BIDE: Efficient Mining of Frequent Closed Sequences

<u>Jianyong Wang</u> and <u>Jiawei Han</u> University of Illinois at Urbana-Champaign

To appear in ICDE 2004

Presented by: Yi-Hung Wu Date: 2004/3/1

Where will data mining research go?

Where will data mining research go?

Relation

Relation

What is "Closed Frequent"?

• Take itemset as an exam⁻ le... ACTW $-F \supseteq Closed F \supseteq Max F$ 1351 Transcation Items AG →T_ctw ACT CDW ACW MINIMUM SUPPORT = 50% 1351 1135 $\{245\}$ ACTW 1 Support Itemsets 2 CDW 100% (6) C **TV)** (135) AT/ 1(135)/ AW F1347 CD (2452 CT. ACTW 3 1345 83% (5) W, CW ACDW 4 A, D, T, AC, AW 67% (4) CD, CT, ACW 5 ACDTW Ŷ AT, DW, TW, ACT, ATW **1** (12345) đ. đ Ð. 50% (3) (1345) (123456) (2456) (1356) CDW, CTW, ACTW 6 CDT P.3

What is "Closed Frequent"?

• Take itemset as an exam⁻ le... ACTW $-F \supseteq Closed F \supseteq Max F$ 1351 ÷T,gĮw Transcation Items AG ACT CDW ACW MINIMUM SUPPORT = 50% 1351 1135 $\{2|5|$ ACTW 1 Support Itemsets () CD 2 CDW (2456) 100% (6) C **TV)** (135) AT/ **AW** (1345 CD (2459 CT ACTW 3 1345 83% (5) W, CW ACDW 4 A, D, T, AC, AW 67% (4) CD, CT, ACW ACDTW 5 Ŷ AT, DW, TW, ACT, ATW **1** (12345) ð đ Ð. 50% (3) (1345) (123456) (2456) (1356) CDW, CTW, ACTW 6 CDT

- CloSpan [Yang&Han: sdm03]
 - Lexicographic sequence tree
 - Pruning!

Seq ID.	Sequence
0	$\langle (af)(d)(e)(a) \rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (e)(abf)(bde) \rangle$

Given two sequences, $s \sqsubseteq s'$ and also $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$, then $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$.

- CloSpan [Yang&Han: sdm03]
 - Lexicographic sequence tree
 - Pruning!

Seq ID.	Sequence
0	$\langle (af)(d)(\underline{e})(\underline{a}) \rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (\underline{e})(\underline{a}\underline{b}f)(\underline{b}\underline{d}\underline{e}) \rangle$

Given two sequences, $s \sqsubseteq s'$ and also $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$, then $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$.

- CloSpan [Yang&Han: sdm03]
 - Lexicographic sequence tree
 - Pruning!

Seq ID.	Sequence
0	$\langle (\underline{af})(d)(e)(a) \rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (e)(\underline{abf})(\underline{bde}) \rangle$

Given two sequences, $s \sqsubseteq s'$ and also $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$, then $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$.

- CloSpan [Yang&Han: sdm03] <u>Seq ID.</u>
 - Lexicographic sequence tree
 - Pruning!

Seq ID.	Sequence
0	$\langle (af)(d)(e)(a) \rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (e)(abf)(bde) \rangle$

Given two sequences, $s \sqsubseteq s'$ and also $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$, then $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$.

How to mine closed frequent sequences?

- Stage 1: Generate candidate sequences
 - -<u>PrefixSpan</u> + Pruning! \Rightarrow Prefix sequence lattice
- Stage 2: Eliminate non-close sequences
 - Hashing: size, s-id sum
 - Support equality
 - Subsumption check

- (a) backward sub-pattern
- (b) backward super-pattern P.6

How to mine closed frequent sequences?

- Stage 1: Generate candidate sequences
 - -<u>PrefixSpan</u> + Pruning! \Rightarrow Prefix sequence lattice
- Stage 2: Eliminate non-close sequences
 - Hashing: size, s-id sum
 - Support equality
 - Subsumption check

(a) backward sub-pattern

How to mine closed frequent sequences?

- Stage 1: Generate candidate sequences
 - -<u>PrefixSpan</u> + Pruning! \Rightarrow Prefix sequence lattice
- Stage 2: Eliminate non-close sequences
 - Hashing: size, s-id sum
 - Support equality
 - Subsumption check

(a) backward sub-pattern (

How well does CloSpan perform?

How well does CloSpan perform?

Can we mine closed frequent sequences without candidate maintenance?

 \square

Can we mine closed frequent sequences without candidate maintenance?

 \square

K

Can we mine closed frequent sequences without candidate maintenance?

 \square

$$S_{1}: MP_{11}, MP_{12}, MP_{13}$$
$$S_{2}: MP_{21}, MP_{22}, MP_{23}$$
$$\dots$$
$$S_{n}: MP_{n1}, MP_{n2}, MP_{n3}$$

• FE={locally frequent items with full supports}

- FE={locally frequent items with full supports}
- For prefix <u>ABC</u>, given $C_1A_1A_2BC_2DA_3C_3E$
 - Last instance = $C_1A_1A_2BC_2DA_3C_3$
 - LL_i : the i-th last-in-last appearance S_1 : MP₁₁, MP₁₂, MP₁₃
 - $LL_1 = A_2, LL_2 = B, LL_3 = C_3$
 - MP_i: the i-th maximum period
- $S_{1}: MP_{11}, MP_{12}, MP_{13}$ $S_{2}: MP_{21}, MP_{22}, MP_{23}$ \dots $S_{n}: MP_{n1}, MP_{n2}, MP_{n3}$
- $MP_1 = C_1A_1$, $MP_2 = A_2$, $MP_3 = C_2DA_3$

