectors. Upon receiving a broadcast
message, the node will rebroadcast the message after
overhearing the channel for a period of time, unless all of
its six sectors have forwarders.

In [12], Liu et al. proposed an efficient broadcasting
algorithm that achieves the local optimality by selecting the
minimum number of forwarding nodes. The key idea is to
take into consideration neighbor nodes’ transmission cover-
age. If a neighbor node’s coverage can be covered by other
neighbor nodes, then the node would not be a forwarding
node. Liu’s algorithm can significantly reduce the number
of forwarding nodes compared to Edge Forwarding, but
there is still a room for further performance improvement.

In [13], Khabbazian and Bhargava proposed the
responsibility-based scheme (RBS) to reduce the number
of transmissions while guaranteeing full delivery under
the reliable-link model. RBS is a receiver-based algorithm.
In RBS, each node is responsible for rebroadcasting a
message to the closest nodes which have not received the
message. A node does not need to rebroadcast the message
if all its neighbor nodes have already received the message
or it is not responsible for any of its neighbor nodes, thus
reducing the possibility of two nearby neighbors broad-
casting the same message. This avoids most of redundant
retransmissions and makes RBS effective, although RBS is
simple and does not require knowing two-hop (or higher-
hop) neighbor information. Khabbazian and Bhargava [13]
show that RBS outperforms Edge Forwarding [11], Liu’s
algorithm [12], and the CDS-based broadcast scheme [9].

All of the above related work relies on the assumption
of links being reliable; however, wireless links are
inherently error-prone due to a number of dynamic factors
such as noise, fading, and interference. The issue of how to
ensure reliable data delivery to intended recipients over
unreliable links has been extensively studied. A number
of acknowledgment-based (ACK-based) retransmission
schemes [14], [15], [16], [17], [18], [19], [20] and collision
resolution strategies [21], [22] have been proposed.

Among the ACK-based retransmission schemes, Sheu
et al. [16] propose the use of broadcast ACK pattern and
backoff ACK window for notification purpose and over-
head reduction: A node receiving a broadcast packet will
randomly choose one of the minislots in the following DIFS
time interval and send the broadcast ACK pattern in the
chosen minislot. Lou and Wu [19] use a different approach
to reducing acknowledgment overhead, in which ACKs are
not sent out at all: Forwarding of broadcast messages at
preselected forwarding nodes are regarded as acknowl-
edgments instead; nonforwarding nodes are covered by at
least two forwarding nodes to enhance the reliability.
Besides, Impett et al. [15] address the problem of ACK
implosion. To mitigate the ACK implosion problem, Impett
et al. [15] and Banerjee et al. [17] suggest the use of
negative acknowledgments.

Collision resolution strategies have also been well
studied. For example, Gandhi et al. [21] propose a
distributed collision-free broadcasting algorithm in which

the transmit times for all nodes are scheduled such that
collisions are avoided. In [22], Zhang and Shin propose a
physical-layer collision resolution protocol which takes
advantage of transmission diversity. The proposed techni-
que can effectively decode overlapping packets in a symbol-
level iterative manner, if the packets carry the same data.
The idea is similar to the interference cancelation technique
proposed in [23] which can significantly improve spatial
reuse at a cost of small per-link performance degradation.

Based on reliable data delivery over unreliable wireless
links via the concept of ACK-based retransmission and/
or collision resolution, a number of efficient broadcast
schemes [17], [20] applicable to the unreliable-link model
have been proposed. Banerjee et al. [17] develop several
centralized heuristics for constructing energy-efficient
broadcast/multicast tree that helps decrease transmission
energy. A delivery tree is constructed in such a way that
the cost of a node takes into account the transmission
power, including the first transmission and following
retransmissions, consumed by the node to deliver mes-
sages to all its children nodes. The number of retransmis-
sions depends on the error probability of outgoing links. In
[20], Ros et al. propose a distributed broadcast protocol for
vehicular scenarios. The proposed protocol combines a
distributed construction of CDS and a neighbor elimination
scheme [24] to improve efficiency. However, Ros et al. [20]
do not consider link quality and retransmissions explicitly.

The aforementioned broadcast schemes are applicable to
the unreliable-link model; however, because they are either
centralized solutions or short of taking link quality into
consideration, providing efficient broadcast over unreliable
wireless links still remains an important research topic.
From the theoretical perspective, the MTB problem under
the unreliable-link model has not been formulated yet.
From a practical point of view, distributed and link-quality-
aware algorithms/heuristics designed for unreliable links
have not been well investigated. This motivates our studies
on providing reliable and efficient broadcasting over
reliable and unreliable links. Our contributions include:

. We formulate the MTB problem under the two link
models into two mixed integer linear programming
(MILP) problems.

. We unify the two MTB problems and propose a
unified, distributed algorithm which is a game-
theoretic approach.

Game theory is a promising way to solve important
problems in wireless networks such as routing [25], [26],
coverage [27], channel allocation [28], sensor activation [29],
security [30], and so on. However, to our best knowledge,
this paper is the first attempt to use game theory to tackle
the MTB problems. What follows explains the contributions
mentioned above.

To obtain optimal broadcast schemes, we formulate the
MTB problems under the reliable-link model and under the
unreliable-link model as two MILP problems. This way,
optimal broadcast schemes for reliable links and near-
optimal broadcast schemes for unreliable links can be
obtained by using any off-the-shelf MILP solver in a
centralized manner.

To solve the MTB problems in a distributed manner and
apply to self-configured wireless networks, we transform
the MTB problems into a noncooperative game and

1614 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 8, AUGUST 2013

leverage game theory to solve the MTB problems. We prove
convergence of the game to a Nash Equilibrium and
develop a game-based algorithm that requires one-hop
neighbor information only.

The remainder of this paper is organized as follows:
Section 2 describes the network model in detail. Section 3
presents our MILP formulations of the MTB problems for
reliable links and for unreliable links. Section 4 introduces
theoretical and algorithmic parts of our proposed game-
based approach. Simulation results are presented in
Section 5. Finally, we present some concluding remarks
in Section 6.

2 NETWORK MODEL

We consider a wireless network in which there are a
number of nodes. Nodes can be distributed arbitrarily, as
long as the network remains connected. The set of all the
nodes in the network is denoted by V . Same as [13], it is
assumed that each node knows the information of its one-
hop neighbors. This can be achieved, for example, by
periodic hello messages.

Node u is a neighbor of node v if node u is within the
transmission range of node v. For a given node, say node v,
NðvÞ is defined as the set of all its neighbor nodes. For a set
of nodes, say S, NðSÞ is defined as the union of the neighbor
nodes of every node in S.

