Enhanced hypertext categorization using hyperlinks

S. Chakrabarti, B. Dom, P. Indyk

IBM Almaden

Stanford University

Proceedings of ACM SIGMOD Conference, 1998.

Outline

- **OIntroduction**
- **OText classification**
- **OHypertext classification**
 - oxtimes Radius-one specialization
 - oxtimesRadius-two specialization
- **OConclusion**

Introduction

OMotivation

- **⊠**an accurate classifier is an essential component of a hypertext database
- **⊠**naive use of terms in the link neighborhood of a document can even degrade accuracy

OGoal

- **⊠**a better classifier based on link information in a small neighborhood around documents
- **⊠**adapt gracefully to the fraction of neighboring documents having known topics

Introduction

OProblem

- \boxtimes diverse authorship
- **⊠**navigational and citation links
- \boxtimes short, fragmented documents

OChallenge

⊠homogeneous corpora (IR)

©correct rate: 80~87%

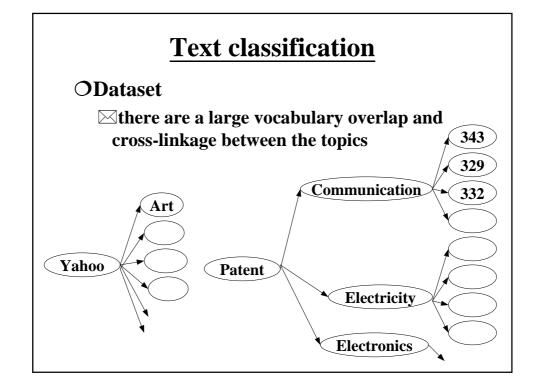
⊠hyperlinked corpora

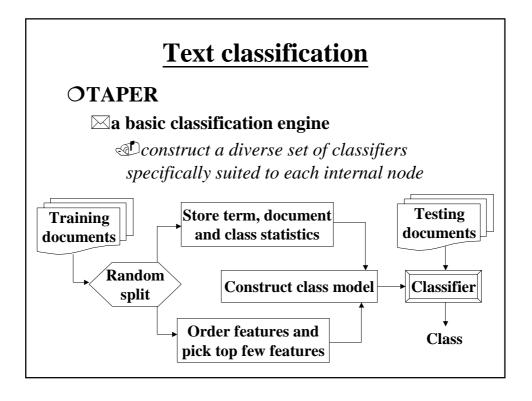
© US Patent Database: 64%, Yahoo!: 32%

Introduction

OObvious idea

oxtimes include the text of a document's neighbors


• worse than the case based on only local text


Ink information is noisy

OMain idea

- **⊠**the topics of neighboring documents determine linking behavior
- ⊠initially guess the topics based on text alone, then update them iteratively

Error rate: 21%

Text classification

- **OFeature selection**
 - **⊠good discriminators vs. noise**
 - ⊠order the term by decreasing ability to separate the classes $\sum_{c_1,c_2} (\mu(c_1,t) - \mu(c_2,t))^2$ $\boxtimes \text{formula: } score(t) = \frac{\sum_{c_1,c_2} (\mu(c_1,t) - \mu(c_2,t))^2}{\sum_{c} \frac{1}{|c|} \sum_{d \in c} (f(t,d,c) - \mu(c,t))^2}$ $\boxtimes \text{Bernoulli model vs. binary model}$
- **OClass model**

 - mula: $\Pr[d \in c \mid c_0, F] = \frac{\pi(c) \prod_{t \in d \cap F} \theta(c, t)^{n(d, t)}}{\sum_{c' \in child} (c_0)} \frac{\pi(c') \prod_{t \in d \cap F} \theta(c', t)^{n(d, t)}}{\sum_{t \in d \cap F} \theta(c', t)^{n(d, t)}}$ oxtimesformula:

Text classification

OExample

 $\boxtimes c_1$: $< d_1, d_2 >, c_2$: $< d_3, d_4 >$

 d_1 : $\langle t_1:1, t_2:2, t_3:1 \rangle$, d_2 : $\langle t_1:3, t_2:0, t_3:5 \rangle$

