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ABSTRACT

This paper presents a learning-based method for recognizing
chess pieces from depth information. The proposed method
is integrated in a recreational robotic system that is designed
to play games of chess against humans. The robot has two
arms and an Ensenso N35 Stereo 3D camera. Our goal is
to provide the robot visual intelligence so that it can identify
the chess pieces on the chessboard using the depth informa-
tion captured by the 3D camera. We build a convolutional
neural network to solve this 3D object recognition problem.
While training neural networks for 3D object recognition be-
comes popular these days, collecting enough training data is
still a time-consuming task. We demonstrate that it is much
more convenient and effective to generate the required train-
ing data from 3D CAD models. The neural network trained
using the rendered data performs well on real inputs during
testing. More specifically, the experimental results show that
using the training data rendered from the CAD models under
various conditions enhances the recognition accuracy signif-
icantly. When further evaluations are done on real data cap-
tured by the 3D camera, our method achieves 90.3% accuracy.

Index Terms— 3D object recognition, volumetric repre-
sentation, convolutional neural networks

1. INTRODUCTION

Building a robot that can play games of chess against a human
opponent has been a way to showcase machine intelligence
since the 18th century. Recently we just finish a project of
constructing a chess-playing robot having the ability to rec-
ognize the chess pieces and to grip a chess piece for making
a planned move. The robot, as shown in Fig. 1, has two arms
with grippers and an Ensenso N35 Stereo 3D camera for cap-
turing depth information. The implementation of this robotics
AI system requires great effort to integrate robotics, mechan-
ics, visual processing, and machine learning. In this paper,
we focus on addressing the problem of recognizing the chess
pieces from the depth information.

Object recognition is a fundamental problem in computer
vision. Researchers have been working on classifying 2D
objects from RGB images. Current trends in the designs
of object recognition methods indicate that machine learning
based approaches can generally outperform handcrafted sys-

Fig. 1. An overview of our system. The depth camera is
mounted on the robot’s head to sense the chess pieces on the
chessboard. Each individual chess piece is segmented from
the depth image according to the homography derived from
the chessboard. The point cloud of a chess piece is computed
using the depth information and is fed into the convolutional
neural network for recognition. The recognition results are
forwarded to the chess-playing AI algorithm to decide a move
and then to control the robot arm to complete the move.

tems. Many datasets that consist of color images of objects
are available for training and for evaluating various learning-
based models. The success of convolutional neural networks
in solving object recognition is also owing to the availability
of large-scale datasets with ground-truth annotations.

While the study of 2D object recognition makes great
progress in recent years, researchers also seek to develop
learning-based algorithms for 3D object recognition using
the information captured by stereo cameras or depth sen-
sors. With the help of depth information, 3D object recog-
nition should be able to resolve some situations that cannot
be well handled in 2D object recognition, such as texture-
less objects or cluttered backgrounds. However, annotated
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3D object datasets [1, 2] are not as plentiful as 2D datasets.
For instance, the biggest RGBD dataset NYUv2 [3] only con-
tains 1,449 labeled RGBD images. Such a size of dataset is
much smaller than the typical 2D image datasets, which usu-
ally contain more than ten thousand or even one million im-
ages. Some recent works have employed 3D computer aided
design (CAD) models to make up the shortage of 3D data, us-
ing open-source CAD models from SketchUp 3D Warehouse,
TurboSquid and Shapeways.

Given the CAD models, a key issue of generating prac-
tical training data is choosing an effective representation for
3D data. Intuitively, we can set a virtual camera and render
depth images from different viewpoints. We extract the 3D
surface mesh of a CAD model, and represent the mesh as a
point cloud. We then convert the point cloud into a binary
volumetric cuboid. A binary volumetric cuboid is comprised
of binary voxels. Each binary voxel indicates whether any 3D
points are present at the corresponding location of the voxel.
Therefore, we are able to represent the original point cloud
in a quantized format. Furthermore, to cover possible varia-
tions that might occur in real situations, we may add noises
of different levels to the binary volumetric cuboid. This also
highlights an advantage of our choice of using binary repre-
sentation in that we do have to simulate complex rendering
conditions with the 3D CAD models but just need to handle
Bernoulli noise. Other types of transformations can also be
easily included to increase the diversities of training data.