A node always fails to deliver packets to a node outside
transmission range, while packet delivery within transmis-
sion range succeeds with a probability. For any two nodes u
and v, the link reception probability that node v can
successfully receive a packet sent from node u is denoted
by puv. If the link quality is better, then puv is greater.
Depending on the value of puv, the two link models—the
reliable-link model and the unreliable-link model—are
defined as follows:

. The reliable-link model: Any pair of neighbor nodes
has a reliable link connecting each other. More
precisely, for any two nodes u and v, puv ¼ 1 if node
v is a neighbor of node u and puv ¼ 0 otherwise.
Under this model, provided that there is no collision,
packets transmitted within the transmission range
are always delivered.

. The unreliable-link model: For simplicity of exposition,
we call the model in [17] as the unreliable-link
model. In this model, links connecting two nodes are
not necessarily reliable. For any two nodes u and v,
0 < puv � 1 if node v is a neighbor of node u;
otherwise, puv ¼ 0. Under this model, packets trans-
mitted from one end of a link reach the other end
with a link reception probability of puv.

A single transmission over an unreliable link may fail. To
ensure delivery, a packet transmitted over an unreliable
link may be retransmitted several times. For example, if
puv ¼ 0:25, then it takes 1=0:25 ¼ 4 transmissions on average
until a packet is successfully delivered. Similarly, if a node
intends to broadcast a packet to a subset of its neighbor
nodes, it keeps broadcasting the same packet, perhaps
several times, until all the intended recipients have received
the packet. The expected number of needed transmissions
will be modeled later in Section 3.2.

3 PROBLEM FORMULATION AND SOLUTIONS

OBTAINED BY MILP

The main objective of this section is to formulate the
maximum transmission broadcast (MTB) problems for
reliable links and for unreliable links as two MILP
problems. This way, optimal broadcast schemes for reliable
links and near-optimal broadcast schemes for unreliable
links can be obtained by using off-the-shelf solvers such as
CPLEX [31] and GLPK [32]. Our MILP formulations of the
MTB problems under the reliable-link model and under the
unreliable-link model are presented in detail in Sections 3.1
and 3.2, respectively.

For the reliable-link model, we generalize/relax some
ideas from [33] and derive a MILP formulation with much
fewer variables and constraints than what is proposed in [33].
Indeed, our formulation decreases the number of constraints
by one order of magnitude and cuts the number of variables
by half. Particularly, the number of integer variables is
decreased by one order. More precisely, the number of
constraints is decreased from 2jV j2 þ jV j � 2 to 2jV j þ 1,
the number of variables is decreased from 2jV j2 � 2jV j þ 1 to
jV j2, and the number of integer variables is decreased from
jV j2 � jV j to jV j. This is a significant improvement, consider-
ing that linear programming can be solved in polynomial
time, whereas MILP is NP-hard.

For the unreliable-link model, to guarantee delivery,
the objective function must consider retransmissions and
thus is different from the objective function under the
reliable-link model. To our best knowledge, we propose
the first MILP formulation of the MTB problem under the
unreliable-link model.

3.1 MILP Formulation under the Reliable-Link
Model

The MTB problem aims to find a broadcast scheme with the
minimum number of transmissions while guaranteeing full
delivery. Under the reliable-link model, the MTB problem is
equivalent to find an MLST, in which internal nodes need to
broadcast the message once but leaf nodes do not. So what
is left to do is the formulation of the MLST problem into a
MILP problem.

To tackle the formulation, we first define some variables:

. Node r is the broadcasting source (the root).

. Bu is a binary variable representing whether node u
is an internal node in the broadcast tree. Bu ¼ 1 if
node u is an internal node and Bu ¼ 0 otherwise.

. Duv is the number of downstream nodes of the
directed edge ðu; vÞ in the broadcast tree. Note that if
the broadcast tree does not contain the edge ðu; vÞ,
then Duv ¼ 0.

The downstream nodes of an edge are the node in the head
of the edge and the descendants of that head node. A node
is an internal node if its out-degree is at least 1; otherwise, it
is a leaf node.

Since the goal is to find an optimal broadcast scheme
which can guarantee full delivery, the rooted spanning graph
property must be satisfied to ensure a constructed graph is a
graph rooted at node r and spans over all other nodes. The
rooted property corresponds to the fact that the broadcast

CHEN AND KAO: GAME-BASED BROADCAST OVER RELIABLE AND UNRELIABLE WIRELESS LINKS IN WIRELESS MULTIHOP NETWORKS 1615

message originates from the source node and the spanning
property ensures full delivery to all the nodes. We denote
the graph by GðV Þ, in which the directed edge ðu; vÞ exists if
and only if Duv > 0. Theorem 1 proves that a graph
satisfying the below three constraints is sufficient for its
being a rooted spanning graph.

. The source node r must not be a downstream node
of any other node, as formally expressed in (5).

. All other nodes are downstream nodes of node r.
Therefore, the number of downstream nodes of node
r is jV j � 1, as formally expressed in (6).

. The numbers of downstream nodes above and
below a node other than r must differ by one, as
formally expressed in (7), since the difference is that
node itself.

Theorem 1. For any connected graph, the rooted spanning
graph property is satisfied if the constraint equations (5)-(7)
are satisfied.

Proof. We need to prove that through the graph GðV Þ, every
node in the network is reachable from the source node r.
In other words, for every node v 2 V nfrg, there is a
directed path in GðV Þ from node r to v. We prove it by
contradiction. Suppose there exists a node u such that
there is no directed path from node r to u. Define the set
R ¼ fv 2 V j there is a directed path from node v to ug.
Obviously, for every node v 2 R, there is no directed
path from node r to v; otherwise, there would exist a
directed path from node r to u. We also know that for
every node v 2 R;Div > 0 only if i 2 R. With some
mathematical manipulation, we haveX

v2R

X
i2NðvÞ

Div ¼
X
v2R

X
i2R\NðvÞ

Div

¼
X
i2R

X
v2R\NðiÞ

Dvi

�
X
i2R

X
v2R\NðRÞ

Dvi

¼
X

v2R\NðRÞ

X
i2R

Dvi

¼
X

v2R\NðRÞ

X
i2R\NðvÞ

Dvi

�
X
v2R

X
i2NðvÞ

Dvi;

ð1Þ

where the third line holds true because NðiÞ � NðRÞ for
any i 2 R and the fifth line holds true because Dvi > 0
only if i 2 NðvÞ.

Let jRj denote the number of nodes in R. Using (7),
we have

X
v2R

X
i2NðvÞ

Div �
X
i2NðvÞ

Dvi

0
@

1
A ¼ Rj j � 1: ð2Þ

However, from (1), we know

X
v2R

X
i2NðvÞ

Div �
X
i2NðvÞ

Dvi

0
@

1
A � 0: ð3Þ

It is observed that (2) and (3) contradict each other.
Therefore, we have proven this theorem. tu
Any solution satisfying the above constraints satisfies the

rooted spanning graph property, which in turn implies a
valid broadcast scheme. On the other hand, for any
broadcast scheme with full delivery guarantee, there always
exist fDuvg satisfying the constraints, where u 2 V and
v 2 NðuÞ. This is obvious for a broadcast tree, because Duv is
set to the number of downstream nodes of edge ðu; vÞ. For a
nontree, it can be proven by pruning some edges of the
nontree to a tree, assigning fDuvg for the tree, and adding
the pruned edges back with zero Duv. Fig. 1 shows an
example satisfying the rooted spanning graph property.