- FE={locally frequent items with full supports}
- For prefix <u>ABC</u>, given $C_1A_1A_2BC_2DA_3C_3E$
 - Last instance = $C_1A_1A_2BC_2DA_3C_3$
 - LL_i : the i-th last-in-last appearance S_1 : MP₁₁, MP₁₂, MP₁₃
 - $LL_1 = A_2, LL_2 = B, LL_3 = C_3$
 - MP_i: the i-th maximum period
- $S_{1}: MP_{11}, MP_{12}, MP_{13}$ $S_{2}: MP_{21}, MP_{22}, MP_{23}$ \dots $S_{n}: MP_{n1}, MP_{n2}, MP_{n3}$
- $MP_1 = C_1A_1$, $MP_2 = A_2$, $MP_3 = C_2DA_3$
- BE={items appearing in each of MP_i, ∃i)}
 - Scan backward each of MP_i , $\forall i \Rightarrow ScanSkip$

\square

How does BIDE improve the mining efficiency?

How does BIDE improve the mining efficiency?

BackScan: <u>ABC</u>, C₁A₁A₂BC₂DA₃C₃E
LF_i: the i-th last-in-first appearance
LF₁ = A₂, LF₂ = B, LF₃ = C₂
SMP_i: the i-th semi-maximum period
SMP₁ = C₁A₁, SMP₂ = A₂, SMP₃ = Ø

BackScan: <u>ABC</u>, C₁A₁A₂BC₂DA₃C₃E

LF_i: the i-th last-in-first appearance
LF₁ = A₂, LF₂ = B, LF₃ = C₂
SMP_i: the i-th semi-maximum period
SMP₁ = C₁A₁, SMP₂ = A₂, SMP₃ = Ø

Be ∃i, e appears in each of SMP_i

Stop projection!

How does BIDE improve the mining efficiency?

BIDE (SDB, min_sup, FCS)

Input: an input sequence database SDB, a minimum support threshold min_sup

Output: the complete set of frequent closed sequences, FCS

1:
$$FCS = \emptyset$$
;

- 2: F1=frequent 1-sequences(SDB, min_sup);
- 3: for (each 1-sequence fI in FI) do
- 4: *SDB^{ff}* = pseudo projected database (*SDB*);
- 5: for (each fl in Fl) do
- 6: if (!BackScan(f1, SDB[#]))
- 7: BEI=backward extension check (f1, SDB^{f1});
- call bide (SDB^{II}, f1, min_sup, BEI, FCS);
- **9**: return *FCS*;

\square

How does BIDE improve the mining efficiency?

bide (S_p_SDB, S_p, min_sup, BEI, FCS) **Input**: a projected sequence database S_{a} _SDB, a prefix sequence S_{a} , a minimum support threshold *min_sup*, and the number of backward extension items BEI Output: the current set of frequent closed sequences, FCS 10: LFI =locally frequent items ($S_a_SDB_a$); 11: $FEI = [z, m, LFI,]z, \sup = \sup \mathcal{D}(S_{z})$ 12: if ((BEI + FEI) = 0)13: $FCS=FCS \cup \{S_n\};$ 14: for (each i in LFI) do 15: $S_{p}^{i} = \langle S_{p}, i \rangle$; SDB^{Spi} = pseudo projected database ($S_{a} SDB, S_{a}^{i}$); 16: 17: for (each i in LFI) do if $(!BackScan(S_n^i, SDB^{Spi}))$ 18:**B**EI=backward extension check $(S_{\mu}^{i}, SDB^{S_{\mu}});$ 19: call $bide(SDB^{Spi}, S_{p}^{i}, min_sup, BEI, FCS);$ 20:

Does BIDE perform much better?

- BIDE/CloSpan significantly outperforms PrefixSpan/SPADE when support threshold is low
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- *BackScan* and *ScanSkip* techniques are very effective in enhancing the performance

P.11

Does BIDE perform much better?

- BIDE/CloSpan significantly outperforms SPADE **PrefixSpan/SPADE** when support thresholder
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- *BackScan* and *ScanSkip* techniques are very effective in enhancing the performance

Does BIDE perform much better?

- BIDE/CloSpan significantly outperforms CloSpan PrefixSpan/SPADE when support threshold is low
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- BackScan and ScanSkip techniques are very effective in enhancing the performance

Does BIDE perform much better?

- BIDE/CloSpan significantly outperforms _{CloSpan} PrefixSpan/SPADE when support threshold is low
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- BackScan and ScanSkip techniques are very effective in enhancing the performance

\square

Conclusion Remarks

- Closed Frequent has the same expressive power as All Frequent, but provides more compact results and likely better efficiency.
- Integrated optimization techniques for *database* projection, search space pruning, and patternclosure checking are required.
- Move *candidate-maintenance-and-test* paradigm to a new paradigm without candidate maintenance

Any Question?

Seq ID.	Sequence
0	$\langle (af)(d)(e)(a) \rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (e)(abf)(bde) \rangle$
3	<(e)(b)(a)(bd)>

My Questions...

Seq ID.	Sequence
0	$\langle (af)(d)(e)(a) \rangle$
1	$\langle (e)(a)(b) \rangle$
2	$\langle (e)(abf)(bde) \rangle$
3	<pre>(e)(b)(a)(bd)></pre>

My Questions...

My Questions...

- BIDE
 - How to efficiently compute or maintain MP_i/SMP_i ?
 - Does it easily adapt BIDE to sequences of itemsets?

My Questions...

- BIDE
 - How to efficiently compute or maintain MP_i/SMP_i ?
 - Does it easily adapt BIDE to sequences of itemsets?
- What is the difference between Closed Frequent Sequences and Non-trivial Repeating Patterns?