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Abstract. We present an improved bundle adjustment method based on
the online learned appearance subspaces of 3D points. Our method incor-
porates the additional information from the learned appearance models
into bundle adjustment. Through the online learning of the appearance
models, we are able to include more plausible observations of 2D features
across diverse viewpoints. Bundle adjustment can benefit from such an
increase in the number of observations. Our formulation uses the appear-
ance information to impose additional constraints on the optimization.
The detailed experiments with ground-truth data show that the pro-
posed method is able to enhance the reliability of 2D correspondences,
and more important, can improve the accuracy of camera motion esti-
mation and the overall quality of 3D reconstruction.

1 Introduction

Recent structure from motion (SfM) systems such as [1, 3, 6, 8, 14] usually build
on two key techniques: one is a distinctive-feature detector for image matching,
e.g. [10, 17], and the other is an optimization process based on bundle adjust-
ment [15]. SIFT [10] is arguably the most popular feature-extraction method for
image matching. It has been successfully used in 3D modeling systems [13, 14] to
extract local features for finding 2D correspondences to the same 3D point. The
optimization process in an SfM system is usually based on bundle adjustment.
For example, the handy SfM system Bundler [13, 14] uses a modified version of
sparse bundle adjustment package [9] to solve the joint optimization of camera
parameters and 3D point positions. More efficient algorithms on solving bundle
adjustment have also been continually developed [2, 4]. The coupling of feature
matching and bundle adjustment enables modern SfM systems like Bundler to
model large-scale 3D structures from unordered image collections.

The sparse bundle adjustment used in Bundler requires good feature-matching
results to provide reliable initial correspondences. However, local features across
wide-baseline views and varied lighting conditions are not easy to be matched
due to the nontrivial transformation of the feature’s appearance. Havlena et
al. [6] use a model-growing scheme to connect images and create new 3D points
for the 3D model. More correspondences can thus be included in bundle adjust-
ment. Our approach shares a similar notion of adding new views as [6], but we
explore the use of online learning mechanisms in SfM. We seek to improve the



2 Chia-Ming Cheng and Hwann-Tzong Chen

matching quality by incorporating the online learned appearance models of 3D
points into bundle adjustment. Various learning-based feature descriptors have
been devised to improve image matching, e.g. [17]. Our goal is different in that
we attempt to build feature representations for structure-from-motion rather
than for general-purpose image matching. We incrementally update the appear-
ance models of 3D points after each iteration of bundle adjustment, and use the
appearance models to formulate a more robust bundle adjustment process.

Based on the online learning scheme for the appearance models of 3D points,
we present the appearance-based bundle adjustment to solve the SfM problem. A
feature subspace is associated with each 3D point as the appearance model, and
the subspace is incrementally updated when new observations are available after
each iteration of bundle adjustment. Local features in a new view are directly
compared with the appearance model of each 3D point to find correspondences.
Through the online learning of the appearance models, we are able to include
more plausible observations of 2D features across diverse viewpoints. The ex-
periments show that our approach is effective in improving both the visibility
rates and the track lengths of correctly matched features. The appearance-based
bundle adjustment is preferable to the point-based bundle adjustment in terms
of the formulation of optimization problems. Relying on merely the positions
of 2D points to evaluate the reprojection error might either lead to wrong es-
timations or make lots of points be removed as outliers. Our formulation can
use the appearance information to avoid being trapped in poor local minima.
Fig. 1 shows an example of using the appearance-based bundle adjustment to
obtain a more consistent structure. In the experiments shown in Section 4, we
use ground-truth data to show that our approach can enhance the reliability of
the reconstructed 3D points, and as a result, can improve the accuracy of camera
motion estimation and the overall quality of 3D reconstruction.