In addition to satisfying the rooted spanning graph
property, a MLST must have the maximum number of leaf
nodes. Equivalently, the objective is to minimize the number
of internal nodes. To this end, we first use (8) to distinguish
internal nodes from leaf nodes. The binary variable Bu ¼ 1 if
node u is an internal node and Bu ¼ 0 otherwise. The
objective function is the sum of all Bus over all nodes and
should be minimized as (4) shows. Finally, the MILP
formulation under the reliable-link model is shown in Fig. 2.

3.2 MILP Formulation under the Unreliable-Link
Model

A single transmission over an unreliable link may fail. To
guarantee delivery, a sender (i.e., internal node) needs to
take a number of retransmissions until a message success-
fully reaches all of the intended recipients (i.e., children of
the internal node). This can be achieved, for example, by
utilizing ACK-based retransmission mechanisms [14], [15],
[16], [17], [18], [19], [20]. Taking retransmissions into
account, the MTB problem under the unreliable-link model

1616 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 8, AUGUST 2013

Fig. 1. This is an example satisfying the rooted spanning graph property.
Node r is the source node. The number on each edge is the number of
downstream nodes of the edge. In this example, nodes r, 1, and 2 are
internal nodes, whereas nodes 3, 4, and 5 are leaf nodes.

Fig. 2. MILP formulation under the reliable-link model.

is defined to find the broadcast tree with the minimum
expected number of transmissions until all the nodes have
received the message successfully.

Due to linearity, the expected number of transmissions
until all nodes in a broadcast tree have received a message
is equal to the sum of the expected numbers of transmis-
sions for each internal node to send the message to its
children. Suppose node u is an internal node. As depicted in
Fig. 3, we denote the number of node u’s children by n and
the reception probabilities at its children by pui, i ¼ 1;
2; . . . ; n. Let Tu be the random variable representing the
number of transmissions by node u until all its children
have received the message. The cumulative distribution
function of Tu can be expressed as

P ðTu � tÞ ¼
Yn
i¼1

ð1� ð1� puiÞtÞ: ð11Þ

P ðTu � tÞ can be further simplified and modeled in the
same way as what is done in [28], in which high-order terms
are ignored assuming 1� pui is small. Doing so, an
approximate P ðTu � tÞ can be obtained:

P ðTu � tÞ _¼ 1�
Xn
i¼1

ð1� puiÞt: ð12Þ

This approximation makes sense in practice. The reason is
that links of relatively poor quality are unlikely to appear in
an efficient broadcast tree since a poor-quality link incurs a
high cost in terms of the number of needed transmissions.
So, �Tu can be modeled as follows:

Tu ¼
X1
t¼0

P ðTu > tÞ

¼ 1þ
X1
t¼1

1� P ðTu � tÞð Þ

_¼1þ
X1
t¼1

Xn
i¼1

ð1� puiÞt

¼ 1þ
Xn
i¼1

1� pui
pui

:

ð13Þ

Here, we give (13) an interpretation—1) its first term comes
from the fact that node u is an internal node and thus sends
out a message at least once, and 2) retransmissions to the
children of node u contribute the second term of (13).

Knowing the expected number of transmissions (i.e., �Tu)
between a single internal node and its children, the
expected number of transmissions of all internal nodes
can easily be calculated by summing them together. So,
what is left is to identify the internal nodes and the
children of each internal node. Since the variable Bu can
indicate whether node u is an internal node, we only need
to find a way to indicate the children of an internal node.
To complete the MTB problem formulation under the
unreliable-link model into a MILP problem, we define
some new variables for the MILP formulation as follows:

. �Tu is the expected number of transmissions by node
u. If node u is an internal node, �Tu is modeled using
(13); otherwise, �Tu ¼ 0.

. Euv is a binary variable. Euv ¼ 1 if node v is a child of
node u in the broadcast tree and Euv ¼ 0 otherwise.

The MILP formulation for unreliable links is listed in
Fig. 4. The objective function is to minimize the expected
number of transmissions of all nodes, as shown in (14).
Equations (15), (16), (17), and (19) are the same as what are
described for the reliable-link model in Section 3.1. Duv 6¼ 0
implies that node v is a child of node u, which in turns
implies Euv ¼ 1, as described in (18). If a node u is an
internal node, then Bu ¼ 1 and (20) degrades to (13).
Otherwise, Bu ¼ Euv ¼ 0 and therefore �Tu degrades to zero.

4 GAME-BASED BROADCAST TREE CONSTRUCTION

Contrary to the optimal yet centralized solutions described
in Section 3, this section presents a fully distributed
approach: A unified model, called the broadcast tree
construction game, is proposed to tackle the broadcast
problems for both reliable links and unreliable links. A
distributed algorithm, called the game-based broadcast tree
construction (GB-BTC) algorithm, is developed, based on
the noncooperative game. GB-BTC merely needs informa-
tion about one-hop neighbors, thus causing practically
negligible communication overhead. This section also
proves that there exists at least one Nash Equilibrium in
the broadcast tree construction game.

4.1 Broadcast Tree Construction Game

Since the MTB problems (under the reliable-link model and
the unreliable-link model) are NP-hard, it is hard to find a
solution with optimal result in polynomial execution time.
Instead, we model a broadcast tree construction game to
construct a distributed algorithm that solves the MTB
problems with suboptimal result and fast convergence speed.

CHEN AND KAO: GAME-BASED BROADCAST OVER RELIABLE AND UNRELIABLE WIRELESS LINKS IN WIRELESS MULTIHOP NETWORKS 1617

Fig. 3. Node u has n children. The message reception probability from
nodes u to i is pui.

Fig. 4. MILP formulation under the unreliable-link model.

In game theory, a game consists of players, a set of actions
(or strategies) available to the players, and a specification of
utility functions (or payoffs) for all combinations of
strategies. The total payoff is defined as the sum of payoffs
to all players. In a noncooperative game, each player
independently chooses the strategy maximizing its own
payoff. Below, we explain the idea of modeling the MTB
problems (for both reliable links and unreliable links) as a
noncooperative game, the broadcast tree construction game.

Under the reliable-link model, the MTB problem is
equivalent to the MLST problem, which aims to minimize
the number of internal nodes. Regard the number of
internal nodes as the total cost to be minimized. The total
cost is added up by the costs of internal nodes; each internal
node brings a unit cost. Imagine that such a unit cost is paid
by the children nodes rather than the internal node itself.
Provided that an internal node has c children, each child
contributes a cost of 1=c, or equivalently a payoff of �1=c.
To be fully distributed, each nonroot node determines its
parent independently to maximize its payoff.

