## **BIDE: Efficient Mining of Frequent Closed Sequences**

<u>Jianyong Wang</u> and <u>Jiawei Han</u> University of Illinois at Urbana-Champaign

To appear in ICDE 2004

Presented by: Yi-Hung Wu Date: 2004/3/1



#### Where will data mining research go?





#### Where will data mining research go?

















Relation





Relation



#### What is "Closed Frequent"?

• Take itemset as an exam<sup>-</sup> le... ACTW  $-F \supseteq Closed F \supseteq Max F$ 1351 Transcation Items AG →T\_ctw ACT CDW ACW MINIMUM SUPPORT = 50% 1351 1135 $\{245\}$ ACTW 1 Support Itemsets 2 CDW 100% (6) C **TV)** (135) AT/ 1(135)/ AW F1347 CD (2452 CT. ACTW 3 1345 83% (5) W, CW ACDW 4 A, D, T, AC, AW 67% (4) CD, CT, ACW 5 ACDTW Ŷ AT, DW, TW, ACT, ATW **1** (12345) đ. đ Ð. 50% (3) (1345) (123456) (2456) (1356) CDW, CTW, ACTW 6 CDT P.3

#### What is "Closed Frequent"?

• Take itemset as an exam<sup>-</sup> le... ACTW  $-F \supseteq Closed F \supseteq Max F$ 1351 ÷T,gĮw Transcation Items AG ACT CDW ACW MINIMUM SUPPORT = 50% 1351 1135 $\{2|5|$ ACTW 1 Support Itemsets () CD 2 CDW (2456) 100% (6) C **TV)** (135) AT/ **AW** (1345 CD (2459 CT ACTW 3 1345 83% (5) W, CW ACDW 4 A, D, T, AC, AW 67% (4) CD, CT, ACW ACDTW 5 Ŷ AT, DW, TW, ACT, ATW **1** (12345) ð đ Ð. 50% (3) (1345) (123456) (2456) (1356) CDW, CTW, ACTW 6 CDT































- CloSpan [Yang&Han: sdm03]
  - Lexicographic sequence tree
  - Pruning!

| Seq ID. | Sequence                        |
|---------|---------------------------------|
| 0       | $\langle (af)(d)(e)(a) \rangle$ |
| 1       | $\langle (e)(a)(b) \rangle$     |
| 2       | $\langle (e)(abf)(bde) \rangle$ |

Given two sequences,  $s \sqsubseteq s'$  and also  $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$ , then  $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$ .





- CloSpan [Yang&Han: sdm03]
  - Lexicographic sequence tree
  - Pruning!

| Seq ID. | Sequence                                                                                                |
|---------|---------------------------------------------------------------------------------------------------------|
| 0       | $\langle (af)(d)(\underline{e})(\underline{a}) \rangle$                                                 |
| 1       | $\langle (e)(a)(b) \rangle$                                                                             |
| 2       | $\langle (\underline{e})(\underline{a}\underline{b}f)(\underline{b}\underline{d}\underline{e}) \rangle$ |

Given two sequences,  $s \sqsubseteq s'$  and also  $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$ , then  $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$ .





- CloSpan [Yang&Han: sdm03]
  - Lexicographic sequence tree
  - Pruning!

| Seq ID. | Sequence                                                |
|---------|---------------------------------------------------------|
| 0       | $\langle (\underline{af})(d)(e)(a) \rangle$             |
| 1       | $\langle (e)(a)(b) \rangle$                             |
| 2       | $\langle (e)(\underline{abf})(\underline{bde}) \rangle$ |

Given two sequences,  $s \sqsubseteq s'$  and also  $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$ , then  $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$ .





- CloSpan [Yang&Han: sdm03] <u>Seq ID.</u>
  - Lexicographic sequence tree
  - Pruning!

| Seq ID. | Sequence                        |
|---------|---------------------------------|
| 0       | $\langle (af)(d)(e)(a) \rangle$ |
| 1       | $\langle (e)(a)(b) \rangle$     |
| 2       | $\langle (e)(abf)(bde) \rangle$ |

Given two sequences,  $s \sqsubseteq s'$  and also  $\mathcal{I}(D_s) = \mathcal{I}(D_{s'})$ , then  $\forall \gamma, support(s \diamond \gamma) = support(s' \diamond \gamma)$ .





