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Abstract This paper presents an approach to image

understanding on the aspect of unsupervised scene seg-

mentation. With the goal of image understanding in

mind, we consider ‘unsupervised scene segmentation’ a

task of dividing a given image into semantically mean-

ingful regions without using annotation or other human-

labeled information. We seek to investigate how well

an algorithm can achieve at partitioning an image with

limited human-involved learning procedures. Specifically,

we are interested in developing an unsupervised seg-

mentation algorithm that only relies on the contextual

prior learned from a set of images. Our algorithm in-

corporates a small set of images that are similar to

the input image in their scene structures. We use the

sparse coding technique to analyze the appearance of

this set of images; the effectiveness of sparse coding

allows us to derive a priori the context of the scene

from the set of images. Gaussian mixture models can

then be constructed for different parts of the input im-

age based on the sparse-coding contextual prior, and

can be combined into an MRF-based segmentation pro-

cess. The experimental results show that our unsuper-

vised segmentation algorithm is able to partition an

image into semantic regions, such as buildings, roads,
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trees, and skies, without using human-annotated infor-

mation. The semantic regions generated by our algo-

rithm can be useful, as pre-processed inputs for subse-

quent classification-based labeling algorithms, in achiev-

ing automatic scene annotation and scene parsing.
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Random Fields

1 Introduction

One of the goals of computer vision is to develop al-

gorithms and systems that understand the contents of

images. To achieve this goal various attempts have been

made through solving the related problems at different

levels. For a general-purpose computer-vision system

that can perform as well as or even better than hu-

mans, it might need to have the capabilities to detect

and group low-level features like color, texture, or edge,

to recognize various categories of objects, and to infer

the relation and context of the objects, etc. Not only

is solving the specific vision problem at each level diffi-

cult, but the dependencies on good solutions to different

problems and the requirements for solving them simul-

taneously make developing a general computer-vision

system still a challenging goal to pursue [6], [26].

Rather than searching for a general solution, this

paper presents an approach to image understanding

on the aspect of unsupervised scene segmentation. We

seek to investigate how well an algorithm can achieve

at partitioning an image with limited human-involved

learning procedures. More specifically, the task of unsu-

pervised scene segmentation is to divide a given image

into semantically meaningful regions without using an-

notation or other human-labeled information. As far as
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the unsupervised setting is concerned, our work is sim-

ilar to Russell et al . [19], where they use a large image

database to extract information about regions from im-

ages of similar scenes and no further ground-truth label-

ing is required. Large image databases like the LabelMe

database [22] or community photo collections have been

shown to be useful for many vision applications, e.g .,

image completion [4], scene parsing, object discovering

and annotation [10], [15], [20], scene segmentation [19],

[24], and building 3D scenes [21], [25]. Our work follows

this line of thought, and is aimed to design a more ef-

ficient algorithm that solves image segmentation using

photo collections.

Unsupervised image segmentation algorithms such

as Normalized Cuts [23], Mean Shift [2], or Efficient

Graph-Based Image Segmentation [3] have been widely

used in computer vision. Nevertheless, they are more

suitable for providing over-segmented regions or super-

pixels [5], [13]. To generate object-level regions would

require further processing. For example, GrabCut [17]

incorporates the hints provided by user into graph-cut

optimization [1] to produce high-quality figure/ground

segmentation. When the ground-truth user annotation

of a large image dataset is available, the nonparamet-

ric scene parsing technique proposed by Liu et al . [10]

can be used to find dense scene correspondences, and

then transfer the labels from annotated images to a new

input image.

Even without user annotations, collections of images

may still be effective enough to provide useful informa-

tion about segmentation if different images in a collec-

tion exhibit certain level of consistency or similarity.

Simon and Seitz [24] present a segmentation method

that can identify and segment interesting objects in a

scene. Their approach applies a field-of-view constraint

among images in the photo collections, and uses SIFT-

based feature matching [11] to get the cue of feature

co-occurrence for region labeling. The effectiveness of

the method of [24] is owing to the abundance of co-

occurred image features in different images. However,

for images of regular scenes or non-tourist sites, find-

ing corresponding images containing same buildings or

similar objects would be improbable. Likewise, the set-

ting of co-segmentation [9], [18] also makes use of the

similarity in appearance among multiple images that

include the same objects.

