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Abstract

A novel component-level dictionary learning framework
which exploits image group characteristics within sparse
coding is introduced in this work. Unlike previous meth-
ods, which select the dictionaries that best reconstruct the
data, we present an energy minimization formulation that
jointly optimizes the learning of both sparse dictionary and
component level importance within one unified framework
to give a discriminative representation for image groups.
The importance measures how well each feature compo-
nent represents the image group property with the dictio-
nary by using histogram information. Then, dictionaries
are updated iteratively to reduce the influence of unimpor-
tant components, thus refining the sparse representation for
each image group. In the end, by keeping the top K impor-
tant components, a compact representation is derived for
the sparse coding dictionary. Experimental results on sev-
eral public datasets are shown to demonstrate the superior
performance of the proposed algorithm compared to the-
state-of-the-art methods.

1. Introduction

Image classification is one of the most important topics
in computer vision. Recently, sparse coding technique at-
tracts more and more attention because of its effectiveness
in extracting global properties from signals. It recovers a
sparse linear representation of a query datum with respect
to a set of non-parametric basis set, known as dictionary
[3, 24]. In image classification problem, methods based on
sparse coding or its variants mainly collect a set of image
patches to learn the dictionaries [22, 26].

By representing an image with a histogram of local fea-
tures, Bag of Words (BoW) models [25] have shown excel-
lent performance, especially its robustness to spatial varia-
tions. Considering spatial information with BoW, Lazebnik
et al. [10] built a spatial pyramid and extended the BoW

Figure 1. Learning component-level sparse representation for im-
age groups. Histogram-based features, like BoF, color histogram
or HoG, are extracted to form joint features. Then a common
representation is obtained by learning the dictionary in a sparse
coding manner. Component-level importance is determined with
an optimization formulation according to image-group character-
istics. After the key components are determined, a compact repre-
sentation can be computed for classification.

model by partitioning the image into sub-regions and com-
puting histograms of local features. Yang et al. [29] further
extended Spatial Pyramid Matching (SPM) by using sparse
coding. They provided a generalized vector quantization for
sparse coding followed by multi-scale spatial max pooling.

Although these previous methods are robust to spatial
variations, the histogram-based representation is sensitive
to noise. In Figure 2, taking an image group of yellow
lily for example, all pictures share the same subjects or
main objects (yellow lily). Irrelevant objects (tree, wall)
or cluttered background (sky, ground) inside the image in-
troduce lots of noises and decrease the discrimination ca-
pability of histogram feature. In this work, a component
level sparse representation is proposed by using histogram
information. Here, each dimension (bin) of the histogram is



Figure 2. A sample image group of yellow lily.

referred to as a component. The importance of each com-
ponent is measured via image group property. The common
objects within the image group are considered to be impor-
tant, while irrelevant objects and background should corre-
spond to noisy information. The learning of dictionaries for
image groups in this work is aimed at best reconstruction si-
multaneously for data representation and discrimination for
one image group against all the others.

In the proposed framework, several histogram-based fea-
tures, like color histogram, BoW and HoG, are combined to
represent one image within an image group. Dictionaries
are learned to give a common representation for each image
group. The importance measure can be used to determine if
a feature component is useful information for common ob-
jects within the image group, noise from irrelevant objects,
or background for each image. Then, a compact representa-
tion of dictionaries can be obtained by identifying key com-
ponents and reducing the influence of the other irrelevant
components. Figure 1 depicts the mechanism of the pro-
posed component-level feature learning framework.

The main novelty of the proposed approach is to incor-
porate component-level importance into the sparse repre-
sentation, which is accomplished by optimizing the relative
reconstruction errors for the associated image groups. In
contrast to the previous methods [8, 9] in dictionary learn-
ing, weight assignment is usually decided in feature-type
level (i.e. all feature dimensions of the same type have the
same weight) and heuristically based on logarithm penalty
function of reconstruction error of different classes [15] to
increase the discrimination capability. In the proposed al-
gorithm, the importance measure is down to the compo-
nent level (i.e. each feature dimension has its own weight)
and determined according to individual image group prop-
erties. The importance measures are employed to obtain
the refined sparse feature representations that are learned
by enforcing image classification constraints, making the
proposed sparse representations more discriminative.