(a) (b)

Fig. 1. (a) The PMVS [5] reconstruction based on the result generated by a standard
SfM pipeline with sparse bundle adjustment. Although the sparse bundle adjustment
yields a small reprojection error, the inconsistency in the reconstructed structure is
noticeable at the middle part, corresponding to the boundaries between the two clusters
of views. (b) The PMVS output of our approach. Combining the geometry and the
appearance helps to resolve the problem caused by insufficient matchings between the
two clusters of views.
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2 Learning the Subspace Representations of Local
Features

In SfM, bundle adjustment is performed according to the initial pose estimation
and the correspondences found by image matching. During bundle adjustment,
dubious correspondences might be excluded from the optimization as outliers.
A camera view that does not contain enough inlier corresponding points might
thus be removed and does not contribute to the reconstruction. When more
views are added into bundle adjustment, the increasing amount of information
may help to identify correct matchings. Our approach to adding new views is
to take account of the new information derived from the results of previous
iterations of bundle adjustment. We explore the new view to find feature points
that can actually fit the scene structure. To enable such an adaptive mechanism
for finding 2D correspondences, we propose to learn the subspace representations
for image features. The proposed subspace representations can be plugged in the
appearance-based bundle adjustment optimization, which will be described in
the next section.

The subspace representations are expected to model the variations of local
features exhibited in former observations. We start by using SIFT to detect
keypoints and extract local features. Instead of modeling 2D features image by
image, we build a feature subspace associated with each 3D point. The detected
local features in a new view are compared with the existing subspaces to find
correspondences. The subspace representations are equipped with an incremental
update scheme, such that, after bundle adjustment, local features can be used
to update the subspaces.

We choose to use the L∞ subspace described in [7] as the appearance model.
The L∞ subspace is originally presented for visual tracking. It has been shown
that the L∞ subspace outperforms the L2 (PCA-like) subspace in tracking ob-
jects under lighting changes and geometric transformations. The computation is
also easier for L∞ subspace since, unlike L2 subspace, no eigen-decomposition
is involved.

Consider a set of SIFT feature vectors {v1, . . . , vk} associated with a 3D
point. Our goal is to learn a subspace L that minimizes an error function given
by

Error∞ (L, {v1, . . . , vk}) = max
t∈{1,...,k}

d(L, vt) , (1)

where the function d(·, ·) measures the distance from a vector to a subspace in
a least-squares sense. A subspace spanned by the entire observations of SIFT
feature vectors {v1, . . . , vk} should minimize the above error function. We can
find one of the subspaces that approximate to the span of {v1, . . . , vk} by apply-
ing the Gram-Schmidt process to {v1, . . . , vk}, and an orthonormal basis can be
obtained to represent the subspace.

The dimension of L∞ subspace spanned by {v1, . . . , vk} will grow as the num-
ber k of data increases. To enable the subspace to be updated under a bounded
dimension, we use a local-means method similar to the ones proposed in [12].
We keep at most s local means {z1, . . . , zs} to form the subspace. For each
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3D point we learn its L∞ subspace using the local means {z1, . . . , zs} rather
than {v1, . . . , vk}. The Gram-Schmidt process is applied to the local means
{z1, . . . , zs} and yields an orthonormal basis Q for the L∞ subspace. The lo-
cal means are incrementally updated through the observations of {v1, . . . , vk}.

In our SfM method, the orthogonal bases {Qj} of the learned L∞ subspaces
are used as the appearance models for 3D points {Xj}. Each 3D point Xj has an
associated orthonormal basis Qj . Given a detected 2D point in a new view i for
camera Ci, we may find its most possible corresponding 3D point by projecting
its SIFT feature vector onto the appearance subspace of each 3D point. We
search for the subspace spanned by basis Qj∗ that has the minimum squared
Euclidean distance from the SIFT feature vector to its orthogonal projection on
the subspace. That 2D point is thus denoted as a 2D correspondence uij∗ of the
3D point Xj∗ in view i.

The SIFT feature vector of the 2D point is then used to update the cor-
responding basis Qj∗ . We add the SIFT vector into the closest local mean to
update the set of local means. If the maximum number s of local means is not
achieved and the distance from the SIFT vector to the closest mean is larger
than a threshold, we create a new mean and add it into the set of local means.
The updated set of local means is then used to generate a new orthonormal ba-
sis of the subspace by applying the Gram-Schmidt process. The Gram-Schmidt
process is efficient. In our case we choose s = 10 and find that the overhead of
recomputing Gram-Schmidt is negligible.