In addition to exploiting the similarity in objects’

appearance, the similarity in scene structure and geom-

etry can also be used to infer region labels. Russell et al .

[19] present an unsupervised scene segmentation algo-

rithm that extracts the boundary and region informa-

tion using an image stack associated with an input im-

age. Given an input image, their algorithm first searches

from a very large dataset to collect several thousands

of images that present a similar scene structure as the

input image. This step is done by using the gist descrip-

tor [14] to match two images according to their scene

structures. The image stack entails data-driven bound-

ary detection and region grouping, and the resulting

boundary and region cues are combined in a Markov-

random-field (MRF) optimization scheme to produce

scene segmentation.

Although images with similar gist descriptors might

also have similar scene structures, the appearance of

their contents could widely differ from one another. We

propose to use the sparse coding technique presented in

[12] to learn a sparse dictionary of Gabor filters. The

effectiveness of sparse coding allows us to employ only

a small number of images for deriving a priori the con-

text of the scene. Therefore, unlike the method of [19]

which requires thousands of images and high computa-

tional cost to do boundary detection and region group-

ing, our algorithm can build the contextual prior of the

scene from no more than a hundred images. Based on

the contextual prior of the scene, we then construct

Gaussian mixture models for different parts of the im-

age, and combine the prior into MRF-based segmenta-

tion.

2 Overview of the Proposed Approach

Given an image of a scene, the human visual system can

easily partition the image into semantically meaningful

regions. This ability is partly due to the prior knowl-

edge about objects in the scene, such as buildings, skies,

roads, cars, and trees. To build a computer vision sys-
tem that can recognize multiple categories of objects

often requires a large number of human-annotated ob-

ject images for training. On the other hand, the context

information of a scene is also helpful in partitioning an

image. For example, in an image of a normal scene, the

ground and roads are usually at the bottom of the im-

age, buildings are on the ground, cars may be adjacent

to roads or buildings, and the sky is probably at the

top of the image, etc. In this work we try to address

the scene segmentation problem without using human-

annotated information. Our approach is to exploit the

context information. We develop an unsupervised seg-

mentation algorithm that only relies on the contextual

prior learned from a small set of images.

The nonparametric approach proposed by Russell et

al . [19] is able to achieve good segmentation results via

analyzing a stack of reference images that have simi-

lar scene structures. Their algorithm uses a large num-

ber of reference images (5, 000 for each query in their

cases), and the computation of extracting the region
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and boundary information from the image stack is very

time-consuming, which may take more than an hour on

a normal PC. We attempt to build a smaller-sized im-

age stack, say a hundred images, for extracting useful

context information. Furthermore, we seek to develop

a more efficient way to obtain a contextual prior based

on the sparse coding techniques.

In the next two sections, we first describe how to es-

timate the input image’s contextual prior from images

of similar scene structures. After estimating the contex-

tual prior, we build Gaussian mixture models (GMMs)

based on the contextual prior to model the color of

the input image, as explained in section 5. A Markov-

random-field (MRF) based energy-minimization prob-

lem is then constructed according to the GMMs, and

is solved by graph-cuts. In section 6, an additional im-

provement stage for refining the segmentation is dis-

cussed. We compare our unsupervised segmentation al-

gorithm with two popular unsupervised segmentation

algorithms Mean Shift [2] and Efficient Graph-Based

Image Segmentation [3], and show that our algorithm

can produce better semantic segmentation results with

acceptable computational overhead. Fig. 1 illustrates

the process of our approach.

Fig. 1 The process of our approach.

3 Scene Structure Analysis

The gist descriptor [14] has been shown to be effective in

modeling the global structure of the scene in an image.

We may measure the similarity between the scene struc-

tures of two images by comparing their gist descriptors.

Given an input image, we compute its gist descriptor,

and then match each image in the database with the

input image by the similarity between their gist de-

scriptors and retrieve N = 100 most similar images.

We collect these candidate images as an image stack:

I = {I1, I2, I3, . . . , IN}. Some examples are shown in

Fig. 2.

