next up previous
Next: About this document ...

General Formula: Matrix Inversion Lemma

Let ${\bf A}$, ${\bf C}$, and ${\bf C}^{-1}+{\bf D}{\bf A}^{-1}{\bf B}$be non-singular square matrices; then

\begin{displaymath}({\bf A}+{\bf B}{\bf C}{\bf D})^{-1} = {\bf A}^{-1}-{\bf A}^{...
...}+{\bf D}{\bf A}^{-1}{\bf B}
\right)^{-1}
{\bf D}{\bf A}^{-1}.
\end{displaymath}

General Formula: Matrix Inversion in Block form

Let a $m \times n$ matrix ${\bf M}$ be partitioned into a block form:

\begin{displaymath}\begin{array}{rcl}
{\bf M}& = &
\left[ \begin{array}{cc} {\bf...
...c}
\underbrace{\;}_m \underbrace{\;}_n
\end{array}\end{array}\end{displaymath}

where the $m \times m$ matrix ${\bf A}$ and $n \times n$ matrix ${\bf D}$ are invertible. Then we have

\begin{displaymath}\left[ \begin{array}{cc} {\bf A}& {\bf B}\\ {\bf C}& {\bf D}\...
...& ({\bf D}-{\bf C}{\bf A}^{-1}{\bf B})^{-1}
\end{array}\right]
\end{displaymath}


\begin{displaymath}\left[ \begin{array}{cc} {\bf X}& {\bf Y}\\ {\bf Z}& {\bf U}\...
...& ({\bf D}-{\bf C}{\bf A}^{-1}{\bf B})^{-1}
\end{array}\right]
\end{displaymath}

It can be proved that the above two matrix expressions for ${\bf M}^{-1}$are equivalent.

Special Case 1

Let a $(m+1) \times (m+1)$ matrix ${\bf M}$ be partitioned into a block form:

\begin{displaymath}\begin{array}{rcl}
{\bf M}& = &
\left[ \begin{array}{cc} {\bf...
...c}
\underbrace{\;}_m \underbrace{\;}_1
\end{array}\end{array}\end{displaymath}

Then the inverse of ${\bf M}$ is

\begin{displaymath}{\bf M}^{-1} =
\left[
\begin{array}{cc}
\left( {\bf A}- \frac...
...{-1} &
\frac{\textstyle 1}{\textstyle k}\\
\end{array}\right]
\end{displaymath}

where $k=c-{\bf b}^T{\bf A}^{-1}{\bf b}$.

Special Case 2

Suppose that we have a given matrix equation


\begin{displaymath}\left[
\begin{array}{cc}
{\bf A}& {\bf B}\\
{\bf C}& {\bf D}...
...t[
\begin{array}{c}
{\bf I}\\
\mbox{\bf0}
\end{array}\right],
\end{displaymath} (1)

where ${\bf A}$ and ${\bf D}$ are invertible matrices and all matrices are of compatible dimensions in the above equation. Please find the matrices ${\bf X}$ and ${\bf Y}$ in terms of the given matrices ${\bf A}$, ${\bf B}$, ${\bf C}$, and ${\bf D}$.



 
next up previous
Next: About this document ...
J.-S. Roger Jang
2001-03-21