Outline

- Introduction
- Storage Architecture
- VCR-like Operation
- Conclusion

Introduction

- Goal
 - a MOD server that stores movies in compressed digital form and provides support for different portions of compressed movie data to be accessed and transmitted concurrently

• Issue

- low cost
 - » minimize the buffering requirement
- continuous retrieval of movies
 - » each portion would be transferred to the buffer just prior to its playback time
- support for VCR-like functions
 - » minimize the response time for switching back to normal display mode from pause, fast-forward, and rewind modes
- service multiple viewers concurrently

Storage Architecture

- Overall system architecture
 - movie library : a juke-box of tapes
 - server : a storage hierarchy
 - » disks : store the popular movies
 - » a small amount of RAM buffers : store portions of the movies
 - decoder
 - » consume the compressed movie data from a local buffer and output frames to a display
 - see figure 1.

Storage Architecture

- Storage allocation
 - requirements
 - » maximize the number of concurrent phases
 - upper bound :
 - » minimize the amount of movie data to be buffered in RAM
 - contiguous allocation
 - » formula :
 - » the buffer size per phase increases both with latency time of the disk and the number of concurrent phases
 - phase-constrained allocation
 - » store movie matrix on disk sequentially in column-major form
 - » formula :
 - » eliminate seeks to random locations in disk, but only concurrent phases with fixed phase differences are supported
 - » see figure 2. and figure 3.

Storage Architecture

- Buffering
 - implemented as a *circular buffer*
 - the size of each buffer is 2d
 - » one half is used to read in a portion of the movie from disk
 - » the other half is a portion of the movie transmitted to display

Repositioning

- no data can be transferred if the head is being repositioned
- maintain another disk with exactly duplicate data
- divide the *movie matrix* into two submatrices on two disks
 - » if *smallest phase difference* is at least twice repositioning time
- store the last m portion of column-major form representation of the movie in RAM
 - » if

VCR-like Operation

Video compression algorithm

- MPEG encoder
 - » Intraframe (I), Predicted (P), Bidirectional (B) frames
 - » Repeat (R) frame
- MPEG decoder
 - » a process at viewer site continuously monitors decoder buffer

Control operation

- begin : current movie buffer
- pause : transmit the R-frames
- fast-forward, rewind
 - » skip some bits, but transmit *independent sequences* of frames
- resume
 - » eliminate the delay in resuming normal display after pause

Conclusion

Contribution

- a low-cost storage architecture for a MOD server
- a storage allocation scheme that enables multiple different portions of a movie to be concurrently retrieved
- schemes for implementing VCR-like operations
- Related work
 - satisfy multiple concurrent requests for the retrieval of multimedia objects on disks
 - » similar to the *contiguous* allocation scheme
 - » unsuitable for handling large number of requests concurrently
 - use parallelism to support the display of high resolution of video data that have high bandwidth requirements
 - » a multimedia object is declustered across several disk drives
 - » the aggregate bandwidth of multiple disks can be utilized