3 Appearance-Based Bundle Adjustment

Bundle adjustment is formulated as a process of simultaneously refining ‘the
sparse 3D points of the scene structure’ and ‘the parameters of cameras capturing
the images’. The underlying optimization problem often involves minimizing the
reprojection error of 3D points according to their 2D correspondences across
images. Assume that we have m cameras C = (C1, . . . , Cm) observing n points
X = (X1, . . . , Xn) in 3D space. An observation of 2D point is denoted by uij ,
which is derived from the observation model f(Ci, Xj) that yields the 2D image
coordinates of the 3D point Xj projected into the view of camera Ci plus some
unknown noise. The visibility of point Xj in the view of camera Ci is indicated
by an index set I, such that (i, j) ∈ I if and only if point Xj is observed in the
ith image.

We present an appearance-based formulation of bundle adjustment in which
the learned appearance subspaces of 3D points can be used to provide additional
evidence for the measurement of the reprojection error. Instead of estimating the
parameters {C,X} through minimizing the reprojection error of 3D points, we
incorporate the appearance into the optimization problem defined by

{C∗,X∗} = arg min
C,X

∑
(i,j)∈I

φij ‖f(Ci, Xj)− uij‖2 , (2)
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where we multiply the reprojection error ‖f(Ci, Xj) − uij‖2 by an appearance
weight φij . For a camera Ci that has been considered in previous bundle adjust-
ment iterations, the appearance weight φij is defined by

φij = exp

{
−d(Qj , vij)

2

2σ2
a

}
, (3)

where vij is the SIFT feature vector for the unknown 2D correspondence uij of
Xj in view i, and d(Qj , vij) is the distance from vij to its matched appearance
subspace spanned by basis Qj .

On the other hand, for a new camera view i′, we select the 2D correspondence
ûi′j whose feature v̂i′j best fits the subspace Qj , that is, yields the smallest value
d(Qj , v̂i′j) among the candidates within a radius r from the initial reprojection
coordinates f(C̄i′ , X̄j) before the current iteration of bundle adjustment, where
C̄i′ and X̄j are previous estimations. The new view is then associated with an
appearance weight

φi′j = exp

{
−d(Qj , v̂i′j)

2

2σ2
a

− ‖ûi
′j − f(C̄i′ , X̄j)‖2

2σ2
s

}
, (4)

where we lessen the weight according to how far ûi′j diverges from the initial
reprojection coordinates. We set σs = 0.4r as a spatial scale factor based on
the radius r. In our experiments we set r = 5.0, σs = 2.0 and σa = 0.6. Note
that we use the factor of re-projection error in (4) because we would like to
introduce a soft decision boundary for the inclusion of ûi′j . If we use only the
factor of d(Qj , v̂i′j) in (4), we actually adopt a hard boundary to decide whether
we should include ûi′j . Such a hard decision boundary would be more sensitive
to the parameter setting for the search radius r.

The optimization can be expressed in matrix form:

{C∗,X∗} = arg min
C,X

∥∥∥Φ(f(C,X)− Û
)∥∥∥2 , (5)

where ‖ · ‖ is the Frobenius norm, Φ contains the appearance weights in the

corresponding matrix elements, and Û consists of the 2D correspondences. Let
J = [∂f/∂C ∂f/∂X]T. By the first order Taylor approximation we may write
the solution as [

∆C
∆X

]
= (JTΦTΦJ)−1JTΦTΦ

(
Û− f(C̄, X̄)

)
. (6)

3.1 Comparison with the original bundle adjustment [15]

Although we formulate the optimization in a form of weighted least squares as
in [15] so that stable numerical solutions can be more easily obtained, the notion
of our formulation is quite different from [15], where the weight matrix is just
an inverse covariance matrix modeling the uncertainty. Our formulation includes
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the additional information provided by the learned appearance models, and we
perform the optimization and learning in an EM-like manner that is embedded in
the iterations of bundle adjustment. At each iteration of bundle adjustment we
search among the candidate appearance models to associate individual 2D points
in the new view with the 3D points. After an iteration of bundle adjustment,
we can update the appearance models using the current results of 2D to 3D
correspondences.