Fig. 2 An input image (top-left, surrounded by red rectangle)
and the image stack retrieved by matching the gist descrip-
tors. Here we show only 9 images of the stack.

Although the images in the image stack exhibit scene

structures similar to the one of the input image, to ex-

tract a common partition that corresponds to the simi-

lar structures is not straightforward. As can be seen in

Fig. 2, the appearance of a local region at the same loca-

tion across different images is diverse. Moreover, neigh-

boring pixels or patches in the same image also have

varied colors or textures, and cannot be easily grouped

into semantically or geometrically meaningful regions.

This situation can be observed in the results produced

by some standard unsupervised segmentation algorithm

such as the Efficient Graph-Based Image Segmentation

algorithm [3].

We propose to use the sparse coding technique for

aggregating the appearance information of the image

stack. Local image features are extracted using Gabor

filters. For each image in the image stack, we compute

a bank of Gabor filters of eight orientations over four

scales for RGB channels. We choose to use eight orien-

tations instead of the popular setting of six orientations

since we would like to model subtler variations of direc-

tional features. Moreover, because large-scale features

are less informative for image segmentation than for

holistic image classification and the images used in our

experiments are of a moderate size (256 × 256 pixels),

we use only four scales of Gabor filters rather than five

scales to model the local image features. We find that

such a setting is empirically suitable for our application.

The Gabor filters used in this work are shown in Fig. 3.

The filter responses at each pixel hence yield a 96-

dimensional vector representing local textures around

that pixel, since 96 = 8× 4× 3.

4 Estimating the Contextual Prior Using

Sparse Coding

4.1 Off-line Training for Sparse Dictionary

We use the sparse coding technique and the toolbox

developed by [12] to train a sparse coding dictionary
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Fig. 3 The Gabor filters used in our task: eight orientations
over four scales.

D of visual words from the Gabor filters responses.

We extract L = 10,000 Gabor filter response vectors

{xl|xl ∈ Rm}Ll=1 from several scene images, which are

randomly selected from the LabelMe database [22]. As

mentioned earlier, responses of the Gabor filter bank

yield a 96-dimensional vector, and therefore we have

m = 96. Given {xl}Ll=1, the goal is to train dictionary

D, which can be expressed as an m-by-k matrix with

columns {dj}kj=1, where dj is an m-dimensional vector

that represents a visual word. In our experiments the

dictionary D contains k = 200 visual words. We find

that 200 visual words are sufficient for analyzing the

structures of general scene images. The dictionary D is

obtained by solving the following optimization

min
D∈C,{αl∈Rk}

1

L

L∑
l=1

(
1

2
‖xl −Dαl‖22 + λ‖αl‖1

)
, (1)

where C is a convex set of matrices satisfying the con-

straint

C 4= {D ∈ Rm×k s.t. ∀j = 1, . . . , k, dTj dj ≤ 1} , (2)

and the `1 penalty is added to enforce sparse decom-

position coefficients {αl|αl ∈ Rk}Ll=1. The value of pa-

rameter λ is 0.15 in our experiments. More detailed

information about training sparse dictionary can be re-

ferred to [12]. Note that we only need to perform off-line

training once to learn a sparse dictionary. We may use

the same sparse dictionary for all input images subse-

quently.

Some recent works on sparse coding suggest that

sparse dictionaries consisting of local bases can help

to achieve better performance in classification tasks,

e.g . [28] and [29]. In particular, Yang et al . [28] present

a sparse coding method that uses a mixture model of

over-complete dictionaries. Such a sparse coding scheme

may be taken into consideration for improving the de-

scriptiveness of dictionaries. Nevertheless, in this work

we simply use a single dictionary to derive sparse cod-

ing. Instead of learning a mixture of local dictionar-

ies, we resort to the statistics of multiple observations

given by an image stack for exploiting the local prop-

erty of the sparse coding subspaces. The details of ex-

tracting the cluster information from sparse coding are

described in the next section.

