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ABSTRACT

We present a new algorithm for unsupervised video seg-
mentation based on boundary-aware optical flow. Existing
video segmentation methods usually tweak their segmenta-
tion model to tolerate the inaccuracy in the estimation of
optical flow around object boundaries. In contrast, we di-
rectly manipulate the optical flow for better quality. We
smooth the optical flow via transductive inference to make
the flow consistent within the object and fit to the object
boundaries. We then use the boundary-aware optical flow to
estimate the initial foreground object region from each frame
for learning the appearance model. The learned appearance
model is consequently used to refine the segmentation result.
Experiments on the DAVIS dataset show that our method
performs favorably against the existing ones.

Index Terms— Video segmentation, optical flow, trans-
ductive inference

1. INTRODUCTION

Video object segmentation is a fundamental vision problem
aiming to distinguish the foreground objects from the back-
grounds of video sequences. It is a key component for nu-
merous applications, including video editing, color grading,
scene understanding, video summarization, and action recog-
nition [1, 2, 3].

Various algorithms have been presented to segment videos
via tracking [4, 5], clustering [6, 7, 8], ranking [9, 10, 11], or
propagating [12, 13, 14] at pixel level, superpixel level, or ob-
ject level. To address the video segmentation task, temporal
information should be taken into account to maintain the con-
sistency over the whole video sequence. In practice, the most
widely adopted technique for this purpose is optical flow es-
timation, which models the motion of pixels and can be used
to propagate segmentation information among video frames.

We propose a flow smoothing approach and apply it to
the unsupervised flow-driven video object segmentation task.
The task treats an image region that has different motion
from its surrounding regions as a target foreground object.
The motion of the foreground object is allowed to be non-
homogeneous and thus can be used to segment non-rigid or
articulated objects. This task greatly depends on the quality of
optical flow for estimating the foreground object. However,
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Fig. 1. An example of smoothed optical flow. (a-b) Two
consecutive frames of the sequence camel. (c) Optical flow
computed using [7] from frame ¢ to ¢t 4+ 1. (d) The boundary-
aware optical flow using the proposed method. The flow at
the object boundary is more precise compared with the initial
flow. (e) The calculated binary map B! using (c). (f) The
calculated binary map B? using (d).

the calculation of optical flow is often deteriorated by large
displacements or occlusions [15]. Existing video segmen-
tation methods usually tweak their segmentation model to
tolerate the inaccuracy of optical flow around object bound-
aries. In contrast, we directly manipulate the optical flow for
the subsequent usage. We borrow the idea from transductive
inference and design a flow smoothing method to make the
optical flow more suitable for video segmentation. The flow
is enforced to be consistent within the object and fit to the
object boundaries. Based on the boundary-aware optical flow,
we are able to ensure the quality of the initial estimation of
potential foreground object regions. We then build a spatio-
temporal graphical model of the entire video, and extract all
initial foreground object regions from each frame to learn the
appearance Gaussian mixture model (GMM). The learned
GMM is thus used to gradually refine the segmentations.



2. RELATED WORK

The literature on video segmentation can be roughly divided
into two categories: semi-supervised methods and unsuper-
vised methods.

2.1. Semi-supervised Methods

Semi-supervised video segmentation methods [4, 5, 6, 12, 13,
14] require the user annotations in some frames and then gen-
erate the corresponding segmentations on all other frames.
Given some known superpixels, Yang et al. [4] and Wen et al.
[5] track object segments to separate the foreground regions
from the background. Grundmann et al. [6] oversegment a
video sequence into a set of supervoxels and then combine
it with the user annotations to select the foreground regions.
Some video object segmentation methods require the user to
manually annotate a few frames with object segmentations
[12, 13, 14] and then propagate these segmentations to all
other frames.

2.2. Unsupervised Methods

Unsupervised video segmentation methods [7, 8, 9, 10, 11,
16, 17] exploit the fact that different objects usually have dif-
ferent motions or appearances. Papazoglou and Ferrari [16]
propose to segment objects that move differently than their
surrounding regions. Brutzer et al. [17] assume that the
background change slowly and hence consider the pixels that
change rapidly to be the foreground. Based on the cluster-
ing concept, [7, 8] track keypoints to form trajectories over
several frames and then cluster the trajectories for separating
the figure-ground keypoints. The methods of [9, 10, 11] rank
some combinations from object-like image regions as the po-
tential object segmentations based on the set of object propos-
als [18, 19].

In sum, the semi-supervised video segmentation meth-
ods have better segmentation accuracy but the unsupervised
methods enable the processing of large amounts of video se-
quences without human intervention.

3. APPROACH

The goal of our video segmentation approach is to segment
objects with different motion from their surroundings. Our
approach includes two main phases, namely initial foreground
estimation and segmentation refinement. The first phase fol-
lows the clue from the boundary-aware optical flow and yields
an initial foreground region of each frame. The second phase
collects all initial foreground regions from each frame to con-
struct the global appearance Gaussian mixture model for seg-
mentation refinement.