For the unreliable-link model, the objective of the MTB
problem is to minimize the cost—the sum of the expected
numbers of transmissions for all the internal nodes. The cost
contributed by an internal node can be computed using
(13): Provided that an internal node u has n children, each
child, say node v, shares the cost brought by its parent and
contributes a cost of 1=cþ ð1� puvÞ=puv, or a payoff of
�1=c� ð1� puvÞ=puv. Again, each nonroot node determines
its parent by itself to maximize its own payoff.

Indeed, the reliable-link model can be regarded as a
special case of the unreliable-link model in which puv ¼ 1 for
any reliable link uv. From the above point of view, the MTB
problem can be treated as a repeated and noncooperative
game. In the game, all nodes except the source node are
players, determining their parents (one parent for a node)
selfishly such that their own payoffs are maximized.1

There are jV j � 1 players in total. Assume that players
are enumerated and the set of players is denoted by P . Any
player, say player i, adopts a strategy si 2 NðiÞ to determine
its parent. The strategies of all players make a strategy
profile s ¼ ðs1; s2; . . . ; sjV j�1Þ, and we denote the strategies of
all players except player i by s�i. For a strategy profile S,
the number of children of node v is denoted by cðv; sÞ. We
assume that each player knows the number of children of its
neighbors through one-hop broadcasting when parent-
children relationships change. According to the above
argument, the payoff of player i is a function of s, denoted
by the utility function uiðsÞ:

uiðsÞ ¼ �
1

cðsi; sÞ
þ 1� psii

psii

� �
: ð24Þ

Our objective function is the total payoff:

maximize
X
i2P

uiðsÞ: ð25Þ

The broadcast tree construction game is a repeated
game; each player chooses the best response in all iterations.
In an iteration, each player considers the broadcast tree

constructed in last iteration and chooses a neighbor to be its
parent that maximizes its payoff. More precisely, given s�i
in last iteration, player i chooses the best strategy s�i such
that uiðs�i ; s�iÞ is maximized. The repeated game continues
until no player can increase its payoff by changing only its
own strategy.

Note that although players do not have conflict of
interest in the broadcast tree construction game, players are
encouraged to share the cost such that the total cost can be
minimized. This is similar to the well-known global
connection game (see [34, Chapter 19.3]). The global
connection game is a cost-sharing game in which the cost
of an edge is shared evenly by all players whose paths
contain that edge. The broadcast tree construction game can
be regarded as a generalization of the global connection
game in the sense that both edge cost and node cost are
encouraged to be shared.

4.2 Convergence

In general, there is no guarantee that best response
converges to a stable state. Indeed, it is nontrivial whether
best response converges in the broadcast tree construction
game. This is because it is possible that during some
iteration, a player increases its individual payoff by selfishly
choosing a new parent but the total payoff adversely gets
decreased.2 In this section, we prove that the best response
in the broadcast tree construction game eventually con-
verges to the famous stable state, Nash Equilibrium.

Stated simply, players are in a Nash Equilibrium if the
game can converge to a stable state in which no player can
increase its payoff by changing only its own strategy
unilaterally, while the other players keep theirs un-
changed. Specifically, a strategy profile s� is called a Nash
Equilibrium if and only if the following inequality always
holds true for each player i and any strategy si:

uiðs�Þ � ui
�
si; s

�
�i
�
: ð26Þ

To analyze the equilibrium property of the broadcast
tree construction game, we first prove that the broadcast
tree construction game is an exact potential game [35]. In
game theory, a game is considered a potential game if the
incentive of individual players to change their strategy can
be expressed in one global function, the potential function.
That is, the difference in individual payoffs for each player
from individually changing one’s strategy has the same
(positive or negative) sign as the difference in values for
the potential function. Specifically, if the differences have
the same value, the game is an exact potential game.

Before proving the broadcast tree construction game is an
exact potential game, we first explain the social meaning of
the potential function. In the broadcast tree construction
game, the total payoff or social payoff is the sum of all players’
payoff which turns out being equal to the (expected) total
number of transmissions until a broadcast message has
successfully been delivered to all the nodes in the network.
While the social payoff in an equilibrium reflects the
efficiency of this equilibrium, the potential function reflects

1618 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 8, AUGUST 2013

1. Provided that there exists no directed cycle, the broadcast tree
construction game guarantees to construct a rooted tree spanning over all
reachable nodes. The algorithm that avoids forming cycles is discussed later
in Section 4.3.

2. An example is that a player switches its parent from one internal node
to another with more children and a slightly worse link connectivity to the
player. In this situation, the individual payoff increases because the new
parent has more children. However, the total payoff does not benefit at all
by the switching because both the old and new parents remain internal
nodes. Instead, the total payoff decreases due to the use of a worse link.

the difference in the social payoff for each player from
individually changing one’s strategy. Whenever a player
changes its own strategy which turns out increasing (or
decreasing) the social payoff, the potential function increases
(or decreases) by the same amount.

The following theorem proves the broadcast tree con-
struction game is an exact potential game.

Theorem 2. The broadcast tree construction game is an exact
potential game.

Proof. To prove that the broadcast tree construction game is
an exact potential game, we attempt to construct a
potential function that takes both node cost and edge
cost into consideration and then show that the change of
any player’s payoff is exactly the change of the potential
function. The potential function is constructed as

’ðsÞ ¼ �
X
i2V

Hcði;sÞ þ
X
i2P

1� psii
psii

 !
; ð27Þ

where Hn ¼ �n
k¼11=k is the nth harmonic number. The

edge cost is dealt with in the second term of (27), which
simply sums up all edge costs involved in the broadcast
tree. The node cost is dealt with in the first term of (27),
using a harmonic number to cope with the node cost
(which is either 0 or 1) shared by the children nodes.

Without loss of generality, we assume that in some
iteration, player i changes its own strategy from s1

i to s2
i .

The strategy profile changes from s1 ¼ ðs1
i ; s�iÞ to

s2 ¼ ðs2
i ; s�iÞ. Because player i leaves the old parent s1

i

and joins the new parent s2
i , node s1

i loses a child, node
s2
i gets a new child, and the parent-children relationships

of other nodes are not affected. So, we know:

c
�
s1
i ; s

2
�
¼ c
�
s1
i ; s

1
�
� 1; ð28Þ

c
�
s2
i ; s

2
�
¼ c
�
s2
i ; s

1
�
þ 1; ð29Þ

cðv; s2Þ ¼ cðv; s1Þ 8v 2 V n
�
s1
i ; s

2
i

�
: ð30Þ

Now, we prove that the change in player i’s individual
payoff is exactly equal to the change in values of the
potential function as follows:

uiðs2Þ � uiðs1Þ ¼ ui
�
s2
i ; s�i

�
� ui

�
s1
i ; s�i

�
¼� 1

c
�
s2
i ; s

2
�þ 1�ps2

i i

ps2
i i

 !
þ 1

c
�
s1
i ; s

1
�þ 1�ps1

i i

ps1
i i

 !