Problem Definition

We assume that after preprocessing we can obtain the 3D
bounding box of each chess piece on the chessboard. The
point cloud enclosed by the bounding box is converted into
the binary volumetric representation as is described in the
previous section. We then formulate a 3D object recognition
problem that takes an input of binary volumetric cuboid and
produces an output of class label. For the problem of chess
recognition, we consider six classes of chess pieces: king,
queen, bishop, knight, rook, and pawn. We ignore the
color because it is rather trivial to differentiate beforehand.

Our Approach

To solve the problem of predicting the classes of chess pieces
from the inputs of point clouds, we train an end-to-end 3D
convolutional neural network (CNN) using the training data
generated by CAD models. We represent both the syn-
thetic training data and the real test data as binary volumet-
ric cuboids. We focus on generating various kinds of data
with different settings of variations such as adding noise or
removing points in models to simulate missing information.
Because point clouds captured in real conditions are noisy
in general, taking account of different variations will be use-
ful for improving the CNN’s performance when testing on

real data. The CNN is able to model the contour, height,
and depth information even when part of the point cloud is
missing. With the simulated training varieties, the CNN can
achieve an accuracy rate of 90% on real test data.

2. RELATED WORK

CNNs on 2D Images
Recent breakthroughs on object recognition in 2D domain
have been made owing to the development of convolutional
neural networks (CNNs) [4]. State-of-the-art methods on
RGB image datasets, (e.g. ImageNet [5]), are able to achieve
impressive performance. Besides object recognition, there
are also significant improvements on 2D object detection,
for example, RCNN [6], Fast-RCNN [7], Faster-RCNN [8],
YOLO [9], and SSD [10]. These methods need to pinpoint
possible object locations and recognize the object class inside
the bounding box. For 3D objects, it could be easier to lo-
cate the objects using the available information of depth and
reference plane. We can therefore focus on the problem of
recognizing the object inside the bounding box.

CNNs on Depth and 3D Data
With the popularity of 3D sensors and applications such as
virtual reality and augmented reality, more efforts are made
on 3D objects recognition. Socher et al. [11] treat depth as
an additional channel and feed it into an architecture consist-
ing of CNN and RNN. Gupta et al. [12] use the HHA feature
to encode depth information. HHA represents height above
ground, horizontal disparity, and angle between gravity and
pixel normal. The Sliding Shapes method [13] runs a 3D slid-
ing window and directly recognizes each 3D window on depth
images with the help of 3D CAD models.

To fully utilize 3D information, ShapeNet [14] builds a
3D CNN and considers 3D binary voxel grid as input. The
Princeton ModelNet dataset [15] is also useful for object
recognition. Other methods such as [16] and [17] use vol-
umetric representations and also further enhance the perfor-
mance. Apart from volumetric representations, MV-CNN
[18] renders 3D models in different views and extracts fea-
tures from each viewpoint. Qi et al. [19] have tried to analyze
the effectiveness of different representations. FusionNet [20]
uses multiple representations with significantly less parame-
ters compared to standard CNNs using RGB images. Ren and
Sudderth [21] present COG to encode 3D features learned by
calculating 3D gradients.

3. VOLUMETRIC CONVOLUTIONAL NEURAL
NETWORK

3D convolutional neural networks are widely used recently.
The most common types for representing 3D shapes are mul-



Fig. 2. An overview of the volumetric convolution neural network. The input is a cuboid of size 50 x 50 x 100. Each input will
be processed by two 3D convolution layers with filter size five and three respectively, followed by one max pooling layer and
two fully connected layers. Note that the stride is set to 2 and padding is 1 in the first convolutional layer.

tiview representations and volumetric representations. Mul-
tiview representations mean that a 3D model is rendered un-
der multiple viewpoints and the respective features are ex-
tracted from different views. On the other hand, volumetric
representations encode a 3D model directly from its shape. In
this work, we choose volumetric representations since our test
data, unlike in previous methods, are captured by real depth
camera rather than 3D CAD models. The test data are noisy
and often miss the information of the other side of a whole
chess piece due to self-occlusion. Our volumetric CNN ar-
chitecture is illustrated in Fig. 2.