Our appearance-based formulation is also different from the intensity-based
model which solves for the transformations between image patches, as is men-
tioned in [15]. For the problem of SfM, the transformations between image
patches on surfaces are not fully dependent on the parameters of the camera
poses and the scene structures of interest. To include extra parameters of patch
transformations might burden the optimization rather than alleviate the adjust-
ment computation. Our formulation does not include the extra parameters but
make use of the appearance information to avoid infeasible solutions found by
point-based bundle adjustment.

4 Experiments

In the first part of the experiments, we evaluate the performance of learning the
subspace representations for local features. We show that the proposed learning
method can be applied to large datasets and can achieve very good precision-
recall rates, significantly better than the baseline strategy of descriptor aver-
aging. Our learning method performs comparably well as the direct matching
strategy (nearest-neighbor criterion), in which all descriptors are kept for match-
ing without any learning. However, our learning method is much more efficient
than the direct matching, especially for large datasets.

In the second part of the experiments, we evaluate the structure-from-motion
results using the appearance-based bundle adjustment. We use three datasets
that provide calibrated cameras and ground-truth correspondences for evalua-
tion. Our method shows the advantages of increasing the track length and the
number of observations per view. More important, the accuracy of camera mo-
tion estimation and 3D reconstruction is also improved, in comparison with the
point-based sparse bundle adjustment.

4.1 Evaluation of Learning Subspace Representations

We use the datasets provided by Winder and Brown in [17] to evaluate the
effectiveness of learning the subspace representations. The image data are taken
from photo tourism [13] reconstructions of Trevi Fountain, Notre Dame, and Half
Dome. Each dataset consists of 100, 000 grayscale patches, which are obtained by
projecting 3D points from photo tourism reconstructions back into the original
images. Due to the mechanism of deciding the scales and orientations of the 2D
projected points, many of the correspondences identified in the datasets may not
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have been matched using SIFT descriptors. The patches might also have some
local occlusion due to parallax.

For each dataset, we select the 3D points that have at least twelve 2D cor-
respondences (twelve corresponding patches), since we would like to see how
effectively the subspace representations can perform for modeling longer tracks
of matched 2D correspondences. As a result, the number of selected 3D points
is 852, 515, and 1,071 for Trevi Fountain, Notre Dame, and Half Dome. Totally
there are 15,267, 8,164, and 17,050 patches selected from the three datasets. The
average number of patches of a selected 3D point for Trevi Fountain, Notre Dame,
and Half Dome is 18, 16, and 16, respectively, and the histograms regarding the
number of patches of selected 3D points are shown in Fig. 2. Some of the se-
lected 3D points may have more than 30 corresponding patches. We separate the
patches of each dataset into a training set and a test set, with a ratio of 4 : 1.
The size of a patch is 64× 64 pixels. We extract the SIFT descriptor from each
patch for subspace learning.

(a) (b) (c)

Fig. 2. The histogram of the number of patches corresponding to the selected 3D points
(≥ 12 patches) for (a) Trevi Fountain, (b) Notre Dame, and (c) Half Dome datasets. Some
of the selected 3D points may have more than 30 corresponding patches.