4.2 Contextual Prior Estimation

With the learned dictionary, the Gabor filter responses

of each pixel can be represented as a sparse combination

of a few visual words in the dictionary. Given a new

input image, we may build its image stack as described

in section 3. For each image In in the image stack I
of N images, we compute the sparse coefficients βi at

each pixel position i by solving

min
βi∈Rk

1

2
‖xi −Dβi‖22 + λ‖βi‖1 , (3)

where xi is the Gabor-filter response vector at pixel i.

Let βi,j(n) denote the coefficient of the jth visual word

at pixel i of the nth image in the image stack. At each

pixel position i we compute a k-dimensional vector vi
to record the (signed) occurrence of each visual word.

The value of the jth element of vi is given by

vi,j =

N∑
n=1

sign (βi,j(n)) , for j = 1, . . . , k, (4)

where k = 200 as previously mentioned. Thus, vi ag-

gregates the signed counts of the occurrences of visual

words at position i across all N images in the image

stack I.

If a visual word has similar responses of sparse coef-

ficients across all images in the image stack, the signed

occurrence would have a large magnitude and it means

that this visual word is more reliable and descriptive.

On the other hand, if a visual word has diverse or ran-

dom responses of sparse coefficients across all images,

the terms of the aggregated signed counts in (4) are

more likely to cancel out each other, and such a visual

word should be less significant. Furthermore, by the

signed counts we assume that the coefficients across all

images have equal contributions, and thus the rationale

of using the counts rather than the original values is to

prevent being dominated by a few outliers of large ab-

solute values.

We expect that if two visual-word occurrence vec-

tors vi and vj at the pixel positions i and j are simi-

lar, the two pixel positions probably correspond to the

same region. Such kinds of spatial and semantic rela-

tions can be obtained a priori from the image stack

without looking at the specific content of the input im-

age to be segmented. We then use k-means clustering

to group all {vi} for all pixel positions, and each pixel
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Fig. 4 Top: Input images. Bottom: The contextual priors, i.e., the k-means clusters derived from the sparse coding dictionary
and the image stacks.

position i will be associated with one of the clusters. We

call the clustering result as the contextual prior, which

provides the prior information of how the pixel posi-

tions should be grouped. Fig. 4 shows some examples

of input images and their contextual priors. Compared

with the input images we can observe that the semantic

regions of the input images are roughly aligned with the

k-means clusters. In our experiments, we set the num-

ber of clusters to be seven for k-means clustering, and,

in general, k-means clustering is able to yield reliable

results.

5 Markov-Random-Field (MRF) Based Image

Segmentation

Given an input image to be segmented, we may com-

pute its contextual prior using the method described in

the previous section. We will incorporate the contex-

tual prior information into the segmentation process,

and the image segmentation will be achieved by solving

an MRF-based optimization. To begin with, we build

a Gaussian mixture model (GMM) for each k-means

cluster, with respect to the contextual prior. The idea

of modeling the region properties by GMMs has been

proposed in GrabCut [17]. Note that GrabCut requires

the user to provide an initial bounding box around the

foreground object. In [17] the GMMs for the initial fore-

ground and background regions can then be built and

iteratively updated to produce the final segmentation.

In our work, we use the contextual prior to replace the

hint provided by the user, and our algorithm partitions

the input image into multiple regions rather than re-

solving figure/ground segmentation. We use the gmdis-
tribution class in the Matlab Statistics toolbox to learn

the GMMs of pixels’ RGB values according to the con-

textual priors. Each GMM has five components, and

the regularization parameter is 0.001.

With the GMMs being constructed for all contex-

tual prior clusters, our unsupervised segmentation al-

gorithm solves the following MRF-based energy mini-

mization problem to find an optimal label assignment

Γ to all pixels in the input image:

arg min
γi∈Γ

∑
i

{
φ(zi, τi, γi)+η

∑
j∈Ω(i)

ψ(zi,xi, γi, zj ,xj , γj)
}
,

(5)

where zi is the vector of RGB values of pixel i, xi is the

vector of Gabor responses at pixel i, and τi is the GMM

component to which the pixel i belongs. We consider a

four-connected neighborhood Ω(i) of i for the smooth-

ness term, and γi ∈ Γ is the label assigned to pixel i.