3.1. Network Architecture

We train a volumetric convolutional neural network to clas-
sify the six classes of chess pieces. The input of the network
is a tensor of size 50 × 50 × 100. The input layer is followed
by two convolutional layers and one max-pooling layer. The
3D filter size of the convolutional layers is 5 × 5 × 5 and the
pooling size of the max-pooling layer is 2 × 2 × 2. After
pooling, we reshape the pooling result and append two fully
connected (FC) layers. The first FC layer shrinks the dimen-
sion to 128 and the second FC layer shrinks the dimension to
six. Note that there are ReLU and dropout layers between the
first three layers.

3.2. Training the Network

The weight of the network is initialized with standard Gaus-
sian distributions. We use stochastic gradient decent with
learning rate 0.01, weight decay 0.0001, and batch size 32 to
train the network. The network converges in about one hour

Fig. 3. Examples of real test data. From left to right: king,
queen, bishop, knight, pawn, rook. The captured
chess pieces differ in height and shape. Every point cloud
may contain noisy points.

on an Nvidia TitanX GPU with four data loading threads. The
network is implemented in Torch [22].

4. DATA AUGMENTATION

4.1. Gathering Test Data

Our input data are captured by an Ensonso N35 3D camera.
The output of the camera is a point cloud of the whole scene
with resolution 0.1 mm. Assume that a human player places
the chess pieces moderately. Since the camera is calibrated,
the point cloud of each chess piece on the chessboard can be
easily extracted. After extraction, we locate the center p of
a chess piece’s bottom plane by fitting a circle on that plane.
Starting from p, we quantize the point cloud along the x, y,
and z directions with bin size of 1 mm to form a cuboid, and
the extracted length is 50 mm, 50 mm, 100 mm respectively.
The dimension of the cuboid is 50 × 50 × 100. Also, p is



Fig. 4. An example of variation of knight. From left to
right: the original chess piece, slightly shifting 50% points
and removing 10% points, and randomly removing 10%
points.

aligned with the center of the cuboid’s bottom. We call each
1 mm × 1 mm × 1 mm cell a voxel. As mentioned earlier,
we use a binary volumetric representation. The value of each
voxel is set to zero if the voxel is empty. Otherwise, it is set
to one if the voxel contains points. Some examples of the
preprocessed test data are shown in Fig. 3.

4.2. Synthesizing Training Data

Our volumetric convolutional neural network needs to clas-
sify the six classes of chess pieces, which are bishop,
king, knight, pawn, queen, rook. Each CAD model
is rotated by every 6 degrees to generate data that cover dif-
ferent orientations of a chess piece. We further augment the
data by varying its height and shape so that the network can
learn to recognize imperfect inputs.

We consider five kinds of variations Nor50, Jitter, Re-
moval, Noise, Whole to augment the data.

• Nor50: All cuboids are compressed from 50 × 50 ×
100 to 50 × 50 × 50.

• Jitter: The value in each voxel is shifted to nearby vox-
els around the center of cuboid, within a range of ±5
voxels in each direction.

• Removal: The value in each voxel is randomly set to
zero with probability from 0% to 90%.

• Noise: Randomly choose 0% to 90% voxels and shift
the value of each chosen voxel by ±5 voxels in each
direction from the original position.

• Whole: We may choose to keep the whole set of point
cloud without take the visibility into consideration. Or,
we may set a virtual camera direction and remove in-
visible points, i.e., the points whose normal directions
are at an angle larger than 90 degree to the camera di-
rection.

Table 1. Experimental results with different setting of varia-
tions.

Variations Accuracy
nor50 30%
jitter 60%
jitter+removal 64%
jitter+whole+removal 84.40%
jitter+whole+removal+noise 90.30%

We use five parameters for the five aforementioned vari-
ations to generate our training data. Each combination gen-
erates 100K to 300K training data depending on what param-
eters are chosen. Note that the training data can be applied
with more than one variation. For example, we can remove
10% points in the cuboid, and then shift values away from the
center of cuboid.