Precision-recall We apply the proposed learning method to each of the three
training sets and build the feature subspaces for the corresponding 3D points.
The maximum number s of local means is 10, as described in Section 2. For the
test data, the correspondences to the 3D points are decided by finding the clos-
est subspaces. We can verify the ground-truth correspondences to evaluate the
quality of matching results. If we set a threshold for the distance between a test
feature and its closest subspace, we may remove some incorrect correspondences.
By modulating the threshold value, we can derive a precision-recall curve. Pre-
cision is the number of ‘true positives’ divided by the sum of ‘true positives’
and ‘false positives’; recall is the number of ‘true positives’ divided by the sum
of ‘true positives’ and ’false negatives’. If we set a larger threshold value, then
the recall rate will be higher but the precision might decrease. The precision-
recall curves for the three test sets are shown in Fig. 3. The subspace learning
method is compared with two strategies: The first one is to average all the SIFT
descriptors that belong to the same 3D point, and use the mean descriptor as
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the feature representation of the 3D point. To find the correspondence for a test
descriptor, we measure the similarity between the test descriptor and each of the
mean descriptors using the Euclidean distance. The second strategy is to keep
all SIFT descriptors of the training data and use the nearest-neighbor criterion
to find 2D correspondence for the test descriptor, where the Euclidean distance
is also used as the measurement for SIFT descriptors. As shown in Fig. 3, our
subspace method can achieve comparable performances as the nearest-neighbor
strategy. The averaging strategy does not perform very well because the mean
descriptors might not be distinctive enough for large datasets.

(a) (b) (c)

Fig. 3. The precision-recall curves for (a) Trevi Fountain, (b) Notre Dame, and (c) Half
Dome datasets. Our subspace representations can achieve comparable performances
as the nearest-neighbor strategy. The averaging strategy does not perform very well,
probably because the mean descriptors are not distinctive enough for large datasets.

Timing Learning the subspace representations using our method is very fast.
For example, the subspaces for the 13,640 training descriptors of the Half Dome
data can be learned in less than 2 seconds, in MATLAB on a PC with quad-core
2.8GHz CPU and 12GB memory. The training time for the averaging strategy
is close to our method. The nearest-neighbor strategy does not require training,
and only some overhead processing time is involved. Regarding the matching
between the test data and the training data for finding correspondences, our
method and the averaging strategy are faster. The nearest-neighbor strategy, as
expected, is very slow. The timing results for matching are shown in Table 1.

Table 1. The timing results of feature matching using different strategies.

Timing for matching
# of test # of training Nearest Averaging Subspace
patches patches neighbor

Trevi Fountain 3,053 12,214 729s 46s 51s

Notre Dame 1,632 6,532 252s 17s 18s

Half Dome 3,410 13,640 989s 65s 71s
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Further discussions The evaluation shows that the learned appearance sub-
spaces provide effective representations for finding correspondences to 3D points.
By using the learned subspaces, we can have similar precision-recall rates with-
out keeping all the descriptors of 2D features, and therefore greatly reduce the
time required for matching. Since we set the maximum number s of local means
to be 10, the dimension of a learned subspace is at most 10. We find that the
average dimension of the learned subspaces is 9, 8, and 8 for Trevi Fountain,
Notre Dame, and Half Dome. The distributions of the subspace dimensions are
shown in Fig. 4. We may choose a larger value of s to allow higher dimensional
subspaces to be built, particularly when the dataset is very large, but the train-
ing and matching time might also increase. The trade-off of descriptiveness and
efficiency would be dependent on the data. For a dataset with a scale about
1,000 3D points and 15,000 2D features, our current setting seems suitable.

(a) (b) (c)

Fig. 4. The histogram of subspace dimensions for (a) Trevi Fountain, (b) Notre Dame,
and (c) Half Dome datasets.

4.2 Evaluation of Appearance-Based Bundle Adjustment Using
Ground-Truth Data

We use the datasets created by Moreels and Perona [11] to evaluate the perfor-
mance of the appearance-based bundle adjustment. The images in the datasets
are captured by a calibrated stereo system with a turntable. The advantage of
using these datasets is that we are able to verify the correctness of correspon-
dences based on the ground-truth geometric constraints. We choose three of
the datasets, BallSander, Standing, and StorageBin, as shown in Figs. 5a– 5c. The
‘ground-truth’ camera poses are shown in Fig. 5d. The world center is set at
(0, 0, 0), and the average distance between each camera and the world center is
1.0. The proposed appearance-based bundle adjustment is compared with the
sparse bundle adjustment in respect of several evaluation metrics which we will
describe later in this section. For fair comparison, the numbers of initial 2D
features extracted by SIFT are the same for both methods.

