Shih-Fu Chang
Columbia University, New York
sfchang@ee.columbia.edu

Introduction

- A novel dictionary learning framework is presented with an energy minimization formulation that jointly optimizes:
$>$ both the sparse dictionary and
$>$ the component-level importance within one framework. - An iterative reweighted update process to give a more discriminative representation for image groups.

Motivation

- An image group contains main object/subject. It also includes irrelevant object \& cluttered background.
$>$ distinguish distinctive bins from those noisy ones

$$
\begin{aligned}
& \text { E"L }
\end{aligned}
$$

Contribution

-The main novelty of the proposed approach is $>$ to incorporate component-level importance into the sparse representation by optimizing the reconstruction errors for the image groups.

- In constrast to the previous methods

- Feature-type level weight assignment (feature dimensions of the same type have the same weight)
- Component-level importance measure. In proposed method, each feature dimension has its own weight.

Method Overview

- Component Importance Measure :
> The objective function enforces the large reconstruction error in one component to have a smaller importance value. $>$ The penalty term is for the minimal reconstruction error computed from dictionaries of other classes.

$$
\begin{gathered}
R^{(p)}\left(X^{(p)}\right)=\sum_{i=1}^{n_{p}}\left|x_{i}^{(p)}-D^{(p)} \alpha_{i}^{(p)}\right|, \quad R^{(p)}\left(X^{(p)}\right) \in R^{m}, \\
\min _{\beta^{(l)}, \beta^{(2)}, \ldots, \beta^{(c)}} \sum_{p=l}^{c}\left(\left(\beta^{(p)}\right)^{T} R^{(p)}\left(X^{(p)}\right)-\left(\beta^{(\hat{c})}\right)^{T} R^{(\hat{e})}\left(X^{(p)}\right)\right) \\
\text { subject to } \quad 0 \leq \beta_{j}^{(p)}<1, \quad \sum_{j=l}^{m} \beta_{j}^{(p)}=1, \quad \hat{c}=\arg \min _{|q, q \neq p|} R^{(q)}\left(X^{(p)}\right)
\end{gathered}
$$

- Common Representation :
$>$ Sparse representation by dictionary learning.
$>$ Employed orthogonal constraint.

$$
\hat{f}_{t}(D) \stackrel{\Delta}{=} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{2}\left\|x_{i}-D \alpha_{i}\right\|_{2}^{2}+\lambda\left\|\alpha_{i}\right\|_{l}
$$

$$
\Theta=\left\{D=\left[d_{1}, d_{2}, \ldots, d_{k}\right] \in R^{m \times k} \mid \quad \forall j=1, \ldots, k, \quad d_{j}^{T} d_{j} \leq 1\right\}
$$

Component Importance Measure

Iterative Reweight Update

1. Initialization: Set $t \leftarrow 1$. Choose the training set X^{p} as dictionary $D^{p, 1}$ for image group p. $w^{p, 0} \in R^{m}, w_{i}^{p, 0}=1, R_{i}^{p, 0}\left(X^{p, 0}\right)=0, \beta_{j}^{p, 0}=1$.
2. repeat $\{$ Main loop $\}$
$D^{p, t} \leftarrow D^{p, 1} \cdot * w^{p, t-1}, \quad$ Dictionary update
. Solve $\alpha^{p, t}$ by X^{p} and $D^{p, t}, \forall p, q \in\{1 \ldots C\}, q \neq p$,
3. Calculate $R^{p, t}\left(X^{p}\right), R^{q, t}\left(X^{p}\right)$, Importance measure
4. Solve $\beta^{p, t}$, Termination condition
5. $\Delta R=\sum_{p=1}^{C}\left(\left(\beta^{p, t}\right)^{T} R^{p, t}\left(X^{P}\right)-\left(\beta^{p, t-1}\right)^{T} R^{p, t-1}\left(X^{P}\right)\right)$
6. $\delta^{p, t} \leftarrow w^{p, t-1} \cdot * \beta^{p, t-1}, \quad$ Decision criterion
7. $w_{j}^{p, t}=\left\{\begin{array}{ll}\beta_{j}^{p, t} & \text { if } \beta_{j}^{p, t}<\rho \\ 1 & \text { otherwise }\end{array} \quad\right.$ Calculate new weight
8. $w^{p, t} \leftarrow w^{p, t-1} \cdot * w^{p, t}, \quad$ Weight update
9. $t \leftarrow t+1$,
10. until $\Delta R<\varepsilon$ or $t<T$

Experimental Results

- Classification accuracy (\%) on (a) Oxford 17 Category Flower Dataset (b) Oxford 102 Category Flower Dataset (c) Caltech 101