We demonstrate the benefits of the proposed framework
in the image classification task on several publicly available

datasets, including Caltech101 [6], Oxford17 [18] and Ox-
ford102 [19] datasets. Our experiments show that the pro-
posed algorithm provides significant accuracy improvement
over the state-of-the-art methods.

1.1. Related Works

Sparse coding, recently attracted a considerable amount
of attention from researchers in various domains, is very
effective in many signal processing applications. Given a
signal x in Rm, a sparse approximation over a dictionary D
inRm×k is to find a linear combination of a few atoms from
D that is close to the signal x, where the k columns selected
from D are referred to as atoms. Originally, predefined dic-
tionaries based on various types of wavelets have been used
for this task [16]. Lately, learning the dictionary instead of
using predefined bases has been shown to improve signal
reconstruction significantly [15].

Dictionary learning of sparse representation is aimed to
find the optimal dictionary that leads to the lowest recon-
struction error with a set of sparse coefficients. Traditional
approaches collect sets of overlapping training patches from
different classes. Dictionaries are learned for each class.
Each patch of the testing data is approximated by sets of
sparse coefficients and sets of different dictionaries which
give different residual errors. These are used as criteria
to decide image classes [22, 26]. With the same concept,
Wright et al. [28] exploited the sparse representation classi-
fication (SRC) method for robust face recognition. Mairal
et al. [15] assumed a dictionary Di associated to a class Ci
should reconstruct this class better than the other classes.
They introduced an additional term in the cost function for
discrimination and showed good results in texture segmen-
tation. Another variant is online dictionary learning [13].
This is due to the growing of very large training examples.
Dictionary learning with iterative batch procedures which
access the whole training set is not effective. Based on
stochastic approximation, the online optimization algorithm
for dictionary learning scales up to large datasets with mil-
lions of training samples.

Combining multiple discriminative features shows sig-
nificant improvement for object recognition and image clas-
sification. The problem considers joint model along with
multiple related data sets is often referred to as multi-task
learning. It aims to find out a very few common classes of
training samples across multiple tasks that are mostly useful
to represent query data. Multi-task Joint Covariate Selec-
tion (MTJCS) [20] which penalizes the sum of L2 norms of
coefficients associated with each covariate group can be re-
garded as a combination group Lasso [30] and multi-task
Lasso [32]. Another famous method is Multiple Kernel
Learning (MKL). MKL can be seen to linearly combine ker-
nel functions such that the classification performance can be
improved by the combined global function [12] [27]. Dif-



ferent from MKL, the proposed method learns class specific
dictionaries and weights for each dimension of the dictio-
naries. Although the kernel weights are sparse in MKL,
it doesnt include any sparse coding techniques. Recently,
Yuan and Yan [31] exploited such a joint sparse visual rep-
resentation method to reconstruct a test sample with mul-
tiple features from just a few training samples for image
classification.

In contrast to previous methods which decide a few use-
ful training samples for representation, the proposed frame-
work finds out important components for each classification
task. Back to the yellow lily example in Figure 2, the pre-
vious methods may choose a set of individual features that
are best for reconstruction, but the proposed method picks
important components from these features while reducing
the impact of the other unimportant components.

1.2. Organization

The rest of this paper is organized as follows. In Sec-
tion 2 we revisit the sparse coding formulation and dictio-
nary learning method. The histogram-based component-
level sparse representation is presented in Section 3 along
with the optimization formulation and reweighted update al-
gorithm. The experimental results are provided in Section
4. Finally, we conclude this paper in Section 5.