Evaluation metrics We focus on the comparisons between the point-based
sparse bundle adjustment [9] and our online-learned appearance-based bundle
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(a) (b) (c) (d)

Fig. 5. Three of the datasets created by Moreels and Perona [11]: (a) the BallSander
dataset, (b) the Standing dataset, and (c) the StorageBin dataset. (d) The camera poses
for those datasets are derived from the calibrated stereo system with a turntable. We
set the world center at (0, 0, 0), and the average distance between each camera and the
world center is 1.0. The evaluations of the 3D errors are based on the scale after this
normalization.

adjustment. The pipeline of incremental SfM is not taken into consideration for
the evaluation. Several metrics are used to evaluate the performances: i) the
visibility rate, ii) the outlier rate, iii) the false 3D-point rate, iv) the camera
motion estimation error (the average rotation and translation errors), and v)
the average 3D reconstruction error.

The visibility rate is computed by (# of observations)/(# of views × # of 3D
points). By ‘outlier’ we mean that a 2D feature within a track does not satisfy
the ground-truth geometry constraint. The outlier rate is defined by (# of out-
liers)/(# of observations). Furthermore, we can use the ground-truth geometry
constraints to verify the correctness of a reconstructed 3D point. We compute
the false 3D-point rate by (# of false 3D points)/(# of all reconstructed 3D
points).

Incorrect matching results would induce outliers into the minimization of the
reprojection error. Outliers might bias the solution due to overemphasizing the
errors. Equipping the point-based bundle adjustment with an outlier-removal
mechanism might increase the robustness, but would also make bundle adjust-
ment prone to be trapped in trivial local minima. Ideally, the reprojection error
should be minimized under the assumption that all 3D points can be observed in
all views. A higher visibility rate and a lower outlier rate are preferable in a sense
that they imply the ideal case of the original objective of bundle adjustment.

To further evaluate the quality of camera motion estimation and 3D re-
construction, we use the ground-truth camera poses and geometry constraints
derived from the datasets of Moreels and Perona. As mentioned earlier, we mea-
sure the errors of camera motion estimation and 3D reconstruction based on
a normalized scale: the average distance between each camera and the world
center (0, 0, 0) is 1.0. The quality of camera motion estimation is evaluated by
the translation error and the rotation error of camera pose. We align all of the
estimated camera poses to the normalized ground-truth coordinates shown in
Fig. 5d. The translation error is computed as the distance between the esti-
mated camera center and the ground-truth camera center. The rotation error
is measured by the geometric mean of the Euler angles of RestR

T
gt, where Rest

is an estimated rotation matrix and Rgt is the ground-truth rotation matrix.
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To compute the 3D reconstruction error, we exclude the false 3D points from
the reconstructed 3D points. We then aligned the reconstructed 3D structure
with the ground-truth structure by applying absolute pose estimation [16]. The
average 3D reconstruction error is measured by the average distance from each
aligned 3D point to its corresponding ground-truth 3D point.

Results We summarize all of the evaluation results in Tables 2, 3, & 4. The
results show that the appearance-based bundle adjustment achieves better per-
formance than the point-based sparse bundle adjustment on all of the evaluation
metrics. The average track length and the visibility rate of 2D features both sig-
nificantly increase. The improved outlier rate means that the appearance-based
bundle adjustment is capable of removing more incorrect correspondences. The
appearance-based bundle adjustment can also achieve a very low false 3D-point
rate, which means that its reconstruction of 3D points is quite reliable. Most
important, the appearance-based bundle adjustment indeed improves the accu-
racy and quality of camera motion estimation and 3D structure reconstruction,
as explicitly shown in the evaluation results.

Table 2. Evaluations with the BallSander dataset. We compare the proposed
appearance-based bundle adjustment with the sparse bundle adjustment (SBA).

