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Abstract—We present an unsupervised method for discovering
objects from depth information. Our method can identify new
common objects appearing in different depth images. We use 2D
bounding box proposals to detect candidate locations of objects in
each depth image, and then retrieve the corresponding 3D bound-
ing boxes using the depth information. Invalid object proposals
can be further removed by analyzing the point cloud distribution
inside the 3D bounding box. We measure the similarity between
each pair of the object proposals in different images to identify
co-occurrences of the same instance. The similarity measure is
automatically learned by a Siamese convolutional neural network.
Our method is unsupervised in a sense that we do not need
human labeled data to train the Siamese network. We use 3D
CAD models to synthesize a large set of similar and dissimilar
pairs of depth images as the positive and negative data. Our
experiments on synthetic data show that the proposed method
is able to discover the co-occurrences of the common objects in
different depth images.

I. INTRODUCTION

The task of unsupervised object discovery is to recognize
instances or categories of objects based on their multiple oc-
currences across images. Different from object recognition and
object detection, which require training examples of the ‘to-be-
classified’ objects, methods for unsupervised object discovery
do not assume that the object categories of interest have to
be seen or learned before. Instead, the methods themselves
should explore and find out where the salient objects are and
and how they associate with each other across images.

The pioneering work of Sivic et al.[13] on unsupervised
object discovery aims to answer the research question that
‘Is it possible to learn visual object classes simply from
looking at images?’ They use probabilistic methods to model
the instances of categories as mixtures of topics. Objects are
represented using SIFT-based visual words. An earlier survey
of unsupervised object discovery literature is available in [15].

Recent methods of object discovery often incorporate addi-
tional settings characterizing specific scenarios. For example,
unsupervised object discovery can be achieved jointly with
object segmentation for Internet images. The method of Ru-
binstein et al.[12] can segment out the common objects from
large image collections. Kwak et al.[7] combined the task of
object discovery with object tracking for video data. They used
region matching to associate objects in different videos and
used object tracking to single out good candidates with each
video. Doersch et al.[3] used the context as a supervisory cue
for discovering objects. The information of visual saliency [4]

Fig. 1. Can you identify the same objects in the two depth images?

or region proposals [2] can also be used for object discovery
.

As mentioned in [12], object discovery is closely correlated
to the problem of co-segmentation [5], [11], [16]. Many
strategies can be shared for solving both tasks. Another related
research topic is zero-shot learning [8], [9] of which the tasks
are to learn to class data when labeled training data are not
available. Zero-shot learning is usually achieved by cultivating
semantic features or attributes. Our method also does not rely
on directly labeled data for training. We use 3D CAD models
[14], [17] to generate automatically a lot of depth images of
similar and dissimilar object pairs as positive and negative
examples for learning a similarity measure. The test data can
contain object instances and categories that are never seen
before.

A. Our Approach

This paper aims to address the problem of discovering
objects in depth images. Given a set of depth images, we
seek to identify and localize the same 3D objects in different
images. Fig. 1 shows an example of finding and matching
3D objects in two depth images. We propose an unsupervised
method for solving this problem. While prior work of Karpathy
et al.presents a method for discovering object from 3D colored
meshes [6], our method only needs the 2.5D depth maps,
which is much easier to acquire than 3D color meshes. Our
method can localize and match new common 3D objects in
different depth images. The objects may have different poses
in the depth images, and the depth images may correspond to
different 3D scenes viewed from different angles.

Our approach consists of two parts. The first part is to
detect candidate object locations. We use 2D bounding box
proposals to detect candidate locations of objects in each depth
image, and then retrieve the corresponding 3D bounding boxes
according to the depth information. We may further remove



invalid object proposals based on the point cloud distribution
within the 3D bounding box. The second part of our approach
is to identify co-occurrences of the same instance in different
depth images. We use 3D CAD models [17] to synthesize a
large number of similar and dissimilar pairs of depth images.
Each pair of depth images might contain the same 3D object
or two different 3D objects with different poses observed from
different viewing angles. We use such kinds of data to train a
Siamese convolutional neural network as a similarity measure.
Note that although our method employs discriminative deep
learning techniques for deriving the similarity measure, our
approach can still be considered an unsupervised method in
a sense that we do not need human labeled data to ‘teach’
our method how to recognize 3D objects. Our method can
automatically learn to discover common unknown objects in
depth scenes.