4.2.1. Variations in Height

We set our input size of the binary cuboid as 50 × 50 ×
100 (width × depth × height) in both training and test data.
Specifically, we do not normalize every model into the same
size. We put every model in the cuboid with their original
scale. In this way, we can prevent squeezing the shape of tall
models such as king and queen, and can also retain the
height cue for each model.

4.2.2. Variations in Shape

Missing information at the boundary of the point cloud may
make the shape of the model become difficult to recognize. It
often happens in real scenarios due to the sensing conditions
of the depth camera. To solve this problem, we remove 0% to
90% of points in original CAD models randomly. Also, we
pretend that there is a virtual camera pointing at the model
at different heights. A point should be removed if the angle
between the camera’s direction and the normal of that point is
larger than 90 angle, since such a point is not visible in real
situation.

Noisy points are often caused by incorrectly estimated
bounding boxes. Some points that are not part of a real chess
piece might be included in the extracted point cloud. The
noisy points would further cause error in the step of fitting
and finding the center of the chess piece. The chess piece is
therefore moved off-center. To simulate such phenomenon,
we move the center of each model in the cuboid to add vari-
ations in training data. We also randomly shift 0% to 90%
of the points in original CAD models. Fig. 4 shows some
variations of training data.



Table 2. Confusion matrix of the classification results.
bishop king knight pawn queen rook

bishop 0.96 0 0.032 0.008 0 0
king 0 0.568 0.01 0 0.422 0
knight 0 0 0.953 0.005 0 0.042
pawn 0 0 0 0.946 0 0.054
queen 0 0 0.001 0 0.999 0
rook 0 0 0 0.053 0 0.947

5. EXPERIMENTS

We use the synthetic training data with different settings of
variations to train our network, and evaluate the performance
using the same test data for comparison. The total number of
real test data is 5000. The results are shown in Table 1.

5.1. Importance of Height Variations

The experimental results show that the height information is
critical. As we can see in Table 1, if the training and test data
are normalized to 50 x 50 x 50 cuboid, the accuracy drasti-
cally drops to 30%. It is important to keep the height varia-
tions of different chess pieces.

5.2. Analysis on Shape Variations

Overall, the combination of shifting the chess piece in cuboid,
randomly removing points, adding noises, and preserving all
points regardless of camera directions yields the best result.
It seems that preserving all points regardless of camera direc-
tions is the most critical factor to improve the performance.
Based on this outcome, we may argue that no matter the
points are occluded or not, it would be more informative to
provide a more complete point cloud during training as if the
model can be examined in all directions. In other words,
imagining that we discover some unknown object, we will
look around at it to get a more holistic impression of the shape
rather than only see half of the object and ignore the other
side. Another important parameter is adding slight shifts to
the points in three directions. Adding noise is a good way to
imitate real test data. It helps to improve the accuracy to 90%
at last.

Our method performs well on most classes (above 90%)
except the king, see Fig. 2. We think the reason is that the
king looks almost the same as the queen everywhere ex-
cept the crown. In real data, the situation of missing crown is
usually caused by placing the depth camera too high so that
the chess piece is almost viewed from the top. Also, noise
and insufficient resolution of the depth camera could make
the crown unrecognizable. Sometimes a knight might be mis-
classified as a pawn or a rook when the knight is not facing
the depth camera. We may use heuristics and multiple predic-
tions to resolve these mis-classifications in real game playing.
A few examples of false classifications are shown in Fig. 5.

Fig. 5. Wrong classifications.

6. CONCLUSION

We train a 3D convolutional neural network to classify the
point clouds captured by a depth camera. With the help of
CAD models, we can generate a large number of synthetic
data to train the network. We conduct several experiments
such as adding noises, shifting models, or removing points to
simulate the captured information in real scenarios. We show
that including different variations is useful for improving the
recognition accuracy on real test data. The trained network
is integrated into a chess-playing robot for interactive demon-
stration.
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