¼� Hcðs2
i ;s

2Þ�Hcðs2
i ;s

2Þ�1þ
1�ps2

i i

ps2
i
i

 !
þ Hcðs1

i ;s
1Þ�Hcðs1

i ;s
1Þ�1þ

1�ps1
i i

ps1
i
i

 !

¼� Hcðs2
i ;s

2Þ�Hcðs2
i ;s

1Þþ
1�ps2

i i

ps2
i i

 !
þ Hcðs1

i ;s
1Þ�Hcðs1

i ;s
2Þþ

1�ps1
i i

ps1
i i

 !

¼�
X

k2fs1
i ;s

2
i g
Hcðk;s2Þþ

1�ps2
i i

ps2
i i

0
@

1
Aþ X

k2fs1
i ;s

2
i g
Hcðk;s1Þþ

1�ps1
i i

ps1
i i

0
@

1
A

¼�
X
k2V

Hcðk;s2Þþ
X
k2P

1�ps2
k
k

ps2
k
k

 !
þ

X
k2V

Hcðk;s1Þþ
X
k2P

1�ps1
k
k

ps1
k
k

 !

¼’ðs2Þ � ’ðs1Þ;
ð31Þ

where the fourth equality holds true because of (28) and
(29), and the sixth equality holds true because of (30).

So far, we have proven that in the broadcast tree
construction game, the change of any player’s payoff is
equal to the change of the potential function. Hence,
the broadcast tree construction game is an exact
potential game. tu
Since the broadcast tree construction game is a repeated

game with an exact potential function, according to
Rosenthal’s well-known result [36], the best response
dynamics in the broadcast tree construction game converges
to a Nash Equilibrium. This proves the following theorem:

Theorem 3. The broadcast tree construction game always
converges to a Nash Equilibrium.

4.3 Game-Based Broadcast Tree Construction
Algorithm (GB-BTC)

In the last section, we have proven the convergence to a
Nash Equilibrium in the broadcast tree construction game.
However, without considering ancestor/descendant rela-
tionship and imposing corresponding constraints, the
constructed broadcast tree may be invalid because it may
contain undesired (directed) cycles and end up being
disconnected or nontree.

Fig. 5 shows such an illustrative example in which
node r is the source node (i.e., the root) of all broadcast
messages. In this example, node a is supposed to choose
node r to be its parent because there is only one possible
path connecting nodes r and node a. However, without
considering their relationship, node a would mistakenly
select node b, one of its descendants, to be its parent in the
game due to a higher payoff. As a result, a directed cycle is
formed, causing the constructed graph (drawn in solid
arrows) disconnected and nontree.

To solve the problem of causing directed cycles, each
player must avoid choosing any of its descendant nodes as
the strategy. However, maintaining and disseminating
ancestor/descendant relationship could make a game-
based algorithm unfavorably centralized. To be able to
prevent a player from mistakenly choosing one of its
descendants as its parent in a distributed approach, we
develop a fully distributed algorithm, called the GB-BTC
algorithm. GB-BTC prevents directed cycles from being
formed by exploiting a local metric, called rank, (rather than
using the ancestor/descendant relationship) and by setting
some rank-based constraints for strategy selection.

4.3.1 Rank-Based Constraints

Each node/player has a rank attribute which is defined as
the least hop count to the source node. The rank of node i is

CHEN AND KAO: GAME-BASED BROADCAST OVER RELIABLE AND UNRELIABLE WIRELESS LINKS IN WIRELESS MULTIHOP NETWORKS 1619

Fig. 5. This figure illustrates that without knowing the ancestor/
descendant relationship, an invalid broadcast tree could be constructed
in the broadcast tree construction game. In this figure, the solid arrows
depict an invalid broadcast tree constructed in the game and the dotted
lines are links not adopted in the game. The numbers along links are the
link reception probabilities.

denoted by r(i). Ranks are computed locally and the values
are exchanged in a one-hop and distributed manner:
Initially, the rank of the source node is set to zero. Each
node puts its own rank value into hello messages and
disseminates hello messages one-hop away. After over-
hearing hello messages sent from neighboring nodes, each
node updates its rank value to be the lowest rank of its
neighbors plus one. The rank of the player’s parent is also
carried in hello messages and disseminated one-hop away.

There are multiple possible ways in which rank can be
used to prevent a player from mistakenly selecting its
descendants to be its parent. Although the simplest way is
to force the rank of a player higher than the rank of its
parent, this does not provide a satisfactory performance. It
results in performance degradation because possible stra-
tegies become very limited. To solve the (directed) cycle
problem while providing a satisfactory performance, GB-
BTC uses rank-based constraints instead: A player, say
player i, chooses its parent si to maximize its payoff, subject
to the following rank-based constraints:

. The rank of its parent si cannot be higher than the
rank of player i.

. If the rank of si is equal to the rank of si’s parent,
then the rank of si must be lower than the rank of
player i.

Under the first constraint merely, it is possible that there
still exists a directed cycle in which the ranks of all players
are the same. To prevent such cycles, we apply the second
constraint to make the rank increase within two hops. These
constraints can also prevent long paths, which will increase
the delay. With these two constraints, players need only
one-hop neighborhood information to prevent cycles, and
our proposed game-based algorithm, GB-BTC, can be run in
a fully distributed manner.

4.3.2 GB-BTC Algorithm

Now, we describe the proposed GB-BTC algorithm. At
beginning, a source node initiates a breadth-first traversal
to establish an initial tree. In the breath-first traversal process,
each node in the tree also computes the value of its rank, in the
way described previously. After this process, each player’s
rank ends up being equal to its parent’s rank plus one.

Then, each player can change its strategy (i.e., parent) to
maximize its payoff under the constraints previously
described. In the repeated game, if a player wants to change
its strategy, it needs to send messages to inform both the
old and new parents. In addition, the old and new parents
need to broadcast HELLO messages immediately to inform
their neighbors about the change of the number of their
children. The repeated game keeps going until no player
can increase its payoff by changing only its own strategy.

The pseudocode for the GB-BTC algorithm is summarized
in Fig. 6, and we assume HELLO messages one-hop away,
periodically and event triggered. The HELLO messages of a
node, say node i, include the following information:

. si: Its strategy (i.e., its parent),

. rðiÞ: Its rank,

. rðsiÞ: The rank of its parent,

. cðiÞ: The number of its children.