The parameter η (= 100) is to balance the weights be-

tween different terms. In our experiments the value of

τi can be {1, . . . , 5} since we set a GMM to have five

components (i.e., a mixture of five Gaussians). Label γi
takes a value from {1, . . . , 7} since we partition an im-

age into at most seven regions. For most of the images

in the dataset, we notice that the number of different

semantic regions included in a single image is rarely

greater than seven.

The first term in (5), i.e. the data term, is defined

by

φ(zi, τi, γi)

= − log p(zi|τi, γi)− log πτi,γi

=
1

2
log detΣτi,γi +

1

2
(zi − µτi,γi)

TΣ−1τi,γi(zi − µτi,γi)

− log πτi,γi + const.

(6)

The mean and covariance of Gaussian component cor-

responding to component τi and label γi are denoted by

µτi,γi and Στi,γi , and πτi,γi are the mixture weights in-

dexed by the values of τi and γi. The second term in (5)
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is a smoothness term that enforces consistent labeling

of neighboring pixels:

ψ(zi,xi, γi, zj ,xj , γj)

= (1− δ(γi − γj))
{

exp(−θColor ||zi − zj ||2)

+ κ exp(−θGabor ||xi − xj ||2)
}
,

(7)

where δ(·) is the Kronecker delta and a weight κ = 0.2

is used in all experiments. The scale factors θColor and

θGabor are given by

θColor = (2〈||zi − zj ||2〉)−1 (8)

and

θGabor = (2〈||xi − xj ||2〉)−1 , (9)

where 〈·〉 denotes the exception value over an image.

The GMM-MRF energy minimization problem in

(5) can be solved by the graph-cuts software GCMEX

[1] in two seconds for a 256-by-256 color image. After

we solve the energy minimization, the final number of

remaining regions might decrease and we might obtain

fewer than seven regions, depending on the content of

the input image.

6 Refining the Image Stack

Through experiments we observe that some images in

the image stack retrieved by comparing gist descrip-

tors cannot be aligned with the input image very well.

Including these images in stack might deteriorate the

effectiveness of the estimated contextual prior. We may

use the segmentation result produced by our algorithm

to refine the image stack, and then run our algorithm

again to obtain a new segmentation result. We find that

the segmentation often can be improved after this re-

finement step. The refinement is done by removing un-

suitable images from the image stack. The quality of

each image in the image stack should be evaluated by

the agreement between its edges and the region bound-

aries suggested by the preliminary segmentation result.

More specifically, we use the bidirectional chamfer dis-

tance [8] as the metric to compare the boundaries of

regions in the preliminary segmentation with the edges

of each image in the image stack. We keep only the top

20% most consistent images to form a refined image

stack, and then re-run the algorithm to obtain a new

segmentation.

7 Experiments

We use the LabelMe database [22] and the SUN database

[27] to test our segmentation algorithm. From the two

databases we pick 78,321 images that consist of street

views, urban landscapes, and natural scenes. We use

these images to build a dataset for our experiments.

Each image in our dataset is resized to 256-by-256 pix-

els. We use the dataset to collect image stacks and to

generate contextual priors. Furthermore, the LabelMe

database provides label information, which can later be

used as ground truth for evaluation. Fig. 5 shows some

results produced by our algorithm. Each row in Fig. 5

contains an input image, its contextual prior, and the

preliminary segmentation, followed by the new contex-

tual prior derived from the refined image stack, and the

refined segmentation. As can be seen in Fig. 5, most of

the boundaries and regions are aligned well with the se-

mantic scene structures. When the segmentation results

generated by the first-round segmentations are mod-

erately reliable, the refinement step is usually able to

produce more stable segmentation results. It can also

be observed that the contextual priors become more

specific at the refinement step, c.f . Fig. 5(b) versus

Fig. 5(e). The whole process of producing the segmen-

tation results is unsupervised; it is done automatically

without using the label information provided by the La-

belMe database. The parameters in our algorithm are

fixed during the experiment; their values are chosen as

described in the previous sections.