2. Sparse Coding and Dictionary Learning
Sparse coding is to represent a signal as a linear com-

bination of a few atoms of a dictionary. Dictionary learn-
ing methods [11, 3, 21] consider a training set of signals
X = [x1, . . . , xn] in Rm×n and optimize the cost function:

R(D) =
1

n

n∑
i=1

l(xi, D) (1)

where D in Rm×k is the dictionary with each column rep-
resenting a basis vector, and l is a loss function. The sparse
representation problem can be formulated as:

R(x,D) = min
α∈Rk

1

2
‖x−Dα‖22 + λ‖α‖1 (2)

where λ is a parameter that balances the tradeoff between
reconstruction error and sparsity. The L1 constraint in-
duces sparse solutions for the coefficient vectors α. Using
the LARS-Lasso algorithm [5], this convex problem can be
solved efficiently. In this problem, the number of training
samples n is usually larger than the relatively small sample
dimension m. L1 solution has also been shown to be more
stable than the L0 approach since very different non-zero
coefficients in α may be produced when small variation is
introduced to the input set in L0 formulation.

Instead of predefined dictionaries, the-state-of-the-art re-
sults have shown that dictionaries should be learned from

data. To prevent D from being arbitrarily large, the norms
of the atoms are restricted to be less than one [15], where a
convex set Ψ of matrices with this constraint is given by

Ψ , {D ∈ Rm×k | ∀j = 1, . . . , k, dTj dj ≤ 1} (3)

A joint optimization problem with respect to the dictio-
nary D and the coefficient vector α for the sparse decom-
position is given by

min
D∈Ψ,α∈Rk

1

n

n∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1) (4)

By using the sparse coding on a fixed D to solve α and
updating the dictionary D with a fixed α alternatively, the
optimization problem can be solved iteratively to find the
optimal solution.

Ramirez et al. [23] suggested modeling the data as a
union of low-dimensional subspaces. Then, the data points
associated with the subspaces can be spanned by a few
atoms of the same learned dictionary. Dictionaries associ-
ated with different classes are formulated to be as indepen-
dent as possible. Assume X(p), p = 1, . . . , C, be a collec-
tion of C classes of signals and D(p) be the corresponding
dictionaries, the optimization problem is rewritten as:

min
{D(p),A(p)}p=1...C

C∑
p=1

{‖X(p) −D(p)A(p)‖22 + λ

mi∑
j=1

‖α(p)
j ‖1}

+η
∑
p 6=q

‖(D(p))TD(q)‖22
(5)

where A(p) = [α
(p)
1 . . . α

(p)
mi ] ∈ Rk×mi , each column α(p)

j

is the sparse code corresponding to the signal j ∈ [1 . . .mi]
in class p. From our experimental results, we obtain dictio-
naries for one image group by selecting the entire training
set from the correct group.

3. Histogram-Based Component-Level Sparse
Representation

Histogram-based representations have been widely used
with the feature descriptors, e.g., HOG [4], BoW [25],
and GLOH [17]. It provides very compact representation
and captures global frequency of low-level features. In
this section, we present a framework that determines the
component-level importance of histogram information and
combines it with a sparse representation, which is referred
to as Histogram-Based Component-Level Sparse Represen-
tation (HCLSP) for the rest of this paper.

3.1. Component-Level Importance

Suppose we have a training set of image groups. Each
image group is defined as a class. For the training set, we



have C classes, for each class index p = 1, . . . , C. Denote
X(p) = [x

(p)
1 , . . . , x

(p)
n ] in Rm×n to be a set of training

samples from class p, with each individual sample x(p)
i in

Rm. The dictionaries trained from class p are represented
by D(p). Given the training data and the dictionaries, the
sparse coefficient vector α can be obtained by solving equa-
tion (2) using LARS-Lasso or other standard algorithms.
Denote the reconstruction error for the training set X(p) by
using the dictionaries D(p) as:

R(p)(X(p)) =

n∑
i=1

|x(p)
i −D

(p)α
(p)
i | (6)

where R(p)(X(p)) ∈ Rm. In contrast to the previous meth-
ods based on L2-norm minimization, here the reconstruc-
tion error is represented by the sum of absolute values of
the difference from the training data and its reconstruction.
Similarly, the reconstruction error for the training set X(p)

by using dictionary D(q) is represented by R(q)(X(p)).
For an image group of yellow lily, if we take color his-

togram as image feature, for example, and form our training
set, every histogram in this group should have a certain non-
trivial amount in the yellow-related components whereas
other components containing background or irrelevant ob-
jects may have large or small values in the histogram. The
basic idea of component-level importance is: the compo-
nents representing common objects or subjects show lower
reconstruction errors while cluttered background introduc-
ing large amount of reconstruction errors for the corre-
sponding components. This is used as an indication to the
importance measure of components.