d₃: <**t**₁:2, **t**₂:10, **t**₃:2>, **d**₄: <**t**₁:4, **t**₂:12, **t**₃:6>

 $\mu(c_1, t_1)=2, \mu(c_1, t_2)=1, \mu(c_1, t_3)=3$

 $\mu(c_2, t_1)=3, \mu(c_2, t_2)=11, \mu(c_2, t_3)=4$

 $score(t_1)=1/2$, $score(t_2)=50$, $score(t_3)=1/8$

 \boxtimes d' \cap F: $\langle t_1:1, t_2:3 \rangle$

 $\theta(c_1,t_1)=1, \theta(c_1,t_2)=1/2, \theta(c_2,t_1)=1, \theta(c_2,t_2)=1$

 \P $Pr[d' \in c_1] = 1/9, Pr[d' \in c_2] = 8/9$

Hypertext classification

d

y

 \mathbf{w}

OFeature engineering

⊠I: in-link, O: out-link

 \boxtimes d: <x, O©y, I©w, IO©z >

OExperiment: US Patent Database z

 \boxtimes all immediate neighbors

DLocal: 36%

DLocal+Nbr: 38.3%

Local+TagNbr: 38.2%

⊠term distribution is not sufficiently similar to the true class

- **ORadius-one specification**
 - **⊠**if classes for all neighboring documents are known, replace each hyperlink with class ID
 - \square choose c_i to maximize $Pr(c_i|N_i)$
 - ⊠formula:

$$\Pr(N_i \mid c_i) \Pr(c_i) = \\ \pi(c_i) \prod_{j=1}^{m} \left[\phi(\gamma_j, c_i \mid I) \right]^{n(\gamma_j, i \mid I)} \left[\phi(\gamma_j, c_i \mid O) \right]^{n(\gamma_j, i \mid O)}$$

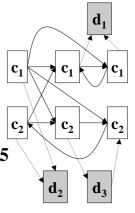
Hypertext classification

OExample

 $\phi(\gamma_1, c_1|I)=4/5, \phi(\gamma_2, c_1|I)=1/5$

 $\phi(\gamma_1, c_1|O)=4/6, \phi(\gamma_2, c_1|O)=2/6$

 $\phi(\gamma_1, c_2|I)=2/5, \phi(\gamma_2, c_2|I)=3/5$


 $\phi(\gamma_1,\,c_2|O){=}1/4,\,\phi(\gamma_2,\,c_2|O){=}3/4$

 d_1 : $Pr(N_1|c_1)=16/25$, $Pr(N_2|c_2)=4/25$

 d_2 : $Pr(N_1|c_1)=4/25$, $Pr(N_2|c_2)=6/25$

 d_3 : $Pr(N_1|c_1)=1/15$, $Pr(N_2|c_2)=9/20$

 \bowtie Pr(d₁ \in c₁)=16/20, Pr(d₂ \in c₂)=6/10, Pr(d₃ \in c₂)=27/31

OIterative relaxation labeling

- **⊠**if some or all of the neighboring classes are unknown
 - Dgiven test document d
 - r construct a radius-r graph G(d) around d
 - a assign initial classes to all $d_i \in G(d)$ using local text
 - diterate until consistent
 - recompute the class for each $d_i \in G(d)$ based on local text and class of neighbors

Hypertext classification

OExperiment: US Patent Database

⊠complete supervised case

Text: 36%

Link: 34%

Prefix: 22.1%

Text+Prefix: 21%

⊠partially supervised case

Text: constant

Link: 34~31~27~24~22.1%

Text+Link: 26~25~24~22~21%

- **ORadius-two specification**
 - **⊠**pages that cites or are cited by many common pages are regarded as similar
 - **⊠**these common pages are called bridge
 - DB is an IO-bridge for d_1 and d_2
 - A: II-bridge, C: OO-bridge

Solution It is the fraction of coherent pairs among all pairs (d_1, d_2) where $(d_1-d_2)_B=D_i$, for some j

C

A

Hypertext classification

- **OTAPER** with IO-bridge
 - **⊠**assumed pure bridge
 - **⊠**take all prefixes of the known classes from pages that are IO-bridged to a training page
- **OIO-bridge with locality**
 - ⊠include class ID c as a feature of page d, if
 - 1 a bridge contains out-links to d_1 , d, and d_2
 - In the classes of d_1 and d_2 are the same (c)
 - \mathfrak{D} no out-links between d_1 and d_2 point to a page with a known class

OExperiment: Yahoo!

⊠error rate

Text: 68%

IO-bridge: 25%

IO-locality: 21%

 \boxtimes coverage

Text: 100%

IO-bridge: 75%

€ IO-locality: 62%

Conclusion

OContribution

- **⊠**This is the first topic classification system that combines textual and linkage features
- **⊠**achieve significantly improved accuracy at a moderate computational overhead

US Patent Database: 36~21%

Tyahoo!: 68~21%

OComment

- \boxtimes the classifier only needs very few features
- **⊠**management of link information is required