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Abstract

In this paper, we present a new algorithm to reconstruct 3D
surfaces from an unorganized point cloud based on gen-
eralizing the MPU implicit algorithm through introducing
a powerful orientation inference scheme via Belief Propa-
gation. Instead of using orientation information like sur-
face normals, local data distribution analysis is performed
to identify the local surface property so as to guide the se-
lection of local fitting models. We formulate the determina-
tion of the globally consistent orientation as a graph opti-
mization problem. Local belief networks are constructed by
treating the local shape functions as their nodes. The con-
sistency of adjacent nodes linked by an edge is checked by
evaluating the functions and an energy is thus defined. By
minimizing the total energy over the graph, we can obtain
an optimal assignment of labels indicating the orientation
of each local shape function. The local inference result is
propagated over the model in a front-propagation fashion
to obtain the global solution. We demonstrate the perfor-
mance of the proposed algorithm by showing experimental
results on some real-world 3D data sets.

1. Introduction

In the last few decades, shape modeling or surface recon-
struction has been an active research topic in many fields,
such as computer graphics, scientific visualization, CAD,
and medical imaging. Recent trend tends to design surface
reconstruction algorithms suitable for several different pur-
poses, such as 1) reconstruction from large data sets, 2) ro-
bustness to noisy data, 3) preserving sharp features, 4) hole
filling or repairing of incomplete data. Among those de-
veloped algorithms, many of them exploit domain knowl-
edge or make specific assumption on the input data. For
example, algorithms for reconstructing surfaces from a set
of range data usually take advantages of the adjacency rela-
tionship between each range image [25] to merge the range
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Figure 1. Reconstruction of fine-quality surfaces
from unorganized point clouds by using the MPU
implicits algorithm. A novel algorithm based on
Belief Propagation is proposed to determine the
global consistent orientation for the local implicit
patches.

data. Besides, the fact that each data point is visible from
the sensor simplifies the task to orientate the surface [6].
This is actually a non-trivial task when dealing with unor-
ganized point data set. Exploiting the information accom-
panying the input data can help devise algorithms with su-
perior performance in terms of, for example, time and space
efficiency. However, these approaches might be difficult to
adapt to another application domain or even if the input data
are slightly different from their assumption.

Another aspect of designing surface reconstruction algo-
rithm is to make as least assumption as possible, such as
the work by Hoppe et al [11]. The main challenge for the
problem is thus to infer the necessary information during
the reconstruction process. One essential part of their algo-
rithm is to estimate the surface normal for each data point



and then use them to define the signed distance function of
the unknown surface. This makes the algorithm potentially
vulnerable to noisy data since reliable estimation of orienta-
tion information from the data might not be possible. On the
other hand, the estimated normal vectors should be consis-
tently aligned to correctly define the overall signed distance
function. This is achieved by propagating normal orienta-
tion along a minimal spanning tree (MST) constructed over
the entire data set. Their method works well under the as-
sumption that the data points are sufficiently close to each
other and the directions of normal vectors vary smoothly
along the surface. However, this assumption may be too
rigorous because the algorithm might fail when there are
abrupt changes in normal directions (e.g. around sharp fea-
tures or non-uniformly sampled data) or the normal direc-
tion information is not reliable (e.g. noisy data). Thus, there
is strong need for a robust orientation determination scheme
which can be used with a wide variety of surface reconstruc-
tion algorithms.

In this paper, we introduce a novel approach to general-
ize the Multi-level Partition-of-Unity (MPU) implicit algo-
rithm proposed by Ohtake et al [15] to deal with a broader
range of input data. The MPU implicit algorithm is an adap-
tive octree approximation method which reconstructs im-
plicit surfaces by smoothly blending a set of locally fitted
shape functions. By using surface normals, it provides a
scheme to adaptively choose local fitting models and pre-
serve sharp features by identifying the distribution of nor-
mal vectors. In addition, the surface normals also provide
an aid to orientate the local shape functions. We do not
assume that the orientation information is available in the
input data. Instead, we propose to determine the globally
consistent orientation by propagating messages over local
belief networks with the local shape functions treated as
their nodes. We also demonstrate how we can benefit from
the covariance analysis on point sampled surface to guide
the selection of local fitting models.