Denote β(p) in Rm to be the importance for data of class
p. The objective function can be formulated as:

min
β(1)...β(C)

C∑
p=1

((β(p))TR(p)(X(p))− (β(ĉ))TR(ĉ)(X(p)))

subject to 0 ≤ β(p)
j < 1,

m∑
j=1

β
(p)
j = 1

where ĉ = arg min
{q,q 6=p}

R(q)(X(p))

(7)

Minimizing the objective function enforces the large recon-
struction error in component j to have a smaller impor-
tance value β(p)

j . Considering the importance measure with
reconstruction from one image class against all the other
classes over the entire training set, the second term in the
objective function is a penalty term for the minimal recon-
struction error computed from dictionaries of other classes.
The component importance vectors β(p) for all classes are
learned simultaneously in the above formulation. Thus,
this global importance measure gives more discriminative
power for the classification problem. The solution can be

obtained by solving the optimization via linear program-
ming.

Algorithm 1 : The Histogram-Based Component-Level
Sparse Representation with reweighted update algorithm.

1. Define: For class p at iteration t, define the reconstruc-
tion error Rp,t using dictionary Dp,t, importance βp,t

and the updated weight wp,t.

2. Input: Training set Xp = {xi}ni=1, xi ∈ Rm , col-
lected from image group p. Testing data y. Regular-
ization parameter λ. A threshold ρ. Error bound pa-
rameter ε and iteration bound T .

3. Training:

4. Initialization: Set t ← 1. Choose the whole training
set Xp as dictionary Dp,1 for image group p.
wp,0 ∈ Rm,wp,0i = 1, Rp,0i (Xp,0) = 0, βp,0j = 1,
for j = 1 . . .m.

5. repeat {Main loop}:

6. Dp,t ← Dp,1. ∗ wp,t−1,

7. Solve αp,t by Xp and Dp,t,

8. Calculate Rp,t(Xp), Rq,t(Xp), ∀p, q ∈
{1 . . . C}, q 6= p,

9. Solve βp,t by equation (7),

10. ∆R =
∑C
p=1((βp,t)TRp,t(Xp) −

(βp,t−1)TRp,t−1(Xp))

11. δp,t ← wp,t−1. ∗ βp,t

12. wp,tj =

{
βp,tj if βp,tj < ρ

1 otherwise

13. wp,t ← wp,t−1. ∗ wp,t,

14. t← t+ 1,

15. until ∆R < ε or t < T

3.2. Reweighted Update

In this section, we present the algorithm that incorporates
the learned component importance into a sparse representa-
tion. According to the previous section, the importance for
all components can be derived for each class. It indicates
how representative these components are for a specific im-
age group. We prefer meaningful components rather than
irrelevant ones for better reconstruction by using the dictio-
nary from the right image group instead of those from other
image groups. Choosing incorrect components leads to ex-



tremely large reconstruction error. Taking a worst case for
example, it is like using red components from a red rose
image group to reconstruct a yellow lily image.

This leads to a component weight. The component
weight w(p)

j ∈ Rm with j = 1, . . . ,m can be defined as:

w
(p)
j =

{
β

(p)
j if β

(p)
j < ρ

1 otherwise
(8)

where ρ is a threshold. Note that β(p)
j is a normalized value

between 0 and 1. The more important the component is, the
bigger value it is. We assign the weight of important com-
ponents to 1 while reweighting the unimportant components
to small values. This is used to reweight each dimension in
the dictionary. The benefit of reweighting is that only the
important components in the dictionary are used for data re-
construction. The reconstruction errors introduced by unim-
portant components are reduced if it is reconstructed from
the dictionary of the correct class. This makes the dictio-
naries more discriminative for their own classes.