3.1. Initial Foreground Estimation

This phase estimates an initial foreground region based on the
motion cue. We first compute the optical flow of each pair of
consecutive frames, and then the flows are smoothed frame by
frame with respect to the global similarity derived from trans-
ductive inference over superpixels. Finally, the foreground
hypothesis is estimated according to the flow boundaries.

3.1.1. Spatial Graph Construction

We represent each frame ¢ as a set of superpixels S¢ =
{1, 55, ..., (s} using the SLIC algorithm [20]. For each
frame ¢, we define the corresponding weighted connected
graph G¢ = (S, &' w) with the vertex set St and the edge
set £'. Each edge ef; € £' denotes the adjacency relationship
between superpixels s} € S* and s} € S*. The weighting

function w : £ — [0, 1] is defined as
wij = e~ rlleelle, (D

where c¢; and c¢; denote the RGB mean color of two adjacent
superpixels. We can thus define the weight matrix per frame
as W' = [wij]|s|x|st|- We set parameter #; = 60 for all the
experiments.

3.1.2. Optical Flow

We use the flow estimation algorithm in [7] to compute the
optical flow between any two consecutive frames ¢ and ¢ + 1.
For computational efficiency, the GPU implementation [21]
can be considered.

3.1.3. Boundary-Aware Flow Smoothing

In video segmentation problem, the optical flow is expected to
be smooth within an object and distinct across object bound-
aries. However, the reliability of flow estimation is often
degraded by large displacements or occlusions, particularly
around object boundaries. Here, we propose the following
scheme to make the optical flow smoother within an object
and more fit to the object boundary.

We smooth the optical flow via propagating the flow ve-
locities (with velocity components v, and v,) of each super-
pixel to all other superpixels. For each superpixel, we use
the averaged velocity components to represent its superpixel-
level optical flow. We then propagate the per-superpixel flow
according to the feature similarity between every superpixel
pair. In some sense, we would like to smooth the flow velocity
more if the two superpixels have higher feature similarity.

The first step of boundary-aware flow smoothing is to cal-
culate the pairwise similarity matrix A for each superpixel
set St. We apply transductive inference [22] to construct the
matrix A! from the weight matrix W¢. The similarity matrix
A can be defined by

Al = (D! — ,WH 1T )



where D? is a diagonal matrix with each diagonal entry equal
to the row sum of W, 65 is a parameter in (0,1], and I* is
the |S*|-by-|S?| identity matrix. We set parameter 62 = 0.99
for all the experiments. Note that, the weight matrix W*
describes the feature similarity only between any two adja-
cent superpixels of G?, but the matrix A’ globally describes
the feature similarity between any two superpixels even if
they are not adjacent. Intuitively, propagating per-superpixel
flow velocities via A allows us to deal with pairs of up-
erpixels that are far from each other. Hence, propagating
per-superpixel flow velocities via A* should provide better
smoothness results than propagating via W,

Next, the smoothed optical flow f! of the superpixel s in
frame ¢ is thus defined as

fl=Dat A [ S5 flse]T 3)

where D+ is a diagonal matrix with each diagonal entry
equal to the row sum of Af, and DK}A’: means the row
normalized version of At. Eq. (3) means that the boundary-
aware smoothed flow of each superpixel is derived from not
only its neighboring superpixels but also all other superpixels.
Fig. 1 shows one example result of the smoothed flow.

3.1.4. Foreground Hypothesis

Since optical flow usually changes abruptly around the ob-
ject boundaries, thresholding the gradient magnitude on the
flow field can roughly sketch the object region. Given the
boundary-aware smoothed flow field Ft of the frame t, we
define a binary map B indicating the potential object bound-

aries as
1
B! :{ :
pq
0,

where Vf‘zq denotes the gradient of smoothed optical flow
at row p and column ¢ of the frame ¢, and hence the binary
map B¢ has roughly the same size as the frame t. We set pa-
rameter )3 = 0.7 in this work. Closed contours in B? repre-
sent good candidates of foreground regions because a closed
contour in B? implies having different motion to its surround-
ings. However, the simple strategy of thresholding in Eq. (4)
often results in incomplete boundaries. Inspired by the point-
in-polygon problem in computational geometry [23], Papa-
zoglou and Ferrari propose an efficient integral intersections
algorithm [16] that can identify the pixels inside incomplete
boundaries. We use the integral intersections algorithm to in-
dicate the pixels inside the boundaries of BY. After applying
integral intersections, a superpixel with high proportion of in-
dicated pixels means the superpixel has high potential to be
the foreground. Consequently, the high-foreground-potential
superpixels should have larger impacts when learning the ap-
pearance model. Fig. 1 shows one example result of the bi-
nary map B,
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3.2. Segmentation Refinement

We collect all high-foreground-potential superpixels from
each frame to construct a Gaussian mixture model of global
appearance. In contrast, superpixels with very low fore-
ground potentials can be used to construct the background
appearance model. Further, we define an energy function to
encourage the spatio-temporal smoothness for refining the
segmentation over the entire video sequence.

