next up previous
Next: About this document ...

Incremental Formula for LSE Error Measures

Let Ek and Ek+1 be the optimal error measures of the least-squares problems involving k and k+1input-output data pairs, respectively. In symbol:

\begin{displaymath}E_k = \Vert{\bf y}-{\bf A}\mbox{\boldmath$\theta$ }_k\Vert^2 = {\bf y}^T ({\bf y}-{\bf A}\mbox{\boldmath$\theta$ }_k)
\end{displaymath}


\begin{displaymath}E_{k+1} =
\left\Vert
\left[ \begin{array}{c} {\bf y}\\ y \en...
...^T \end{array} \right]
\mbox{\boldmath$\theta$ }_{k+1}
\right)
\end{displaymath}

(Note that for simplicity, we have left out the $\tilde{\;}$ for the least-squares estimator $\mbox{\boldmath$\theta$ }_k$ and $\mbox{\boldmath$\theta$ }_{k+1}$.) Our mission is to find an incremental formula between Ek and Ek+1, as follows:


 \begin{displaymath}\begin{array}{rcl}
E_{k+1} & = &
\left[ \begin{array}{c} {\bf...
...}_k)(y-{\bf a}^T\mbox{\boldmath$\theta$ }_{k+1})\\
\end{array}\end{displaymath} (1)

This concludes our derivation.

Note that in the above derivation, we have used a formula

\begin{displaymath}\mbox{\boldmath$\theta$ }_{k+1}-\mbox{\boldmath$\theta$ }_{k}={\bf P}_k{\bf a}(y-{\bf a}^T\mbox{\boldmath$\theta$ }_{k+1}),
\end{displaymath}

which can be derived as a side note in the following:

\begin{displaymath}\begin{array}{rcl}
\mbox{\boldmath$\theta$ }_k & = & {\bf P}_...
...{\bf a}(y-{\bf a}^T\mbox{\boldmath$\theta$ }_{k+1})
\end{array}\end{displaymath}



 

J.-S. Roger Jang
2000-04-06