Intuitively, we assume most components are useful for
reconstruction. Only a few unimportant components are se-
lected based on their weight values. Thus, the proposed
algorithm is carried out by an iterative reweighted update
process. In each iteration, dictionary D(p) is adjusted by
weight w(p). Then, new dictionaries are used to solve α(p).
The importance vector β(p) is obtained from the new sparse
coding coefficients and used to determine the weight vec-
tor w(p). The purpose of weight vector w(p) is to reweight
components in the dictionary. The value is accumulated and
only a small portion of components will be chosen as unim-
portant ones in each iteration. The importance vector β(p)

is used to decide the image class during the testing. This
gives the decision criterion as follows:

c∗ = arg min
p

(δ(p),t∗)T |y −D(p)α(p)| (9)

where t∗ is optimal iteration number, δ serves as the com-
bination of dictionary adjusted weight vector w(p),t∗−1 for
image class p and the importance measure β(p),t∗ for the
decision. The details are given in Algorithm 1.

3.3. Compact Representation

Since the importance vector β(p) is used for the decision
of the image class, we can prune the unimportant compo-
nents and give a compact representation for the dictionaries:

β
(p)
j =

{
0 if β

(p)
j < ϕ

β
(p)
j otherwise

(10)

where ϕ is a threshold to prune a certain ratio of compo-
nents. In our implementation, the importance vector β(p) is
used to prune the dimension of dictionaryD(p) after a given

Table 1. Classification accuracy (%) on Oxford 17 Category
Flower Dataset using different features and their combination.

Accuracy Color BoW HoG ALL

NN 36.47 44.63 35.96 39.56
SRC[28] 36.91 49.71 41.18 58.82
MCLP[7] 42.62 50.38 42.33 66.74
KMTJSRC[31] 44.80 51.72 44.51 69.95
HCLSP 45.15 52.34 43.38 63.15
HCLSP ITR 50.15 55.68 46.76 67.06

Table 2. Classification accuracy (%) on Oxford 102 Category
Flower Dataset using different features and their combination.

Accuracy Color BoW HoG ALL

NN 33.52 22.76 19.39 36.27
SRC[28] 24.43 18.05 19.58 37.85
MCLP[7] 36.74 29.49 30.96 58.68
KMTJSRC[31] 36.67 30.16 29.14 57.00
HCLSP 37.37 29.73 31.58 51.77
HCLSP ITR 44.53 32.35 39.01 60.14

Table 3. Classification accuracy (%) on Caltech101 Dataset using
different features and their combination.

Accuracy Color BoW HoG ALL

NN 29.65 51.26 44.85 38.83
SRC[28] 14.06 53.39 47.61 52.64
MCLP[7] 33.68 57.15 55.34 65.77
KMTJSRC[31] 18.14 48.93 46.25 53.21
HCLSP 35.12 56.03 58.12 60.49
HCLSP ITR 35.43 58.24 59.94 68.41

number of iterations. The pruned dictionary and the weight
vector for each class are saved. In the testing phase, the im-
portant components are selected from the test data. Then,
the reconstruction is performed by the compact dictionary
and pruned data to decide the final classification results.

4. Experimental Results

We apply the proposed Histogram-based Component-
Level Sparse Representation (HCLSP) to the task of image
classification in our experiments. The extension of HCLSP
with iterative reweighting is referred to as HCLSP ITR in
this section. Our experiments were performed on the fol-
lowing datasets: Oxford 17 category, Oxford 102 category
and Caltech 101 datasets.