We have also noticed some previous works proposed to
resolve similar orientation determination problem, such as
the active contour method proposed by Xie et al. [30]. It is
not, however, a trivial task for their method to achieve adap-
tive approximation because the feature size of the model
should be determined first. Our approach has no such lim-
itations and is potentially more efficient since we propa-
gate local orientation inference results to obtain the globally
optimal solution and no global structure like the “mono-
oriented region” used in their method needs to be deter-
mined in advance.

2. Related Works

Generally speaking, in spite of the diversity of the under-
lying mathematical forms, implicit surfaces typically aim to

find a continuous embedding function f(x) : Rd → R, x ∈
Rd, whose zero level-set describes the unknown surface. In
other words, the locus of positions in Rd where the function
f takes the value of zero compose the surface being mod-
eled. The implicit function f partitions the space into two
parts: inside and outside of the surface, where it is positively
and negatively valued, respectively. In a sense, implicit sur-
face modeling techniques try to derive a signed distance
field subject to the data points sampled from the unknown
surface. Compared to explicit surface models, implicit sur-
face modeling possesses the advantages of being robust to
noises and non-uniform sampling density. In addition, it is
easy to convert implicit models into other representations
and perform CSG operations.

The pioneering works on implicit surfaces include the
blobby surface [2] which used the sum of implicit primi-
tives such as Gaussian blobs. Taubin [23] developed an ap-
proximation distance measure for implicit algebraic curve
and surface fitting. Hoppe et al. [11] introduced the con-
cept of modeling surface as a signed distance field which is
defined as the distance to locally fitted tangent planes. Cur-
less and Levoy [6] proposed an efficient algorithm to inte-
grate a set of range scans to build the signed distance func-
tion. Alexa et al. propose to use the moving least-squares
(MLS) operator to approximate point sampled surfaces [1].
Another important class of implicit modeling techniques is
based on the variational method and radial basis functions
(RBFs) [27, 26, 7, 8]. In a nutshell, the variational method
imposes an additional smoothness constraint that minimizes
the aggregate curvature of the function, thus leading to the
smoothest function among all possible solution functions
satisfying the interpolation conditions.

Conceptually, an implicit surface is modeled by a sin-
gle implicit function. However, it is a non-trivial task to
find an f that well fits to the model. For example, solv-
ing an interpolant consisting of a number of radial basis
functions is highly computational expensive [27, 26, 7, 8].
Much effort has been made to seek efficient computational
schemes to this interpolation problem, such as compactly
supported RBFs [14, 16] and far field expansion [5]. In the
case of algebraic surfaces, the result of fitting an polyno-
mial to a complex surface is highly unpredictable. Thus it
is usually easier to create complex surfaces by a set of al-
gebraic patches. This brings another problem about how to
smoothly join the patch boundaries. As a domain decompo-
sition method, the partition-of-unity method has attracted
much attention in recent research of implicit surface mod-
eling. The concept behind it can be traced back to Shep-
ard’s blending method [20] and then modified by Franke
and Nielson [10], which was originally designed to build
a global function by subdividing the problem domain into
a set of sub-domains where locally defined functions are
solved and provides a good means of smoothly blending



Figure 2. Algorithm Flow. From left to right: The reconstruction algorithm accepts an unorganized point cloud
P as input. An adaptive octree subdivision is performed on P and local shape functions are created for each
octree cell. An orientation inference algorithm based on Belief Propagation is applied in a front-propagation
fashion. The implicit surface is generated by smoothly blending the orientated implicit patches.

the local solution functions to form a good approximation
for the global solution of interest. Based on this framework,
many hierarchical reconstruction algorithms have been pro-
posed. The MPU implicits method introduced by Ohtake et
al. [15] used an octree-based adaptive approach for surface
reconstruction from a large and accurate data set. Sharp
features can be well preserved by local selection of fitting
models. Xie et al. later extended the MPU implicit to han-
dle noisy data sets [30]. They employed an active contour
method and a voting process for orientation determination.
Tobor et al. [24] proposed a multi-scale reconstruction algo-
rithm by building a binary tree decomposition and perform-
ing a bottom-up thinning operation.

A thorough description of the wide variety of implicit
surfaces is obviously beyond the scope of this paper. More
detailed introduction to implicit surfaces is referred to the
book by Bloomenthal et al. [4].