II. DETECTING 2D AND 3D BOUNDING BOXES

Object proposal generator is a critical step in the object
discovery pipeline. Instead of using CNN-based methods, e.g.,
Region Proposal Networks [10], to generate a bounding box,
we use Edge Boxes [18] to detect 2D bounding boxes first,
and then extend each bounding box into a 3D bounding
boxes according to the depth information. We replace the
original edge detector included in the Edge Boxes method
with the Sobel operator, and enhance the edge responses
along the x and the y axis. After we obtain the candidate
2D bounding boxes, we crop out the point cloud derived
from the depth image to set up a rough 3D bounding box
aligned with the camera coordinate system. At this point, the
generated 3D object proposals are likely to contain many false
positives. We can further check the validity of each proposal
by calculating its point-cloud density within the bounding
box, similar to the strategy used in [1]. We remove those
unreasonable proposals to suppress false positives and reduce
the required computational cost for the subsequent step of
object matching. In our experiments, we only retain ten percent
of the top 500 bounding boxes in each scene.

A. Adjusting the Bounding Boxes

The 3D bounding boxes derived from the aforementioned
step are aligned with the camera coordinates. We can use
the depth information to estimate the planar areas in the
scene, such as the table top or the wall, and obtain the object
coordinates. The object coordinate system can be modeled by
applying Principal Component Analysis to the surface normal
at every point. The surface normals of points on the table
should be perpendicular to the table top, so that the normal
direction of the table top can be approximated by the main
eigen vector of all normals in the scene. After we find the
surface normal of the table top, we can rotate each bounding
box so that it is aligned with the object coordinate system.
Fig. 2 shows some detected bounding boxes after adjustment.
We can further perform non-maximum suppression to merge
similar bounding boxes, as shown in Fig. 3.

Fig. 2. Detected 3D bounding boxes before non-maximum suppression.

Fig. 3. 3D bounding boxes after non-maximum suppression.

III. SIAMESE CONVOLUTIONAL NEURAL NETWORK FOR
LEARNING THE SIMILARITY MEASURE

Given two candidate bounding boxes in two depth images,
we need to compare their similarity based on the depth
information, and decide if they contain the same object. To
achieve this goal, we create a Siamese convolutional neural
network to learn how to compare two depth images. The
learning task is formulated as a binary classification problem.
The training data are pairs of depth images generated from 3D
CAD models. Each positive pair comprises two depth scenes
of the same 3D object rendered under different poses and
different viewing angles. Each negative pair consists of two
depth scenes of two different 3D objects, also rendered with
variations. In this way, we are able to train a Siamese network
with a larger number of automatically generated data, and the
resulting Siamese network can be used as a similarity measure
to decide whether two depth images contain the same object.

A. Network Architecture

Our neural network takes a pair of stacked depth images
as input. Specifically, the input size is 2 × 112 × 112. The
input layer is followed by several convolutional, ReLU, and
MaxPooling layers as shown in Fig. 4. As for the loss function,
we use mean squared error to measure the difference between
the neural network output and the ground-truth label.

B. Network Training

The parameters in the network are initially filled with values
sampled from a zero mean, unit variance Gaussian distribution.
The learning rate is set to 0.1, and the batch size is 64. We
use Stochastic Gradient Descent to optimize the parameters.



Fig. 4. Our network structure: a Siamese convolutional neural network for
learning the similarity measure.

Fig. 5. training the Siamese convolutional neural network. The loss drops
quickly after several epochs.

As shown in 7, the training loss drops quickly, and the loss for
testing data converges after 20 epochs. An epoch means the
entire training data are fully processed by the network once.
We use Nvidia TitanX GPU for training, and the time needed
for each epoch is roughly 750 seconds.

IV. SYNTHESIZING 3D OBJECTS AND SCENES

We mention in the previous section that the Siamese net-
work as a similarity measure is learned from automatically
generated 3D depth scenes. In this section We describe the
details of the data generation process.

A. Data Selection

We use the 3D CAD models from by ShapeNet [17]. The
3D models are stored in a hierarchical way. We do not consider
some classes of objects because their depth variations are
just too small when viewed at a certain distance, e.g. , flat
objects like swords and dishes. We manually select classes
whose relative dimensions (width, height, depth) are more
similar to a cube. For each selected class, we randomly choose
four instances for later experiments. Our ultimate goal is to
find the same object instance in two scenes, therefore we
discard the class information for each instances. There are
total 148 instances. We further take 120 instances for training
the Siamese network and the remaining 28 instances are used
for testing.

B. Data Preparation

For each of the CAD model instances, we randomly choose
ten locations in the scene with constraints so that the object
stays in the camera view. Also, 36 rotations are applied to
each placement to increase appearance variations. We create

(a) Instances sampled from the training set

(b) Instances sampled from the test set

Fig. 6. Examples of 3D CAD models for generating the training and test data.

data pairs in the following manner. We make 120 × 120 ×
360/10 = 518400 pairs for training. To test the matching
performance, we create 100 pairs of images. For each pair,
we first randomly select object instances from the test set, and
place them on a table with random translation and rotation;
Using the same selected objects, we repeat the above operation
to render another image.