Both rðiÞ and rðsiÞ are included because nodes need the
information to check the rank-based constraints. cðiÞ is

included so that nodes can compute their utility functions
and choose the best strategies.

5 PERFORMANCE EVALUATION

In this section, we evaluate our proposed schemes under
both the reliable-link and unreliable-link models, using an
in-house simulator developed in C++. In particular, we
compare the performance of our proposed GB-BTC algo-
rithm with several heuristics/algorithms existing in the
literature and the optimal solutions obtained by using our
proposed MILP techniques. In addition, we evaluate the
convergence speed of the GB-BTC algorithm through
simulations.

The performance metrics of interest include the number
of transmissions and the delivery ratio. Provided that the
delivery ratio is the same, the number of transmissions is a
measure of the efficiency of broadcast algorithms. The
smaller the number of transmissions is, the more efficient
the algorithm (or equivalently the constructed broadcast
tree) is. Under the reliable-link model, the number of
transmissions is equal to the number of internal nodes in a
constructed broadcast tree. This is because transmissions
within the transmission range never fail and leaf nodes do
not forward messages. Under the unreliable-link model, a
node may need to broadcast the same message multiple
times to ensure delivery to all of the intended recipients
among its neighbors. There is a tradeoff between the
number of transmissions and the delivery ratio.

1620 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 8, AUGUST 2013

Fig. 6. Pseudocode for the GB-BTC algorithm.

The delivery ratio is defined as the percentage of nodes
which receive the broadcast message. Under the reliable-
link model, the delivery ratio for any algorithm is always
100 percent, as long as the broadcast scheme spans over all
nodes in the network. Under the unreliable-link model, the
delivery ratio is an indicator of reliability. The larger the
delivery ratio, the more reliable the broadcast scheme.

Note that Section 5.1 shows simulation results in terms of
the number of transmissions, but not the delivery ratio. This
is because under the reliable-link model, 100 percent
delivery ratio is guaranteed in all of the compared
algorithms. For the unreliable-link model, simulation
results in terms of both the delivery ratio and the number
of transmissions are presented in Section 5.2.

5.1 Simulations for the Reliable-Link Model

The first set of simulations is for the reliable-link model. In
this simulation setup, we consider a collision-free environ-
ment where packets reach everywhere within a fixed
transmission radius and there is no collisions. In each
simulation run, 50 nodes are distributed uniformly over a
square region with a node density ranging from 40 to
200 nodes/km2. The node density is controlled by adjusting
the area of the square region. Each simulation result (i.e., a
point in a figure) is averaged over 100 instances. Important
simulation parameters are listed in Table 1.

We compare our schemes (MILP and GB-BTC) with three
existing schemes—Lu’s, Wan’s, and RBS schemes. The Lu’s
algorithm [6] is a centralized three-approximation algo-
rithm designed for the MLST problem. The Wan’s algo-
rithm [7] is a distributed eight-approximation algorithm for
the (equivalent) MCDS problem. The third scheme, RBS
[13], is a distributed and efficient broadcast scheme using
only one-hop neighbor information.

As shown in Fig. 7, our proposed MILP method achieves
the best performance. This is because MILP guarantees
optimality in terms of the number of transmissions.
Although MILP is a centralized scheme and thus is not
very suitable to apply to large-scale wireless networks in
practice, it can be treated as a performance bound when a
number of extra constraints are imposed in reality.

As can be seen in Fig. 7, the performance of our proposed
GB-BTC algorithm is closest to the optimal performance
and thus is better than the three existing algorithms (Lu’s,
Wan’s, and RBS). Among Lu’s, Wan’s, and RBS algorithms,
RBS performs worst in this simulation setup. However, one
advantage of RBS is the lowest overhead, since RBS needs
neither tree construction nor global information.

5.2 Simulations for the Unreliable-Link Model

For the unreliable-link model, we run simulations by
adding a random noise and considering the effect of
propagation loss. The additive white Gaussian noise is

added to the wireless channel. The propagation loss is
modeled using a free space model and the received signal
power in free space at distance d from the transmitter is

PrðdÞ ¼
PtGtGr�

2

ð4�Þ2d2L
;

where Pt is the transmitted signal power. Gt and Gr are
the antenna gains of transmitter and receiver, respectively.
L is the system loss, and � is the wavelength. It is
common to select Gt ¼ Gr ¼ 1 and L ¼ 1. Packets are
transmitted at a data rate of 2 Mbps using the BPSK
modulation. Bit error rate (BER) of BPSK can be computed
using the well-known formula:

BER ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eb=N0

p	

;

where Eb is received signal energy per bit and N0 is the
noise power spectral density. With BER and packet length
L, the link reception probability that node v can success-
fully receive a packet sent from node u is puv ¼ ð1�BERÞL.
Important simulation parameters are listed in Table 2. In
such an environment, a longer distance to receiver implies a
lower reception probability.

In this simulation setup, our goal is to evaluate RBS,
flooding, and our proposed schemes (MILP and GB-BTC) in
terms of both delivery ratio and the number of transmis-
sions. Lu’s and Wan’s algorithms are not evaluated in this

CHEN AND KAO: GAME-BASED BROADCAST OVER RELIABLE AND UNRELIABLE WIRELESS LINKS IN WIRELESS MULTIHOP NETWORKS 1621

TABLE 1
Simulation Parameters Used for the Reliable-Link Model

Fig. 7. The number of transmissions versus various node densities,
under the reliable-link model.

TABLE 2
Simulation Parameters Used for the Unreliable-Link Model

simulation setup because they are not designed for the

unreliable model.
We first investigate the number of transmissions of our

proposed GB-BTC and MILP algorithms. Both of them
guarantee full delivery. As shown in Fig. 8, GB-BTC
performs very well because this fully distributed algorithm
only takes slightly more transmissions compared to the
centralized MILP technique. In other words, the GB-BTC
algorithm can construct efficient broadcast trees in a
distributed fashion.

Although it can be observed in Fig. 8 that RBS takes
fewer transmissions than GB-BTC and MILP do, RBS does
not really outperform GB-BTC and MILP. This is because
GB-BTC and MILP guarantee full delivery, but RBS does
not. For GB-BTC and MILP, internal nodes in the con-
structed broadcast tree may transmit the same broadcast
message multiple times until all of their children nodes
have received the message. On the contrary, for RBS, some
nodes might not receive broadcast messages and end up
being disconnected, since each node forwards the received
message at most once. The lower the delivery ratio, the

smaller the number of transmissions tends to be. As shown
in Fig. 9, RBS cannot achieve 100 percent delivery ratio.
Particularly, when the node density is small, the delivery
ratio of RBS degrades significantly. On the contrary,
flooding can achieve nearly 100 percent delivery ratio but
the number of redundant transmissions is extremely high.