3. Generalized MPU Implicits

3.1. Review of MPU Implicits

Our approach is based on the framework of the MPU
implicit algorithm [15]. In this section we briefly describe
the concept of this framework. The algorithm accepts a 3D
point cloud P = {x1, x2, ... , xN} sampled from an un-
known surface. Different from the original algorithm, the
proposed algorithm does not assume the surface normal at
each point be available. Creating an MPU implicit surface
starts by partitioning P into a collection of overlapping sub-
sets P1,P2, ... , PM . To decompose the global domain
where P is occupied, the entire data set is rescaled and in-
serted into an unit-length bounding box. A hierarchy of oc-
tree is built by recursively subdividing the bounding box

and its children into eight equal octants. Each cell has a
spherical support region of radius Ri, which is centered at
the cell center ci, as illustrated in Figure 3. The points of
P lying within the support region of an octree cell are col-
lected as Pi, and a local shape function Qi(x) is created
through a least-squares fitting procedure. The local shape
functions are then smoothly blended as a pseudo-signed
distance field by a set of non-negative and compactly sup-
ported weighing functions ωi. According to the modified
Shepard’s method [20, 10], the blended function f can be
expressed as follows:

f(x) =
∑

i ωi(x)Qi(x)∑
i ωi(x)

, (1)

There is a rich choice of blending functions for ωi(x) and
here we also use the the B-spline quadratic function pro-
posed by Ohtake et al. [15], which has the following form:

ωi(x) =
3|x− ci|

2Ri
(2)

During the construction of MPU implicits, a series
of tests are performed to determine the type of lo-
cal surface and an appropriate fitting model is selected.
This was achieved by primarily exploiting surface nor-
mal information. After the local approximation func-
tion Qi has been computed, an approximation error ε =
maxx∈Pi |Qi(x)|/|∇Qi(x)| is estimated according to the
approximation distance for algebraic surfaces developed by
Taubin [22]. If the approximation error is greater than a
pre-defined threshold ε0, the octree cell is subdivided and
the same fitting procedure is performed on the subcells un-
til the desired fitting accuracy is achieved.



Figure 3. Left: Fitting a bivariate quadratic poly-
nomial. Right: Local fit of a general quadric.

3.2. Local Fitting Model Selection

One essential component of the MPU implicits approach
is that it provides a class of local fitting models suitable for
different types of local surface properties as well as a strat-
egy to determine appropriate local fitting models. Particu-
larly, sharp features, such as edges and corners, can be ef-
fectively detected by identifying the distribution of the nor-
mal vectors [12]. The three different types of local fitting
models adapted by MPU implicits are briefly summarized
below:

• general quadric for larger or separated surface patches
(see Figure 3 right),

• bivariate quadratic polynomial with local coordinates
aligned to averaged normal direction, which is used
for local smooth patches (see Figure 3 left),

• piecewise quadric surfaces fitted to an edge or corner.

The detailed formulation of the local shape functions is re-
ferred to the original paper by Ohtake et al. [15]. To deal
with more general sources of input data, we employ the no-
tion of surface variation proposed by Pauly et al. [17] to
guide the selection of local fitting models without utilizing
surface normals. A surface variation estimate is obtained
by performing principal component analysis (PCA) on lo-
cal point neighborhood. Let x̄i be the centroid of Pi within
the domain of influence for an octree cell and C be the co-
variance matrix defined as

C =
1
n




xi
1 − x̄i

...
xi

n − x̄i




T 


xi
1 − x̄i

...
xi

n − x̄i


 , xi

j ∈ Pi (3)

The surface variation σn can then be defined as

σn =
λ0

λ0 + λ1 + λ2
(4)

where n is size of Pi and λ0, λ1, λ2 are the eigenvalues of
C in an increasing order. Note that originally σn is defined

by the n-nearest neighborhood of a specific point. The in-
terpretation of σn can be seen as the extent that the local
surface approaches a local tangent plane. A large σn indi-
cates that the points in Pi tend to be distributed isotropi-
cally. In contrast, a small σn means that the points in Pi

lie approximately on the plane spanned by the eigenvectors
corresponding to λ1 and λ2. The surface variation σn of
Pi can thus be used as a guidance for selecting local fit-
ting models. We set a threshold of 0.25 on σn for model
selection. If σn > 0.25, a quadric is fitted to Pi; otherwise,
we choose a bivariate quadratic polynomial. If a bivariate
quadratic polynomial is fitted, the local coordinate system
is aligned to the eigenvector corresponding to λ0.