Listing 1. training pair selection scheme

whi le n<m a x p a i r s : # 518400
i f n%2==0:

i = random ( l e n ( i n s t a n c e s ) )
sample1 = SampleFromIns t ance ( i )
sample2 = SampleFromIns t ance ( i )
l a b e l = m a k e l a b e l ( i , i )

e l s e :
i 1 = random ( l e n ( i n s t a n c e s ) )
i 2 = random ( l e n ( i n s t a n c e s ) )
sample1 = SampleFromIns t ance ( i 1 )
sample2 = SampleFromIns t ance ( i 2 )
l a b e l = m a k e l a b e l ( i1 , i 2 )

a g g r e g a t e ( sample1 , sample2 , l a b e l )

def m a k e l a b e l ( i1 , i 2 ) :
i f i 1 == i 2 :

re turn 1
e l s e :

re turn −1

V. GENERATE MATCHING PROPOSALS

Given the extracted proposals from each image, we can
compute the matched object proposals using the trained
Siamese convolutional network. Each object proposal in the
first depth image is paired with an object proposal in the
second image. Therefore, we have N1 ×N2 pairs, where N1
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Fig. 7. The precision-recall curves under different matching criteria of the
overlapping threshold t.

and N2 are the numbers of extracted proposals from the two
images. Later, we can evaluate the similarity of each pairs of
proposals using the trained Siamese convolutional network.
The proposals are then sorted according to their matching
scores.

VI. EXPERIMENTAL RESULTS

We apply our models to the virtual depth image pairs. Since
the goal is to find corresponding objects in the images, we
first define what a match is. For each pair of images, we
have the ground-truth matching information, which provides
pairs of object proposals with the bounding box information
(x,y,w,h). We denote each ground-truth correspondence as gi1
and gi2, where i is the i-th pair of object proposal, and the
subscript indicates the first and second image of the image
pair. Similarly, we denote the matched object proposal pairs as
bj1, bj2, j = {1..K}, where K is the top K matches according
to their matching scores produced by the Siamese network.

Given K selected proposals and the ground-truth object
pairs, we can compute the precision and recall rates to evaluate
performance. For the proposal pair b1, b2 and the ground-truth
proposal pair g1,g2, if the IOU (intersection over union) of b1
and g1 is higher than overlapping threshold t and so is b1
and g2, then we call it a true positive match. Otherwise, we
count it as a false positive. Therefore we can compute the
precision and recall rates for different choices of K. Fig. 7
illustrates the precision-recall curves over different settings of
overlapping threshold t. Tables I&II summarize the precision
and recall rates of the top K matches for different values of
the overlapping threshold t.

Fig. 8. The lines connect pairs of object proposals that have the highest K
scores. The end points of each line are bounding box centers for each object
proposal. The black box indicates a true positive proposal whose bounding
box has an IOU higher than the overlapping threshold t with respect to the
ground-truth bounding box. In this example, K = 4, t = 0.6.

TABLE I
PRECISION

The overlapping threshold t
t=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

K=1 0.72 0.65 0.59 0.52 0.48 0.43 0.35 0.19
K=4 0.51 0.45 0.41 0.35 0.33 0.29 0.24 0.11
K=7 0.40 0.36 0.31 0.27 0.24 0.22 0.17 0.07
K=10 0.35 0.31 0.26 0.22 0.20 0.18 0.14 0.06
K=13 0.32 0.28 0.23 0.20 0.18 0.15 0.11 0.05

TABLE II
RECALL

The overlapping threshold t
t=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

K=1 0.18 0.16 0.15 0.13 0.12 0.11 0.09 0.05
K=4 0.42 0.39 0.36 0.33 0.32 0.28 0.23 0.11
K=7 0.53 0.50 0.47 0.45 0.41 0.37 0.29 0.13
K=10 0.61 0.57 0.55 0.53 0.49 0.43 0.34 0.15
K=13 0.69 0.67 0.64 0.61 0.57 0.49 0.36 0.16



VII. CONCLUSIONS

We have presented our study on how to find plausible
objects in a depth image based on 3D bounding box proposals
and how to associate them across two depth images using a
Siamese network. The preliminary results show that, without
relying on color, simply the 2.5D cues derived from depth
images can provide useful information for detecting and
matching objects. Furthermore, without human supervision,
our system is able to learn with generative 3D data and to
make sense out of the scenes.
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