7.1 Computational Issues

We have precomputed the gist descriptors and the sparse

coefficients βi of the images in our dataset, and have

stored them with the respective images. Note that we

do not have to store the intermediate 96-dimensional

vectors of the Gabor filter responses. After we use the

Gabor filter responses to decide the sparse coefficients,

we may ignore the Gabor filter responses and store only

the sparse coefficients. Each image requires 3MB space

to store its sparse coefficients, and therefore totally it

needs 235GB space to store all of the sparse coefficients

for the 78,321 images in our dataset. Given an input im-

age, we may directly compare its gist descriptors with

the stored ones, and on-line build its image stack of 100

images that exhibit similar scenes. We may run through

the 100 images one by one, and hence we do not need

to load the sparse coefficients of all 100 images at once.

The visual-word occurrence vectors vi in (4) can thus

be computed incrementally from the stored coefficients

βi. This way the memory consumption can be well han-

dled even if we use an image stack of a larger size. The
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typical run-time for each step in our algorithm is as fol-

lows: running k-means for the contextual priors takes

3 seconds, learning GMMs takes 4 seconds, and per-

forming graph-cuts needs 2 seconds. The experiments

are done in MATLAB environment, on a 4-core 2.8GHz

CPU with 12GB memory. Note that if we do not pre-

compute the gist descriptors and the sparse coefficients,

the run-time will be dominated by these computations,

which requires about 400 seconds.

7.2 Comparisons

We compare our results with the segmentations pro-

duced by Mean Shift [2], the Efficient Graph-Based Im-

age Segmentation [3], and the method of Russell et al .

[19]. Fig. 6 shows some example segmentations of dif-

ferent input images. We have manually adjusted the

parameters for Mean Shift and Graph-Based Segmen-

tation such that they can generate a suitable number of

visually plausible regions that mostly resemble the se-

mantic scene structures. Both of Mean Shift and Graph-

Based Segmentation are very efficient; the segmentation

of an input image can be generated in one second. For

the comparison with the method of [19], instead of using

5,000 images to build the image stack as in the original

setting of [19], we test their algorithm using an image

stack of only 100 images to see if the algorithm can still

produce reliable segmentation results. The typical run-

time of the method of [19] with the modified setting is

1,100 seconds.

As shown in Fig. 6, the segmentations produced by

the Graph-Based Segmentation are somewhat not sta-

ble, and the segmented regions do not reflect the se-

mantic scene structures very well. The segmentations

generated by Mean Shift seem to be more stable and

detailed, and the region boundaries better fit the strong

edges. Nevertheless, the segmented regions found by

Mean Shift still do not correspond to the semantic scene

structures very well. The regions might look plausible

due to the similarity in color, but they reflect less infor-

mation about the context of the scene. The regions pro-

duced by the method of [19] using an image stack of 100

images can roughly reflect the semantics and the con-

texts in the scenes, but the overall segmentation quality

is not good enough. In Fig. 7 we show the heat maps

of scene components estimated by the method of [19].

The heat maps are used to generate the data term of

the energy minimization in the method of [19], and it

can be seen that the segmentation result greatly relies

on the quality of the estimated scene components. Us-

ing a stack of only 100 images might not be enough for

the method of [19] to yield good segmentation results.

In contrast, our method can more effectively derive the

context information from a stack of 100 image using the

sparse coding technique. Moreover, the contextual pri-

ors are simply used as the initial hint in our GMM-MRF

energy minimization scheme, and the segmentation pro-

duced by our algorithm is more flexible to adapt to the

specific content of the input image.

To further evaluate the qualities of the segmenta-

tions produced by different algorithms, we employ the

human-labeled segmentations as the references for com-

paring different segmentation results. The LabelMe data-

base includes human-annotated labels on each image,

and therefore we may use these labels to generate ground-

truth segmentations. We consider the following cate-

gories of semantic regions: building, cliff, foliage, ground,

mountain, road, sea, sidewalk, sky, tree, and water. Labels

of other categories are ignored and considered as don’t
care when we evaluate the segmentation performance.

From the LabelMe database we take 40 images that

present a variety of scenes, and generate the ground-

truth segmentation for each image.