The points around a sharp feature like edges or cor-
ners are distributed on multiple surface patches and cannot
be easily detected by simply examining the surface varia-
tion. It is worth noting that Pauly et al. [18] developed a
method based on surface variation for detecting sharp fea-
ture in point sampled surfaces. We tentatively implement
a k-means like algorithm for multiple surface fitting by us-
ing surface variation as error measurement. Although the
current results are not stable, the basic idea is to iteratively
group the data points into several clusters and minimize σ
obtained from each cluster. The piecewise quadric fitting
can then be applied to the individual clusters. We believe
that the robust estimation technique used in [9] will also be
helpful in solving such a clustering problem. For sharp fea-
ture preservation techniques, we also refer the readers to the
papers by Xie et al. [30] and Fleishman et al. [9], which also
addressed the problem of noisy input data.

4. Globally Consistent Orientation Inference

The above discussion focused on an error controlled
mechanism of local shape function fitting. However, the ori-
entation of each local shape function Qi with respect to the
unknown manifold remains ambiguous. More specifically,
on which side of the local implicit patch should Qi take pos-
itive or negative values is not properly defined. Recall that
the implicit surface is modeled as a pseudo-signed distance
function smoothly blended by the local shape functions Qi

(please refer to equation (1)). Unfortunately, the local shape
functions resemble the unknown surface only within its re-
gion of support. In other words, the orientation of a local
function is not an intrinsic property and should be defined
globally in consideration with other local functions. This
implies that we cannot easily obtain consistent orientations
for all local functions by simply enforcing them to have the
same sign at some specific locations. We thus need a more
sophisticate algorithm to infer the globally consistent orien-
tation for the local functions.



4.1. Belief Propagation Optimization

Given a set of local shape functions Qi, we are uncertain
of their orientations. The goal of globally consistent orien-
tation inference is to determine, for each local function Qi,
a label `i so as to resolve the ambiguity of the two possible
orientations for each Qi and also to consistently align with
other local functions. Typically, an implicit function f for
a surface takes positive/negative values inside/outside the
surface. Following this convention, we term a local func-
tion Qi as consistent if Qi(x) has the same sign as f(x),
otherwise it is regarded as inconsistent. Note that this con-
dition holds only within most of the support region of Qi.
The overall optimization is formulated as solving a graph la-
beling problem. The algorithm proceeds by iteratively con-
structing a local graph and applying Belief Propagation al-
gorithm to find a label `i ∈ {1, −1} for each local function,
which corresponds to consistent and inconsistent, respec-
tively. Analogous to other orientation alignment schemes
[11, 30], the globally consistent orientation is obtained by
negating the function values of Qi labeled as −1.

In detail, let us reconsider the problem by starting from
a set of local functions Qi that are geometrically close to
each other. We construct a graph G = {V, E} with each
node in V corresponding to one of the local functions. For
any pair of nodes in V to be connected by an edge, they
should correspond to octree cells that are adjacent to each
other. More specifically, only when the octree cells Ci and
Cj where Qi and Qj are defined share common corners can
they compose an edge eij . We make use of the corners of
a cell as auxiliary points by exploiting the observation that
local shape functions which are geometrically adjacent to
each other are very likely to be consistently signed in their
overlapped support region, as illustrated in Figure 4. We
can thus define the following energy on G:

E(L) =
∑

i∈V
Ed(`i) +

∑

(i,j)∈E
Es(`i, `j), (5)

Ed(`i) = −`i,

Es(`i, `j) =
∑

k

−`i · `j · sign(Qi(xk)Qj(xk))

where k is the index of the common corners shared by Ci

and Cj , and sign(·) is a binary function that returns 1 or−1
when its argument is positive or negative, respectively. Note
that by evaluating sign(Qi(xk)Qj(xk)), a returned value of
1 indicates that Qi and Qj have consistent orientation at xk,
otherwise they are inconsistent. Therefore, Es(`i, `j) be-
haves like a smoothness energy which penalizes the incon-
sistent changes of signed distance field associated with two
neighboring nodes. Denote k-connected neighbors of a cell

Figure 4. For two local shape functions Qi and Qj

defined on adjacent octree cells. Qi and Qj are
very likely to be consistently signed within their
overlapped support region, such as the common
corners illustrated in the figure.