We extend the simulation to consider one more scenario.
We change the node distribution from a uniform distribu-
tion to a 2D-Gaussian distribution. For the 2D-Gaussian
distribution, the x-coordinates and y-coordinates of all
nodes are both Gaussian random variables with a mean
equal to half the edge of the square region and with a
standard deviation equal to quarter the edge of the square
region. In this simulation setup, the node population is
denser around the center and sparser around the edges.
Compared to the scenario of uniform distribution, the
delivery ratio of RBS and flooding in this 2D-Gaussian
distribution scenario becomes higher, as shown in Fig. 10,
since more nodes are spread around the center. For the
same reason, the average number of transmissions becomes
lower. The performance of GB-BTC algorithm is still close to
that of MILP as shown in Fig. 11.

1622 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 8, AUGUST 2013

Fig. 8. The number of transmissions versus various node densities,
under the unreliable-link model. (Nodes are uniformly distributed.)

Fig. 9. The delivery ratio versus various node densities under the
unreliable-link model. (Nodes are uniformly distributed.) The result for
MILP is not shown here because it achieves 100 percent delivery ratio
as the GB-BTC algorithm does.

Fig. 10. The delivery ratio versus various node densities, under the
unreliable-link model. (Nodes are distributed in accordance with a 2D
Gaussian distribution.)

Fig. 11. The number of transmissions versus various node densities,
under the unreliable-link model. (Nodes are distributed in accordance
with a 2D Gaussian distribution.)

5.3 Analysis of the Convergence Speed

The GB-BTC algorithm has been proven in Section 4 to
converge to a Nash Equilibrium in a finite number of
iterations. In this section, we run simulations to analyze the
convergence speed. The GB-BTC algorithm starts with an
initial tree built by using a breadth-first traversal in a
distributed manner; after that, each player in each iteration
attempts to maximize its payoff selfishly. To analyze the
convergence speed, we restrict that only one player can
change its strategy in one iteration, and the convergence
speed is defined as to the inverse of the average number of
iterations until a state of convergence is achieved. The more
the number of iterations, the slower the convergence speed.

For both the reliable-link and unreliable-link models, we
run the simulations to learn the convergence speeds. Both
the number of nodes and the node density vary in this set of
simulations. For the reliable-link model, as shown in Fig. 12,
the average number of iterations is roughly equal to half
number of nodes; that is, each player only needs to change
its strategy 0.5 times on average. This implies a fast
convergence speed. For the unreliable-link model, the
average number of iterations is roughly the same as the
number of nodes as shown in Fig. 13. This number is
roughly twice as many as the number of transmissions
under the reliable-link model. The reason that it takes more
iterations in the unreliable-link case is because under the
unreliable-link model, the total payoff may be decreased
after a player changes its strategy selfishly. Nevertheless,
each player only needs to change its strategy once on
average—it is still a fast convergence speed.

6 CONCLUSION

In this paper, we have addressed the minimum transmis-
sion broadcast (MTB) problems under the reliable-link
model and under the unreliable-link model. Under the
reliable-link model, the MTB problem is formulated as a
MILP problem, with only few variables and constraints.
Moreover, we tackle the error-prone nature of wireless
links and provide the first MILP formulation of the MTB
problem under the unreliable-link model. Having the MILP
formulations, optimal broadcast schemes can be obtained

using any existing MILP solver in a centralized manner
and can be treated as a performance bound.

To solve the MTB problems in a fully distributed
manner, we have also developed a game-based algorithm.
The MTB problems for reliable links and unreliable links
are consolidated—modeling as a broadcast tree construc-
tion game. A fully distributed algorithm, the GB-BTC
algorithm, is developed based on the game. We have
proven that the broadcast tree construction game converges
to a Nash Equilibrium in a finite number of iterations.
Simulation results show that our proposed GB-BTC algo-
rithm performs very well in terms of both delivery ratio
and the number of transmissions; meanwhile, the conver-
gence speed is very fast.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their many
helpful suggestions. This research was supported in part by
National Science Council, Taiwan, under grants NSC 98-18-
E-007-007, NSC 98-2219-E-007-012, NSC 99-2219-E-007-005,
and NSC 100-2219-E-007-003.

REFERENCES

[1] C.E. Perkins and E.M. Royer, “Ad-Hoc On-Demand Distance
Vector Routing,” Proc. Second IEEE Workshop Mobile Computing
Systems and Applications (WMCSA), pp. 90-100, 1999.

[2] J. Hong, W. Li, S. Lu, J. Cao, and D. Chen, “Sleeping Schedule
Aware Minimum Transmission Broadcast in Wireless Ad Hoc
Networks,” Proc. 14th IEEE Int’l Conf. Parallel and Distributed
Systems (ICPADS), pp. 399-406, Dec. 2008.

[3] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The Broadcast
Storm Problem in a Mobile Ad Hoc Network,” Proc. ACM
MobiCom, pp. 151-162, Aug. 1999.

[4] T. Fujie, “An Exact Algorithm for the Maximum Leaf Spanning
Tree Problem,” Computers Operations Research, vol. 30, pp. 1931-
1944, Nov. 2003.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[6] H.-I. Lu and R. Ravi, “Approximating Maximum Leaf Spanning
Trees in almost Linear Time,” J. Algorithms, vol. 29, pp. 132-141,
Oct. 1998.

[7] P.-J. Wan, K.M. Alzoubi, and O. Frieder, “Distributed Construc-
tion of Connected Dominating Set in Wireless Ad Hoc Networks,”
Proc. IEEE INFOCOM, pp. 1597-1604, June 2002.

CHEN AND KAO: GAME-BASED BROADCAST OVER RELIABLE AND UNRELIABLE WIRELESS LINKS IN WIRELESS MULTIHOP NETWORKS 1623

Fig. 12. The average number of iterations versus various node densities,
under the reliable-link model. The result shows that each player needs to
change its strategy about 0.5 times.

Fig. 13. The average number of iterations versus various node densities,
under the unreliable-link model. The result shows that each player
needs to change its strategy about one time.

[8] S. Funke, A. Kesselman, U. Meyer, and M. Segal, “A Simple
Improved Distributed Algorithm for Minimum CDS in Unit
Disk Graphs,” ACM Trans. Sensor Networks, vol. 2, pp. 444-453,
Aug. 2006.

[9] J. Wu and H. Li, “On Calculating Connected Dominating Set for
Efficient Routing in Ad Hoc Wireless Networks,” Proc. Int’l
Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm., pp. 7-14, Aug. 1999.

[10] B. Bako, F. Kargl, E. Schoch, and M. Weber, “Advanced Adaptive
Gossiping Using 2-Hop Neighborhood Information,” Proc. IEEE
Global Comm. Conf. (GlobeCom), pp. 1-6, 2008.

[11] Y. Cai, K.A. Hua, and A. Phillips, “Leveraging 1-Hop Neighbor-
hood Knowledge for Efficient Flooding in Wireless Ad Hoc
Networks,” Proc. 24th IEEE Int’l Performance, Computing, and
Comm. Conf., pp. 347-354, Apr. 2005.