3.2.1. Spatio-Temporal Graph Construction

In Section 3.1.1, we have defined the spatial graph G =
(8, &, w) for each frame ¢. Likewise, in the spatio-temporal
graph G, two superpixels st € S* and s?-“ € S**! are con-

t+1

nected if s} can cover s ;' via the smoothed optical flow.

3.2.2. Energy Function

We may formulate the procedure of video segmentation as a
binary labeling problem with the foreground and background
labels. Each superpixel s! can be assigned with one label I} €
{0,1}. The labeling £ = {I!} among all superpixels in the
given video can be evaluated by some energy function [9, 16,
24]. Here, we define the energy function as

E(/:') =Fas+aEp +asFEs+asEr. 5)

The data term E 4 in Eq. (5) evaluates how likely a superpixel
belongs to the foreground GMM or background GMM. The
second data term Ep, in Eq. (5) is used to encourage fore-
ground labeling in areas where independent motion has been
observed. The spatial smoothness term Fg and the temporal
smoothness term E7 encourage spatial and temporal smooth-
ness, respectively. The parameters o, o, a3 are the weights
for different terms. The energy function can be optimized us-
ing the graph-cut algorithm. For more details about the design
of energy function and the optimization, please refer to [16].
Notice that, the superpixel-level segmentation may not
well align with the object boundary. After obtaining the seg-
mentation, we further use the guided filter [25] to reduce the
under-segmentation error derived from oversegmentation.

4. EXPERIMENTAL RESULTS

We compare our approach with several state-of-the-art un-
supervised video segmentation methods: NLC [27], CVOS
[28], TRC [29], MSG [7], KEY [9], SAL [30], and FST [16].
The evaluations are performed with respect to the three met-
rics suggested in the dataset DAVIS [26], namely, region sim-
ilarity (), contour accuracy (F), and temporal stability (7).
In our experiments, all parameters are fixed without further
tuning. We use roughly 2,000 superpixels per frame.

We evaluate our approach on the dataset DAVIS [26]. It
contains 50 high-resolution sequences covering a wide range



Table 1. Quantitative comparison (%) of region similarity (7), contour accuracy (F), and temporal instability (7)) on DAVIS [26]. The
‘mean’ is the average dataset error. The ‘recall’ measures the fraction of sequences scoring higher than a threshold. The ‘decay’ quantifies
the performance loss (or gain) over time. For rows with an upward pointing arrow, the higher numbers are better, and vice versa for rows with

a downward point arrow. The best two scores of each dataset are colored in red and green.

[ Metrics | NLC [27] | CVOS [28] | TRC[29] | MSG [7] | KEY [9] [ SAL[30] | FST [16] | Ours |
mean J T | 64.1 51.4 50.1 543 56.9 42.6 575 | 625
recall 71 | 73.1 58.1 56.0 63.6 67.1 38.6 652 | 73.6
decay J | | 8.6 127 5.0 2.8 75 8.4 44 | 05
mean F 7 | 59.3 49.0 4738 525 50.3 383 536 | 57.5
recall F T | 65.8 57.8 51.9 61.3 53.4 26.4 579 | 65.0
decay F| | 8.6 138 6.6 5.7 7.9 7.2 65 29
mean7 | | 356 243 327 25.0 19.0 60.0 276 | 207

Fig. 2. Qualitative video segmentation results from some sequences of DAVIS [26]. Our method demonstrates robustness to
some challenging scenarios such as complex objects and fast-motion.

of object segmentation challenges. Table. 1 summarizes the
average performance over the entire dataset. As can be seen
in Table. 1, our method outperforms all other unsupervised
video segmentation methods excepts NLC in some entries.
Our method achieves the best performance on the recall 7,
decay J, and decay F, and performs comparably on the other
measures. Since the ‘decay’ quantifies the performance loss
(or gain) over time, the good performance on this measure
demonstrates that our method usually has better consistent
segmentation performance than all other methods among the
entire video sequence. Fig. 2 shows the qualitative results of
video segmentation.

5. CONCLUSION

We have shown that the boundary-aware flow smoothing
method can generate useful optical flow specifically for the
video segmentation task. With the aids of the improved opti-
cal flow result, the video segmentation task can extract high-
foreground-potential superpixels for learning the GMM ap-
pearance model, which is helpful in segmentation refinement.
The experimental results also show that the proposed video
segmentation method, which benefits from the boundary-
aware flow, performs favorably against the existing methods.
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