Competitive Sourcing for Internet Commerce

Steven P. Ketchpel Hector Garcia-Molina Stanford University

ICDCS'98

Outline

- Introduction
- Framework
- One Input
- Multiple Inputs
- Conclusion
- Reference

Safeguarding and Charging for Information on the Internet

Hector Garcia-Molina, Steven P. Ketchpel, and Narayanan Shivakumar

ICDE'98

Introduction

• Internet commerce

- many possible suppliers for the customer's goal
 ⇒minimize the expense
 - ⇒maximize the probability of success by deadlines
- competitive sourcing problem
 - \Rightarrow CNN response to a fast-breaking story in Europe

 \rightarrow price, reliability, time-critical, conjunct

⇒customers need a request strategy

 \rightarrow a plan of which suppliers to contact and when they should be contacted

⇒differences with economics

 \rightarrow real-time, more parties per trans., reliability

Introduction
• Goal
 provide algorithms for determining optimal
ordering strategies, under certain conditions
⇒each supplier charge a different price, and have a unique reliability
⇔customers may face hard deadlines
⇒customers may require conjunctions of all goods
⇒suppliers may require customers to pay at the time the order is placed
– comparison
⇒inventory and backlogging are also charged
⇒optimal ordering is determined at the start

Framework

• Definition

- supplier: (i,j)
 - \Rightarrow i: the input, j: the ranking of the supplier for i
- <u>utility gain</u>: U≥0
- charge: Ci,j
- delivery profiles: suppliers' performance

⇒ the probability that the request for (i,j) will be satisfied at or before t time units: Sat_{i,j}(t)

 \rightarrow t is assumed to be a discrete value

 \Rightarrow supplier's reliability: $R_{i,j}=Sat_{i,j}(\infty)$

 \rightarrow a customer's prior experiences

 \rightarrow average statistics

One Input

- One supplier: yes or no?
 - no deadline
 - ⇒the request strategy: by the supplier's reliability ⇒expected utility gain=(U*R_{1,1})-C_{1,1}
 - \rightarrow >0: place the order right away
 - has deadline
 - \Rightarrow expected utility gain=(U*Sat_{1,1}(D))-C_{1,1}
- Multiple suppliers: which supplier first? when?
 - no deadline
 - \Rightarrow serial approach: only positive, sorting, waiting \Rightarrow expected utility gain=(U*R_{1,j})-C_{1,j}

One Input

• Example 1.

- two supplier: (1,1), (1,2)
- deadline: D=3
- delivery profiles: $Sat_{1,1}(t)=0.2t$, $Sat_{1,2}(t)=0.5t$ \Rightarrow strategy1: <u>RT(1,1)=1, RT(1,2)=3</u>
 - $\rightarrow U^{*}(1-(1-Sat_{1,1}(3-1)))-C_{1,1}*1=0.4U-C_{1,1}$
 - ⇒strategy2: <u>RT(1,1)=3, RT(1,2)=2</u>
 - $\rightarrow U^{*}(1-(1-Sat_{1,2}(3-2)))-C_{1,2}*1=0.5U-C_{1,2}$

⇒strategy3: <u>RT(1,1)=1, RT(1,2)=2</u>

 $\rightarrow U^*(1-(1-Sat_{1,1}(3-1)) (1-Sat_{1,2}(3-2)))-C_{1,1}*1+ C_{1,2}*(1-Sat_{1,1}(RT(1,2)-RT(1,1))) = 0.7U-C_{1,1}- 0.8C_{1,2}$

		<u>Multiple</u>	e Inpi	uts	
• Has d	leadlin	e: which? w	when?		
– trig	gger ap	proach: Bay	es net 1	represe	entation
– trig	gger ex	ample			
⇒	contact	(b,1) at time	5 if a ha	as been	received
	Id	Supplier	Time	a	b
	T ₃	(b,1)	5	1	0
$-T_x=$	=(t,DV)			
⇒	t: time	, point to apply	the tri	gger	
⇒	DV: do	cument vecto	r to kee	p the co	ondition
	→max	ximal number o	of trigge	<i>rs:</i> $2^{/G/}$	
	→nun	nber of distinct	strateg	ies: (2 ^{2/}	$\left(\frac{G}{D^{*/S/}}\right)^{D^{*/S/}}$

	Mult	tiple Ir	ipu	<u>ts</u>	
Examp	le 3.				
– two	inputs of a co	onjunctio	on: a	, b	
– three	e supplier: (a	,1), (a,2)	, (b,	l)	
1 1	lina D-6				
– dead	Inne. $D=0$				
– dead – deliv	very profiles:	$Sat_{a,1}(t)$	=Sat	$a_{2}(t) = \frac{1}{2}$	$\{0.2(t=1)\}$
– dead – deliv 0.4(t	very profiles: =2), 0.6(t=3)	$Sat_{a,1}(t)$), 0*}, Satisfy (t)	=Sat at _{b,1} ($a_{a,2}(t) = $ $t) = \{0.5$	$\{0.2(t=1), 0\}$
– dead – deliv 0.4(t	rery profiles: =2), 0.6(t=3)	$Sat_{a,1}(t)$), 0*}, Sa	=Sat $at_{b,1}($	a,2(t)= t)={0.5	$\{0.2(t=1), 0\}$
– dead – deliv 0.4(t Id	Pery profiles: =2), 0.6(t=3)	Sat _{a,1} (t)), 0^* }, Sa	=Sat at _{b,1} (a	$a_{a,2}(t) = 0.5$	$\{0.2(t=1), 0\}$
$- \frac{\text{dead}}{- \frac{\text{deliv}}{0.4(t)}}$	Inite. D=0 very profiles: =2), 0.6(t=3) Supplier (a,1)	Sat _{a,1} (t)), 0^* }, Sa Time 1	$= Sat$ $at_{b,1}($ a 0	a,2(t) = 0.5 b	$\{0.2(t=1), 0\}$
$- \frac{\text{dead}}{- \frac{\text{deliv}}{0.4(t)}}$	Inite: D=0 very profiles: =2), 0.6(t=3) Supplier (a,1) (a,2)	Sat _{a,1} (t)), 0* }, Sa Time 1 3	$= Sat$ $at_{b,1}($ a 0	a,2(t) = 0.5 $t) = \{0.5, 0, 0\}$	$\{0.2(t=1), 0\}$