We use the Adjusted Rand Index [7] as a measure

to evaluate the similarity between a segmentation re-

sult and the ground-truth segmentation. The Adjusted

Rand Index is a normalized version of the Rand Index

[16]. The idea of Rand Index is to check the region con-

sistency of each pair of pixels {i, j}. Consider a result

of segmentation R = {R1, . . . , Rs, . . .} and the ground-

truth segmentation R̂ = {R̂1, . . . , R̂t, . . .}, where Rs
and R̂t are regions consisting of pixels. There are four

possible cases for the region assignments on {i, j} with

respect to the two segmentations R, R̂, and the Rand

Index takes account of the following two cases:

aij : i, j ∈ Rs and i, j ∈ R̂t ;

bij : i ∈ Rs, j ∈ Rs′ , and i ∈ R̂t, j ∈ R̂t′ ,
where s 6= s′, t 6= t′ .

(10)

The Rand Index counts the number of these two cases

over all possible pairs:

Rand Index =
1(
M
2

) ∑
i,j

1aij (i, j) + 1bij (i, j) , (11)

where 1aij and 1bij are the indicator functions and M

is the number of pixels in the image. The value is maxi-

mized if two segmentations are identical. Note that the

Rand Index does not have fix values for random seg-

mentations. To resolve the problem, the Adjusted Rand

Index normalizes the Rand Index to 0 for random seg-

mentations. The maximum value of the Adjusted Rand

Index is 1 also due to the normalization. The Adjusted

Rand Index is defined as the ratio of ‘the Rand Index

subtracting the expected Rand Index’ to ‘the maximum

Rand Index subtracting the expected Rand Index’.
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Fig. 8 illustrates the evaluations of comparing the

segmentations with the ground truths using the Ad-

justed Rand Index. The refined segmentations produced

by our algorithm are most consistent with the ground

truths according to the Adjusted Rand Index scores.

We sort the images by the Adjusted Rand Index scores

of the refined segmentations, and arrange the images

accordingly in descending order for visualization. The

scores of the refined segmentations roughly form an en-

velope of the scores of other methods, which means

that our algorithm is better at generating semantically

meaningful segmentations in most cases. Furthermore,

the average score of our refined segmentations is 0.8010,

higher than the average score of Mean Shift (0.7611),

the Graph-Based Segmentation (0.7411), and the method

of [19] (0.7388). The experimental results suggest that,

even though our algorithm only uses a small number

of additional images as the referenced image stack, our

algorithm is effective enough to improve scene segmen-

tation and obtain semantic regions via exploiting the

contextual prior derived from the sparse coding repre-

sentation of the image stack.

7.2.1 Number of Visual Words

In the aforementioned experiment, the sparse coding

dictionary D of our method contains 200 visual words.

We have also tried to build dictionaries of two differ-

ent sizes: 100 visual words and 400 visual words. We

repeat the experiment by changing the number of vi-

sual words while keeping the remaining parameters and

settings unchanged. The segmentation results are eval-

uated as in the previous experiment, and the perfor-

mances of using different numbers of visual words are

shown in Fig. 9. In general, the performances do not

vary a lot, except that in a few cases the performance

of 100 or 400 visual words drops drastically. The ab-

normal performance of 400 visual words might be due

to the curse of dimensionality: The refined image stack

contains only 20 images. The dimensionality of the 400-

visual-word vector may be too high such that it is in-

sufficient to obtain reliable clustering results from only

20 images.

7.2.2 Image Stack Size

In Fig. 10 we evaluate the performances of our method

and the method of Russell et al . [19] using different

numbers of images to form the image stack. We have

tested three different settings, using 100 images, 500

images, and 1,000 images in the image stack. As in

the previous experiments, the segmentation results are

compared with the ground truth to compute the Ad-

justed Rand Index scores. During the refinement step,

we keep the top 20% most consistent images to form a

refined image stack. Therefore, the refined image stack

would contain 20, 100, and 200 images with respect to

the number of 100, 500, and 1,000 images in the initial

image stack. For our method, the results of using 500

or 1,000 images in the image stack are not better than

the result of using 100 images. It might suggest that

to include too many images in the image stack would

probably deteriorate the effectiveness of the estimated

contextual prior, since it is not easy to find 500 or 1,000

images that are all well aligned with the input image.