4.1. Experimental Settings

Three types of features are employed in the proposed
framework: color histogram, BoW and HoG. The combina-
tion of these three features is also tested in the experiment.
The color histogram with R, G, B channels is quantized to
1331 bins. For the BoW features, we use the Matlab code
provided by [2]. The BoW is constructed via hierarchical
K-means which provides 1555-dimensional BoW features.
We also extract HoG features [1] from 3 levels of 8 bins
and 360 degrees, which give a 680-dimensional feature vec-
tor. Then, we concatenate the above features to a combina-
tion of 3566-dimensional feature vector. In our implemen-
tation, the regularization parameter f of sparse coding is set
to 0.15. The threshold l is set to adjust 10% unimportant
components in each iteration. Iteration bound T is empiri-
cally set to 10 in our experiments. The threshold ϕ in eq.
(10) for compact representation is set to cut 20% least im-
portant components. We used the tool developed by Mairal
[14] to solve the sparse coding coefficients. The accuracies
shown for HCLSP ITR also include the contribution from
the compact representation described in Section 3.3. All
experiments were repeated three times to obtain the average
accuracies. We compare the performance of the proposed
HCLSP and HCLSP ITR with the following methods:

• Nearest neighbor search (NN): In the baseline method,
the image is classified to the class label of its nearest
neighbor in the feature space.

• Sparse representation classification (SRC) [28]. Each
feature vector is approximated by using the C sets
of different dictionaries and the sparse coefficients α.
The class label is decided from the class with minimal
residue.

• Visual classification with multi-task joint sparse rep-
resentation (KMTJSRC) [31]: Each feature is repre-
sented as a linear combination of the corresponding
training features. The classification decision is made
from the overall reconstruction error of an individual
class.

• Multiclass LPboost (MCLP) [7]: It is the representa-
tive of the multiple kernel learning methods from liter-
ature [7].

4.2. Oxford 17 Category Flower Dataset

This dataset contains 17 categories of flower images. 80
images in each class make the total 1360 images. 40 im-
ages are randomly selected as training samples and the rest
is used as the test set. Table 1 lists the accuracies of the
proposed method and the above four methods for compar-
ison. For experiments with single feature types, the pro-
posed HCLSP is very competitive compared to KMTJSRC

Figure 3. (a) A sample image from yellow lily image group. (b)
The original histogram of the image. (c) The histogram after the
first iteration. (d) The histogram adjusted by weights after the best
number of iterations.

and MCLP in terms of accuracy. Basically, both KMTJSRC
and the proposed HCLSP are extensions of SRC and outper-
form the previous method. However, KMTJSRC shows sig-
nificant accuracy improvement with feature combination.
On the other hand, NN is comparable to SRC and feature
combination provides little help to NN. Note that the accu-
racy of KMTJSRC is much higher (about 88.1% reported
in [31]) than the accuracy reported here mainly because it
combines 7 different features in their implementation. For a
fair comparison among different methods, we use the same
three features for all the methods in our experiments.

4.3. Oxford 102 Category Flower Dataset

This dataset contains 102 categories of flower images.
The total number of images is 8189. The image number in
each category is ranged from 40 to 250. 20 images are ran-
domly selected as the training samples and the rest forms
the test set. The accuracies of the proposed algorithms
and other methods on the 102 category dataset are listed
in Table 2. Comparing the accuracies with single feature
types, we can see the proposed HCLSP is slightly better
than KMTJSRC and MCLP with color and HoG features.
After iteratively reweighting, our HCLSP ITR shows im-
provement over HCLSP and outperforms all the other meth-
ods for all four feature options. Interestingly, some accura-
cies of SRC are a little worse than those of NN. In addition,
when the number of category grows larger, color histogram
shows better results than BoW. In overall, feature combina-
tion shows great improvement over single-feature results.

4.4. Caltech-101 Dataset

Caltech101 is a very popular, yet challenging, test set for
object recognition. It contains 101 categories of objects.
For this dataset, we randomly select 15 training samples
and use the rest as the test set. Table 3 lists the classifi-



cation accuracies of different algorithms with different fea-
ture options. We can observe that HCLSP is very compet-
itive compared to MCLP. Both HCLSP and MCLP outper-
form KMTJSRC in this dataset. HCLSP ITR show supe-
rior performance over the other methods, including MCLP,
KMTJSRC, SRC and NN. It is evident that HCLSP ITR
improves HCLSP with all different feature options listed in
the experiment. The performance of SRC is comparable to
that of KMTJSRC for the experiments on this dataset.