Ci as those adjacent cells of Ci that share k common cor-
ners with Ci. For robustness, we only include 4-connected
neighbors into the graph optimization. Note that an octree
cell has only six 4-connected neighbors. Ed(`i) is the data
energy measuring how well the estimated labels fits to our
prior knowledge about the model. Here we let Ed be just the
sum of negated label of node i, and it acts as an additional
constraint that selects one of the two optimal label assign-
ments with more nodes labeled as 1. The optimal labels L
for all nodes are obtained by minimizing the total energy
E(L).

In a sense, the graph G can be regarded as a joint prob-
ability of a set of binary random variables with the edges
indicating the dependency between distinct nodes. The in-
ference of marginal probability of a specific node means
that we have to sum over all the possible states of other
nodes, which can be a very laborious process. Belief Prop-
agation (BP) is an efficient probability inference algorithm
proposed by Pearl [19], which has recently been proven to
be very effective in many computer vision and image pro-
cessing problems [28, 21]. It comes with two variants: sum-
product and max-product. In this paper, we use the max-
product algorithm to find a maximum a posteriori (MAP)
solution formulated earlier in this section by taking nega-
tive log probabilities.

Briefly speaking, Belief Propagation works by iteratively
propagating messages or beliefs along edges over a graph.
Let us denote the message sent from node i to j as mi→j . In
our formulation, message mi→j is a two-dimensional vec-
tor, and can be regarded as the probability density function
that node j takes label 1 or −1. The local message passing
mechanism is for each node to receive and update message
by forming product of incoming messages and local evi-
dence as the following equation:

mi→j(`j) = Z max
`j

(Ed(`i) · Es(`i, `j)·



∏

u∈Nbhd(i)\j
mu→i(`i)), (6)

where Nbhd(i)\j denotes the neighbors of i other than j,
and Z is a normalization factor. Finally, the MAP solution
for each node i is computed as

`∗i = Z max
`i

(Ed(`i) ·
∏

u∈Nbhd(i)

mu→i(`i)), (7)

For tree structured graphs, BP is guaranteed to converge
to a fixed message m∗ after at most T iterations depending
on the longest path of the graph. For graphs with loops,
Loopy BP [29] can be applied to obtain good approximate
solutions.

4.2. Advancing-Front Algorithm

Intuitively, to obtain the optimal labels, a graph consist-
ing of all the local functions should be constructed for the
energy minimization procedure. However, we choose to in-
fer the orientations locally and iteratively propagate the par-
tially determined results over the entire model to obtain the
global solution due to the following two observations:

1. The interaction of signed distance fields between local
functions is essentially a local property. That is the
reason that we construct a graph that only encodes the
relationship of adjacency. In addition, local orientation
inference typically gives accurate results.

2. Previous results provide additional information for fur-
ther inference.

Therefore, we devise the following advancing-front al-
gorithm:

Algorithm 1 OrientationPropagate(F = null)
Select seed cell v and insert v into F .
while F not empty do

active cell v = F .front;
collect node set V;
construct graph G with V;
perform BP on G;
update labels of V;
find and insert adjacent non-empty cells of G into F ;

end while
return

Initially, we have a collection of MPU implicits with
their orientation undetermined. Starting from a seed im-
plicit patch with its orientation as the basis for alignment.
The algorithm proceeds by iteratively marching an active
octree cell to traverse the unchecked parts of the surface un-
til all the implicits have been properly orientated. Our algo-
rithm maintains a data structure of front F , which contains

Table 1. Performance of the proposed algorithm.
Computational time is represented in seconds.

Model # of points BP MPU

Bunny 35647 5.67 40.36

Rabbit 67038 4.03 70.35

Isis (Reduced) 34051 6.29 47.7

Igea 134345 5.53 117.27

Armadillo 172970 10.36 184.38

a queue of candidate cells to be selected for the orienta-
tion inference process in the next iteration. The basic idea
of this incremental algorithm is straightforward: traversing
all the non-empty leaves among the octree in the order of
connected components of visited cells. The belief propaga-
tion inference is performed on a graph constructed subject
to the active cell. There is, of course, not only one graph
construction procedure (4th and 5th lines of Algorithm 1)
suitable for the BP inference algorithm. We briefly describe
our heuristic but effective graph construction procedure as
follows: starting from an active cell v′, we search for the 4-
connected neighbors of v′ and link v′ with them. For those
non-empty neighbors, the same procedure is repeated until
at least one orientated cell has been included into the graph.
The advancing front F will roughly trace along the locus of
the underlying surface until it becomes empty (as shown in
Figure 2, the third from left).

