Mining Image Features for Efficient Query Processing

Beitao Li, Wei-Cheng Lai, Edward Chang, and Kwang-Ting Cheng

ICDM 2001 (pp: 353 –360)

Presented by: Yi-Hung Wu
Date: 2002/6/6

Preliminaries

- **Perception-Based Image Retrieval [SIGMOD01]**
 - Query concept learner
 - Multi-resolution image characterization
- **Learning Image Query Concepts via Intelligent Sampling [ICME01]**
 - Select samples by MEGA
 - Solicit user feedback
 - Refine QCS by Vote
 - Refine CCS by Vote
Problems

- **Query Concepts: k-CNF**
 - \(C_1 \land \ldots \land C_\theta \), where \(C_i = (x_1 \lor \ldots \lor x_j) \) for \(j \leq K \)
 - Scalability of MEGA
 - Dimensionality-curse: number of disjunctions
 - Divide-and-conquer: trade precision for speed
 - Speed up of \(O(G^{k-1}) \) folds: \(M=144, k=3, G=12 \) \(\rightarrow \) 140 times
 - Genetic algorithm for mining feature groupings
 - Mapping between groupings and individuals
 - Genetic operators: *selection, crossover, mutation*
 - Fitness function

Solutions (1/2)

- **A Feature Grouping**
 - Exactly \(M \) features and no feature is replicated
- **Genetic Operators**
 - Tournament selection without replacement
 - Randomly exchange two features from two different feature groups for a given grouping
 - Randomly move a feature from one to another feature group according to a given probability
Solutions (2/2)

- **Fitness Function** \(=\) **Search Accuracy**
 - 51000 images of 18 categories (concepts)
 - Use the learned concepts for top-n image retrieval
- **Mining Algorithm**
 - Initialize N groupings
 - Compute the fitness value for each grouping
 - Apply the genetic operators in series
 - Continue the next generation if necessary

Experimental Results (1/3)

- **Tradeoff between Learning Time and Accuracy**
 - Find moderate G=20
Experimental Results (2/3)

- Discovering Optimal Groupings
 - Low intra-group correlation leads to high search precision

![Graphs showing experimental results]

Experimental Results (3/3)

- Feature - Concept Associations

<table>
<thead>
<tr>
<th>Channels</th>
<th>A'</th>
<th>B'</th>
<th>C'</th>
<th>D'</th>
<th>E'</th>
<th>F'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red color</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Yellow color</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blue color</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brown color</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Textures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical coarse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Horizontal coarse</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Diagonal coarse</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Vertical medium</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal medium</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vertical fine</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal fine</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diagonal fine</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Concluding Remarks

- **Solving Two Mining Problems**
 - Learning query concepts from user feedback
 - Discovering optimal feature groupings
- **Goodness**
 - Identify feature - concept associations
- **Weakness**
 - Genetic algorithm is not efficient but effective
 - No measure for missing concepts

Paper Scoring

- **Scores {bad, marginal, good, excellent}**
 - Originality: good
 - Technical Depth: marginal
 - Impact/Practicability: good
 - Readability: marginal
 - Overall: good