4.5. Results of Iterative Reweighting

In this section, we show the effectiveness of the proposed
iterative reweighting approach. In each iteration, the pro-
posed algorithm uses the importance as the weight to adjust
unimportant components from the dictionary. This leads to
the reduction of the reconstruction error. During training,
the vector δ(p),t∗ from the best iteration t∗ is saved for class
p. Then, the decision can be made according to δ(p),t∗ and
D(p). We follow the experimental settings and randomly
select the training and test data. The mean accuracy is ob-
tained by repeating three experiments. Note that, in the pro-
posed algorithm, the accuracy of HCLSP represents the re-
sults of the first iteration. The accuracy of HCLSP ITR is
obtained from the best iteration. In detail, the best numbers
of iterations for color, BoW, HoG and combination of all
features are 2, 5, 4 and 3, respectively. From Table 1 to Ta-
ble 3, the accuracy of HCLSP is improved significantly by
HCLSP ITR mainly due to the proposed reweighted update
algorithm.

To demonstrate how the dictionary reweights during the
iterations, we apply the component weights obtained from
HCLSP and HCLSP ITR to a histogram of a sample image.
For better visualization, the largest component of the his-
togram is scaled to 1 to better show the difference among
all components. Figure 3(a) depicts a sample image se-
lected from the first class of Oxford 17 category dataset. It
has a main object of big yellow lily along with the sky and
other background. Figure 3(b) depicts the histogram which
mainly contains two groups of color, yellow and blue. In
Figure 3(c) and 3(d), the components of various blue colors
are suppressed by the proposed algorithm while important
components from yellow color remain in the high peak. It is
interesting to observe that only a few important components
are left after the iterations that make the proposed method
like a two-dimensional sparse coding. In the first dimension
the training samples are selected for best reconstruction and
in the second dimension only a few important components
are selected to reduce the reconstruction errors from unim-
portant components.

4.6. Dimension Reduction

In the proposed algorithm, dimension reduction is per-
formed as the last step in the end of the proposed reweighted

Table 4. The dimension reduction results from each iteration us-
ing a cutting threshold ϕ to cut 20% components from the least
important components.

Iteration 0 1 3 5

Color 1331 1065 682 437
BoW 1555 1244 797 510
HoG 680 544 349 223
ALL 3566 2853 1826 1169

update algorithm to remove the least important components.
In other words, the more iterations during the training, the
more dimension reduction obtained for compact represen-
tation. In our implementation, we select an appropriate
threshold ϕ to cut 20% unimportant components. Table 4
shows the dimension of dictionary in different numbers of
iterations. As we mentioned in Section 4.5, the best number
of iterations usually occurs within 5 iterations and in aver-
age around 2 or 3 iterations. We list the dimension reduction
results for iteration 0, 1, 3, 5. Iteration 0 means the initial
dimension of the original feature. It shows that the testing is
performed on almost half of the components from the orig-
inal feature. Thus, the proposed method is more efficient in
term of execution time than the previous methods.

5. Conclusion

We presented a novel framework of learning component-
level sparse representation for image groups to achieve op-
timal classification. This new representation is character-
ized by learning feature properties for each individual im-
age group. The common objects or cluttered background
are modeled by importance measure in a joint energy min-
imization with both sparse dictionary and component-level
importance measure. This gives a more discriminative rep-
resentation for image groups. In addition, the proposed
algorithm was further improved with the proposed itera-
tive reweighting scheme. In the end, by keeping important
components, a compact representation is computed for the
sparse coding dictionary.

Experimental comparisons among the proposed method
and some representative methods were performed on sev-
eral well-known datasets. The results show that the pro-
posed method in general can provide superior or compara-
ble performance in image classification compared to the-
state-of-the-art methods. In addition, the performance of
our iterative component reweighting approach showed sig-
nificant improvement through our experiments. In the fu-
ture, we would like to investigate a more robust measure for
image group characteristics and incorporates the measure
into a two-dimensional sparse coding representation.
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