5. Results and Discussions

All of the examples presented in this paper are gener-
ated on an Intel Centrino Duo 1.66 GHz laptop equipped
with 1 GB RAM. In addition, we use Bloomenthal’s im-
plicit surface polygonizer [3] to extract a triangular mesh of
the reconstructed implicit surface for visualization. Table
1 briefly summarizes the computational time of our algo-
rithm. Note that the proposed algorithm can correctly align
the MPU implicits into a globally consistent signed distance
field very efficiently.

Recall that we only link 4-connected neighbors while
constructing a graph for the purpose of robustness. Ide-
ally, all the auxiliary points should be consistently signed.
However, there is always a small margin where two local
functions take opposite signs (see Figure 4). Considering
an edge linking 2-connected neighbors, one mismatch of
the auxiliary points will cause this edge to be ambiguous,
because any label assignments yield the same smoothness
energy. An edge becomes invalid once most of the auxil-
iary points are mismatched, which will cause wrong label
assignment. An ambiguous edge poses no harm to the al-



Figure 5. An example of reconstructing MPU im-
plicits from non-uniformly sampled data set.

gorithm because the orientations of its endpoints can still
be determined by other valid edges. For 1-connected neigh-
bors, the edges can only be valid or invalid, thus they should
be avoided. In our experiments, performing BP inference on
graphs consisting only 4-connected edges works well for all
test models.

Figure 5 and 6 demonstrate the effectiveness of the pro-
posed algorithm on different types of data sources. Fig-
ure 7 is an illustration on controlling the level of detail by
evaluating the MPU implicits at different octree levels. The
MPU implicits representation is capable of reconstructing
surfaces from non-uniformly sampled data. Even though
noises are presented in the data, the least-squares fitting
process can still produce acceptable results. Since the BP
inference algorithm works by directly checking the consis-
tency between individual distance fields, it is not affected
by topology or sampling density, which might be difficult
for traditional MST-based method [11]. Nevertheless, the
proposed algorithm still might fail in highly disordered dis-
tance fields because the BP inference algorithm works un-
der the assumption that neighboring local implicits com-
pose a continuous manifold. When dealing with noisy input
data, a noise reduction algorithm, such as [30], should be
incorporated to alleviate the effect due to noise.

6. Conclusions

In this paper, we introduced a general surface recon-
struction algorithm capable of reconstructing implicit sur-
face from an unorganized point clouds based on the MPU

Figure 6. Left: reconstructed surface from input
data with 0.2% random noises (Middle), Right: re-
constructed surface from clean data.

Figure 7. Level of detail control. Left: octree level
5, Right: octree level 7

implicits [15]. The basic idea behind this work is to es-
tablish an isolated stage of orientation inference in the sur-
face reconstruction pipeline. The proposed orientation in-
ference algorithm resorts to the Belief Propagation tech-
nique to solve a graph optimization problem by directly
examining the consistency between individual signed dis-
tance fields. As a result, it is easy to adapt to a wide variety
of implicit surfaces and data sources. In the future works,
we plan to keep improving our surface reconstruction al-
gorithm to preserve sharp features from unorganized point
clouds and robustness against noisy input data. It is interest-
ing to note that the graph cuts algorithm [13] is essentially
applicable to the binary optimization problem in this work.
We also plan to conduct some experiments to compare the
performance of these two algorithms.



Acknowledgements

The authors would like to express their sincere appreciation
to Dr. Xiang Zhang for reviewing this paper. The test mod-
els are from Stanford 3D scanning repository (Bunny and
Armadillo) and Cyberware (Igea, Rabbit, Isis), respectively.
This work was supported by National Science Council, Tai-
wan, under the grant NSC- 95-2221-E-007-224.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Point set surfaces. In Proceedings of IEEE
Visualization, pages 21–28, October 2001.