SBA Appearance-based

# of 3D points 943 494

average track length 4.11 9.87

visibility rate (%) 10.81 25.97

outlier rate (%) 1.29 0.72

false 3D-point rate (%) 1.70 0.20

average camera rotation error 2.061 1.793

average camera translation error 0.0073 0.0070

average 3D reconstruction error 0.0074 0.0059

Further discussions After learning the subspaces and applying the learned
representations to the appearance-based bundle adjustment, we can find more 2D
features that can be modeled by the learned subspaces. From the results shown
in Figs. 6, 7, & 8, we observe that the online learned appearance representations
can help to increase the track length as well as the number of registered 2D
features in each view. These newly-included 2D correspondences will contribute
to solving the 3D points in later iterations. Overall, the integrated mechanism of
subspace learning and appearance-based bundle adjustment provides a plausible
way of computing structure and motion.

Although the reliability of the 3D points is enhanced, a limitation of our
approach is that it would merge short tracks into longer ones, and as a result,
the number of reconstructed 3D points might greatly decrease. The number of 3D
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Table 3. Evaluations with the Standing dataset. We compare the proposed appearance-
based bundle adjustment with the sparse bundle adjustment (SBA).

SBA Appearance-based

# of 3D points 1,226 621

average track length 4.86 12.50

visibility rate (%) 12.15 31.25

outlier rate (%) 1.16 0.98

false 3D-point rate (%) 1.47 0.00

average camera rotation error 1.603 1.402

average camera translation error 0.0065 0.0059

average 3D reconstruction error 0.0056 0.0055

Table 4. Evaluations with the StorageBin dataset. We compare the proposed
appearance-based bundle adjustment with the sparse bundle adjustment (SBA).

SBA Appearance-based

# of 3D points 1,741 697

average track length 3.82 10.85

visibility rate (%) 8.88 25.22

outlier rate (%) 5.67 1.48

false 3D-point rate (%) 6.03 0.01

average camera rotation error 1.923 1.646

average camera translation error 0.0100 0.0076

average 3D reconstruction error 0.0108 0.0074

points reconstructed by our approach is about half of the number of 3D points
obtained by the point-based sparse bundle adjustment, as can be observed in
Tables 2, 3, & 4. This is a trade-off between ensuring a more consistent structure
and reconstructing as more 3D points as possible.

About the time complexity, the additional computational cost of the appear-
ance based bundle adjustment is due to the computation of the appearance-
weight matrix, of which the size is the number of views times the number of
3D points. We also need to compute the appearance weights and multiply the
appearance-weight matrix by the Jacobian matrix, but the computation of Jaco-
bian matrix is efficient owing to the the longer tracks and the reduced number of
redundant points. In practice the computation time of solving the appearance-
based bundle adjustment is close to solving the sparse bundle adjustment if the
optimization involves similar numbers of views and 3D points.

5 Conclusion

We have presented a new bundle adjustment method based on an online-learned
appearance model associated with each 3D point. The proposed appearance-
based bundle adjustment is able to include more 2D observations into the op-
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(a) (b)

Fig. 6. The BallSander dataset. (a) The distribution of the track length. (b) The number
of registered 2D points in each view. Blue bars: before subspace learning. Red bars:
after subspace learning.

(a) (b)

Fig. 7. The Standing dataset. (a) The distribution of the track length. (b) The number
of registered 2D points in each view. Blue bars: before subspace learning. Red bars:
after subspace learning.

timization. As shown in our experiments, the lengths of most tracks in conven-
tional sparse bundle adjustment are usually quite small. The appearance-based
bundle adjustment is able to achieve a significant increase in the number of
long tracks and the number of correctly matched features. The visibility rates of
2D correspondences and the outlier rates are greatly improved by appearance-
based bundle adjustment. Through the detailed evaluations on the ground-truth
datasets, we show that our method can improve the accuracy of camera mo-
tion estimation and the quality of 3D reconstruction, in comparison with the
point-based sparse bundle adjustment.
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