#### How to mine closed frequent sequences?

- Stage 1: Generate candidate sequences
  - -<u>PrefixSpan</u> + Pruning!  $\Rightarrow$  Prefix sequence lattice
- Stage 2: Eliminate non-close sequences
  - Hashing: size, s-id sum
    - Support equality
    - Subsumption check





- (a) backward sub-pattern
- (b) backward super-pattern P.6



#### How to mine closed frequent sequences?

- Stage 1: Generate candidate sequences
  - -<u>PrefixSpan</u> + Pruning!  $\Rightarrow$  Prefix sequence lattice
- Stage 2: Eliminate non-close sequences
  - Hashing: size, s-id sum
    - Support equality
    - Subsumption check





(a) backward sub-pattern



#### How to mine closed frequent sequences?

- Stage 1: Generate candidate sequences
  - -<u>PrefixSpan</u> + Pruning!  $\Rightarrow$  Prefix sequence lattice
- Stage 2: Eliminate non-close sequences
  - Hashing: size, s-id sum
    - Support equality
    - Subsumption check





(a) backward sub-pattern (



How well does CloSpan perform?





#### How well does CloSpan perform?





### Can we mine closed frequent sequences without candidate maintenance?

 $\square$ 





### Can we mine closed frequent sequences without candidate maintenance?

 $\square$ 

K





# Can we mine closed frequent sequences without candidate maintenance?

 $\square$ 



$$S_{1}: MP_{11}, MP_{12}, MP_{13}$$
$$S_{2}: MP_{21}, MP_{22}, MP_{23}$$
$$\dots$$
$$S_{n}: MP_{n1}, MP_{n2}, MP_{n3}$$

• FE={locally frequent items with full supports}

![](_page_29_Picture_5.jpeg)

- FE={locally frequent items with full supports}
- For prefix <u>ABC</u>, given  $C_1A_1A_2BC_2DA_3C_3E$ 
  - Last instance =  $C_1A_1A_2BC_2DA_3C_3$
  - $LL_i$ : the i-th last-in-last appearance  $S_1$ : MP<sub>11</sub>, MP<sub>12</sub>, MP<sub>13</sub>
    - $LL_1 = A_2, LL_2 = B, LL_3 = C_3$
  - MP<sub>i</sub>: the i-th maximum period
- $S_{1}: MP_{11}, MP_{12}, MP_{13}$  $S_{2}: MP_{21}, MP_{22}, MP_{23}$  $\dots$  $S_{n}: MP_{n1}, MP_{n2}, MP_{n3}$
- $MP_1 = C_1A_1$ ,  $MP_2 = A_2$ ,  $MP_3 = C_2DA_3$

- FE={locally frequent items with full supports}
- For prefix <u>ABC</u>, given  $C_1A_1A_2BC_2DA_3C_3E$ 
  - Last instance =  $C_1A_1A_2BC_2DA_3C_3$
  - $LL_i$ : the i-th last-in-last appearance  $S_1$ : MP<sub>11</sub>, MP<sub>12</sub>, MP<sub>13</sub>
    - $LL_1 = A_2, LL_2 = B, LL_3 = C_3$
  - MP<sub>i</sub>: the i-th maximum period
- $S_{1}: MP_{11}, MP_{12}, MP_{13}$  $S_{2}: MP_{21}, MP_{22}, MP_{23}$  $\dots$  $S_{n}: MP_{n1}, MP_{n2}, MP_{n3}$
- $MP_1 = C_1A_1$ ,  $MP_2 = A_2$ ,  $MP_3 = C_2DA_3$
- BE={items appearing in each of MP<sub>i</sub>, ∃i)}
  - Scan backward each of  $MP_i$ ,  $\forall i \Rightarrow ScanSkip$

#### $\square$

#### How does BIDE improve the mining efficiency?

![](_page_32_Figure_4.jpeg)

#### How does BIDE improve the mining efficiency?

BackScan: <u>ABC</u>, C<sub>1</sub>A<sub>1</sub>A<sub>2</sub>BC<sub>2</sub>DA<sub>3</sub>C<sub>3</sub>E
LF<sub>i</sub>: the i-th last-in-first appearance
LF<sub>1</sub> = A<sub>2</sub>, LF<sub>2</sub> = B, LF<sub>3</sub> = C<sub>2</sub>
SMP<sub>i</sub>: the i-th semi-maximum period
SMP<sub>1</sub> = C<sub>1</sub>A<sub>1</sub>, SMP<sub>2</sub> = A<sub>2</sub>, SMP<sub>3</sub> = Ø

![](_page_34_Figure_2.jpeg)