We find that using an image stack of 100 images is suit-

able for our application.

8 Conclusion

We have presented an unsupervised segmentation algo-

rithm for partitioning an image into semantically mean-

ingful regions. Our algorithm employs the sparse coding

technique to estimate the contextual prior for an in-

put image. The contextual prior is able to integrate the

spatial information and the sparse representation of the

scene. We use the contextual prior as the guidance to

construct Gaussian mixture models for different parts

of the input image. The Gaussian mixture models are

incorporated into an MRF-based energy-minimization

problem that can be solved efficiently by graph-cuts.

We believe that the idea of combining sparse represen-

tation with context information should be worth further

investigation for more applications.

We have shown that the information of contextual

prior learned from the image stack is useful in local-

izing the semantic regions of input image. A possible

extension of the current algorithm is to include more

complex local features into the GMM when construct-

ing the MRF-based minimization. The additional in-

formation provided by local features should be able

to improve the reliability of graph-cuts segmentation.

Such information can also be applied to a subsequent

classification-based algorithm for region labeling, which

will be helpful in making progress towards the goal of

scene parsing and image understanding.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5 Segmentation results. (a) Input images. (b) K-means contextual priors. (c) Preliminary segmentations. (d) Boundaries
of (c). (e) Refined k-means contextual priors. (f) Refined segmentations. (g) Boundaries of (f).



Unsupervised Scene Segmentation Using Sparse Coding Context 11

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6 Comparison. (a) Our results. (b) Boundaries of (a). (c) Results generated by Mean Shift [2]. (d) Boundaries of (c).
(e) Results obtained by the Efficient Graph-Based Segmentation [3]. (f) Boundaries of (e). (g) Results using the algorithm of
[19]. (h) Boundaries of (g).
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7 (a) A segmentation result using the method of Russell et al . [19] with an image stack of 100 images. (b) The boundary
of (a). (c)–(g): The heat maps of scene components estimated by the method of [19]. These heat maps are used to generate
the data term of the energy minimization in the method of [19]. It can be seen that the segmentation result greatly relies on
the quality of the estimated scene components.

Fig. 8 Compared with the ground truth using the Adjusted Rand Index on 40 images chosen from the LabelMe database
[22]. We consider the following categories of semantic regions: building, cliff, foliage, ground, mountain, road, sea, sidewalk, sky, tree,
and water. Labels of other categories are ignored and considered as don’t care when we evaluate the segmentation performance.
Image indexes are sorted according to their Adjusted Rand Index scores of our refined segmentations. The average scores
are 0.7865 (ours, first-round), 0.8010 (ours, refined), 0.7611 (Mean Shift), 0.7411 (Graph-Based), and 0.7388 (the method of
Russell et al . [19]).
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Fig. 9 A comparison on the performances of using different numbers of visual words: 100, 200, 400 visual words. For all
of the three settings, the initial image stack always contains 100 images, and the refined image stack contains 20 images.
The segmentation results are compared with the ground truth using the Adjusted Rand Index on the 40 images chosen from
the LabelMe database as in Fig. 8. Image indexes are sorted according to their Adjusted Rand Index scores of the refined
segmentations with 200 visual words. In general, the performances do not vary a lot, except in a few cases the performance of
100 or 400 visual words drops drastically.

Fig. 10 The performances of our method and the method of Russell et al . [19] using different numbers of images in the
image stack. We have tested three different settings: 100 images, 500 images, and 1,000 images. The segmentation results are
compared with the ground truth using the Adjusted Rand Index on the 40 images chosen from the LabelMe database as in
Fig. 8. Image indexes are sorted according to their Adjusted Rand Index scores of the refined segmentations using 100 images
in the image stack. During the refinement step, we keep the top 20% most consistent images to form a refined image stack.
Therefore, the refined image stack would contain 20, 100, and 200 images with respect to the initial number of 100, 500, and
1,000 images. For our method, the results of using 500 or 1,000 images in the image stack are not better than the result of using
100 images. It might imply that including too many images in the image stack would probably deteriorate the effectiveness of
the estimated contextual prior.