[12] H. Liu, P. Wan, X. Jia, X. Liu, and F. Yao, “Efficient Flooding
Scheme Based on 1-Hop Information in Mobile Ad Hoc Net-
works,” Proc. IEEE INFOCOM, pp. 1-12, Apr. 2006.

[13] M. Khabbazian and V.K. Bhargava, “Efficient Broadcasting in
Mobile Ad Hoc Networks,” IEEE Trans. Mobile Computing, vol. 8,
no. 2, pp. 231-245, Feb. 2009.

[14] E. Pagani, “Providing Reliable and Fault Tolerant Broadcast
Delivery in Mobile Ad-Hoc Networks,” Mobile Networks and
Applications, vol. 4, pp. 175-192, Oct. 1999.

[15] M. Impett, M.S. Corson, and V. Park, “A Receiver-Oriented
Approach to Reliable Broadcast in Ad Hoc Networks,” Proc. IEEE
Wireless Comm. Networking Conf., pp. 117-122, Sept. 2000.

[16] S.-T. Sheu, Y. Tsai, and J. Chen, “A Highly Reliable Broadcast
Scheme for IEEE 802.11 Multi-Hop Ad Hoc Networks,” Proc. IEEE
Int’l Conf. Comm., pp. 610-615, Apr. 2002.

[17] S. Banerjee, A. Misra, J. Yeo, and A. Agrawala, “Energy-Efficient
Broadcast and Multicast Trees for Reliable Wireless Communica-
tion,” Proc. IEEE Wireless Comm. and Networking (WCNC), pp. 660-
667, Mar. 2003.

[18] W. Lou and J. Wu, “A Reliable Broadcast Algorithm with Selected
Acknowledgements in Mobile Ad Hoc Networks,” Proc. IEEE
Global Comm. Conf. (GlobeCom), pp. 3536-3541, Dec. 2003.

[19] W. Lou and J. Wu, “Toward Broadcast Reliability in Mobile
Ad Hoc Networks with Double Coverage,” IEEE Trans. Mobile
Computing, vol. 6, no. 2, pp. 148-163, Feb. 2007.

[20] F.J. Ros, P.M. Ruiz, and I. Stojmenovic, “Acknowledgment-Based
Broadcast Protocol for Reliable and Efficient Data Dissemination
in Vehicular Ad Hoc Networks,” IEEE Trans. Mobile Computing,
vol. 11, no. 1, pp. 33-46, Jan. 2012.

[21] R. Gandhi, A. Mishra, and S. Parthasarathy, “Minimizing Broad-
cast Latency and Redundancy in Ad Hoc Networks,” IEEE/ACM
Trans. Networking, vol. 16, no. 4, pp. 840-851, Aug. 2008.

[22] X. Zhang and K.G. Shin, “Chorus: Collision Resolution for
Efficient Wireless Broadcast,” Proc. IEEE INFOCOM, pp. 1-9,
Mar. 2010.

[23] D. Halperin, T. Anderson, and D. Wetherall, “Taking the Sting
Out of Carrier Sense: Interference Cancellation for Wireless
LANs,” Proc. ACM MobiCom, pp. 339-350, Sept. 2008.

[24] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating Sets and
Neighbor Elimination-Based Broadcasting Algorithms in Wireless
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 13,
no. 1, pp. 14-25, Jan. 2002.

[25] R. Kannan and S.S. Iyengar, “Game-Theoretic Models for Reliable
Path-Length and Energy-Constrained Routing with Data Aggre-
gation in Wireless Sensor Networks,” IEEE J. Selected Areas in
Comm., vol. 22, no. 6, pp. 1141-1150, Aug. 2004.

[26] X. Zhang and B. Li, “Dice: A Game Theoretic Framework for
Wireless Multipath Network Coding,” Proc. ACM MobiHoc,
pp. 293-302, May 2008.

[27] X. Ai, V. Srinivasan, and C.-K. Tham, “Optimality and Complexity
of Pure Nash Equilibria in the Coverage Game,” IEEE J. Selected
Areas in Comm., vol. 26, no. 7, pp. 1170-1182, Sept. 2008.

[28] Q. Yu, J. Chen, Y. Fan, X. Shen, and Y. Sun, “Multi-Channel
Assignment in Wireless Sensor Networks: A Game Theoretic
Approach,” Proc. IEEE INFOCOM, pp. 1-9, Mar. 2010.

[29] V. Krishnamurthy, M. Maskery, and G. Yin, “Decentralized
Adaptive Filtering Algorithms for Sensor Activation in an
Unattended Ground Sensor Network,” IEEE Trans. Signal Proces-
sing, vol. 56, no. 12, pp. 6086-6101, Dec. 2008.

[30] M. Kodialam and T.V. Lakshman, “Detecting Network Intru-
sions via Sampling: A Game Theoretic Approach,” Proc. IEEE
INFOCOM, pp. 1880-1889, Mar. 2003.

[31] CPLEX, http://www.cplex.com, 2013.
[32] GLPK, http://www.gnu.org/software/glpk, 2013.
[33] G. Song and O.W. Yang, “Minimum-Energy Multicast Routing in

Static Wireless Ad Hoc Networks,” Proc. IEEE Vehicular Technology
Conf., vol. 6, pp. 3989-3993, Sept. 2004.

[34] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani,
Algorithmic Game Theory. Cambridge Univ., pp. 494-502, 2007.

[35] D. Monderer and L. Shapley, “Potential Games,” Games and
Economic Behavior, vol. 14, pp. 124-143, May 1996.

[36] R.W. Rosenthal, “A Class of Games Possessing Pure-Strategy
Nash Equilibria,” Int’l J. Game Theory, vol. 2, pp. 65-67, Jan. 1973.

Fu-Wen Chen received the BS degree from
the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan, R.O.C.,
in 2008. One year after his master’s study in
the same department, he was transferred to the
PhD program due to academic excellence. He
is currently working toward the PhD degree.
His research interests include wireless ad hoc
and sensor networks, cooperative communica-
tions, network coding, distributed algorithms,

and performance evaluation. He is a student member of the IEEE.

Jung-Chun Kao received the BS degree in
electrical engineering from National Taiwan
University, Taipei, in 1999, the MS degree in
electrical engineering from the University of
Southern California, Los Angeles, in 2003, and
the PhD degree in electrical and computer
engineering from Carnegie Mellon University,
Pittsburgh, in 2008. He joined the faculty of the
Department of Computer Science, National
Tsing Hua University, Taiwan, in August 2008.

His research interests include analysis, modeling and optimization
techniques for wireless networks, cyber-physical systems, and high-
speed communication and protocols. He is a member of the IEEE and
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1624 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 8, AUGUST 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