[2] J. F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235–256, July 1982.

[3] J. Bloomenthal. An implicit surface polygonizer. Graphics
Gems IV, pages 324–349, 1994.

[4] J. Bloomenthal. Introduction to Implicit Surfaces. Morgan
Kaufmann, 1997.

[5] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3d objects with radial basis functions.
In Proceedings of ACM SIGGRAPH, pages 67–76, August
2001.

[6] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Proceedings of ACM
SIGGRAPH, pages 303–312, August 1996.

[7] H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing sur-
faces using anisotropic basis functions. In International
Conference on Computer Vision (ICCV), pages 606–613,
July 2001.

[8] H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing sur-
faces by volumetric regularization using radial basis func-
tions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(10):1358–1371, October 2002.

[9] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving
least-squares fitting with sharp features. In Proceedings of
ACM SIGGRAPH, pages 544–552, 2005.

[10] R. Franke and G. Nielson. Smooth interpolation of large
sets of scattered data. International Journal of Numerical
Methods in Engineering, 15:1691–1704, 1980.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. In Proceedings of ACM SIGGRAPH, pages 71–78,
July 1992.

[12] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel.
Feature sensitive surface extraction from volume data. In
Proceedings of ACM SIGGRAPH, pages 57–66, 2001.

[13] V. Kolmogorov and R. Zabin. What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):147–159, Febru-
ary 2004.

[14] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and
K. R. Subramanian. Interpolating implicit surfaces from
scattered data using compactly supported radial basis func-
tions. In Shape Modeling International 2001, pages 89–98,
May 2001.

[15] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel.
Multi-level partition of unity implicits. In Proceedings of
ACM SIGGRAPH, pages 463–470, July 2003.

[16] Y. Ohtake, A. G. Belyaev, and H.-P. Seidel. A multi-scale
approach to 3d scattered data interpolation with compactly
supported basis functions. In Shape Modeling International
2003, pages 153–161, May 2003.

[17] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplifi-
cation of point-sampled surfaces. In Proceedings of IEEE
Visualization, pages 163–170, October 2002.

[18] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature ex-
traction on point-sampled surfaces. In Proceedings of EU-
ROGRAPHICS, 22(3), 2003.

[19] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, San Ma-
teo, California, 1988.

[20] D. Shepard. A two-dimensional interpolation function for
irregularly-spaced data. Proceedings of the 23rd ACM na-
tional conference, pages 517–524, 1968.

[21] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion
with structure propagation. In Proceedings of ACM SIG-
GRAPH, 24(3):861–868, July 2005.

[22] G. Taubin. Estimation of planar curves, surfaces and non-
planar space curves defined by implicit equations, with ap-
plications to edge and range image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
11(13):1115–1138, 1991.

[23] G. Taubin. An improved algorithm for algebraic curve and
surface fitting. In International Conference on Computer
Vision (ICCV), pages 658–665, May 1993.

[24] I. Tobor, P. Reuter, and C. Schlick. Multi-scale reconstruc-
tion of implicit surfaces with attributes from large unorga-
nized point sets. In Shape Modeling International 2004,
pages 19–30, 2004.

[25] G. Turk and M. Levoy. Zippered polygon meshes from range
images. In Proceedings of ACM SIGGRAPH, pages 311–
318, July 1994.

[26] G. Turk and J. F. O’Brien. Shape transformation using
variational implicit surfaces. In Proceedings of ACM SIG-
GRAPH, pages 335–342, August 1999.

[27] G. Turk and J. F. O’Brien. Modelling with implicit surfaces
that interpolate. ACM Transactions on Graphics, 21(4):855–
873, October 2002.

[28] J. Wang and M. F. Cohen. An iterative optimization ap-
proach for unified image segmentation and matting. In In-
ternational Conference on Computer Vision (ICCV), pages
936– 943, October 2005.

[29] Y. Weiss and W. T. Freeman. On the optimality of solu-
tions of the max-product belief propagation algorithm in ar-
bitrary graphs. IEEE Transactions on Information Theory,
47(2):723–735, 2001.

[30] H. Xie, K. T. McDonnel, and H. Qin. Surface reconstruction
of noisy and defective data sets. In Proceedings of IEEE
Visualization, pages 259–266, 2004.