BackScan: <u>ABC</u>, C<sub>1</sub>A<sub>1</sub>A<sub>2</sub>BC<sub>2</sub>DA<sub>3</sub>C<sub>3</sub>E

LF<sub>i</sub>: the i-th last-in-first appearance
LF<sub>1</sub> = A<sub>2</sub>, LF<sub>2</sub> = B, LF<sub>3</sub> = C<sub>2</sub>
SMP<sub>i</sub>: the i-th semi-maximum period
SMP<sub>1</sub> = C<sub>1</sub>A<sub>1</sub>, SMP<sub>2</sub> = A<sub>2</sub>, SMP<sub>3</sub> = Ø

Be ∃i, e appears in each of SMP<sub>i</sub>

Stop projection!

### How does BIDE improve the mining efficiency?

#### BIDE (SDB, min\_sup, FCS)

Input: an input sequence database SDB, a minimum support threshold min\_sup

Output: the complete set of frequent closed sequences, FCS

1: 
$$FCS = \emptyset$$
;

- 2: F1=frequent 1-sequences(SDB, min\_sup);
- 3: for (each 1-sequence fI in FI) do
- 4: *SDB<sup>ff</sup>* = pseudo projected database (*SDB*);
- 5: for (each fl in Fl) do
- 6: if (!BackScan(f1, SDB<sup>#</sup>))
- 7: BEI=backward extension check (f1,  $SDB^{f1}$ );
- call bide (SDB<sup>II</sup>, f1, min\_sup, BEI, FCS);
- **9**: return *FCS*;

#### $\square$

#### How does BIDE improve the mining efficiency?

bide (S<sub>p</sub>\_SDB, S<sub>p</sub>, min\_sup, BEI, FCS) **Input**: a projected sequence database  $S_{a}$ \_SDB, a prefix sequence  $S_{a}$ , a minimum support threshold *min\_sup*, and the number of backward extension items BEI Output: the current set of frequent closed sequences, FCS 10: LFI =locally frequent items ( $S_a\_SDB_a$ ); 11:  $FEI = [z, m, LFI, ]z, \sup = \sup \mathcal{D}(S_{z})$ 12: if ((BEI + FEI) = 0)13:  $FCS=FCS \cup \{S_n\};$ 14: for (each i in LFI) do 15:  $S_{p}^{i} = \langle S_{p}, i \rangle$ ;  $SDB^{Spi}$  = pseudo projected database ( $S_{a} SDB, S_{a}^{i}$ ); 16: 17: for (each i in LFI) do if  $(!BackScan(S_n^i, SDB^{Spi}))$ 18:**B**EI=backward extension check  $(S_{\mu}^{i}, SDB^{S_{\mu}});$ 19: call  $bide(SDB^{Spi}, S_{p}^{i}, min_sup, BEI, FCS);$ 20:

![](_page_37_Picture_1.jpeg)

#### **Does BIDE perform much better?**

- BIDE/CloSpan significantly outperforms PrefixSpan/SPADE when support threshold is low
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- *BackScan* and *ScanSkip* techniques are very effective in enhancing the performance

![](_page_38_Picture_1.jpeg)

P.11

### **Does BIDE perform much better?**

- BIDE/CloSpan significantly outperforms SPADE **PrefixSpan/SPADE** when support thresholder
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- *BackScan* and *ScanSkip* techniques are very effective in enhancing the performance

![](_page_38_Figure_7.jpeg)

![](_page_39_Picture_1.jpeg)

### **Does BIDE perform much better?**

- BIDE/CloSpan significantly outperforms CloSpan PrefixSpan/SPADE when support threshold is low
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- BackScan and ScanSkip techniques are very effective in enhancing the performance

![](_page_39_Figure_7.jpeg)

![](_page_40_Picture_1.jpeg)

### **Does BIDE perform much better?**

- BIDE/CloSpan significantly outperforms <sub>CloSpan</sub> PrefixSpan/SPADE when support threshold is low
- BIDE consumes much less memory and can be an order of magnitude faster than CloSpan
- BIDE has linear scalability in terms of data size
- BackScan and ScanSkip techniques are very effective in enhancing the performance

![](_page_40_Figure_7.jpeg)

![](_page_41_Picture_1.jpeg)

#### $\square$

#### **Conclusion Remarks**

- Closed Frequent has the same expressive power as All Frequent, but provides more compact results and likely better efficiency.
- Integrated optimization techniques for *database* projection, search space pruning, and patternclosure checking are required.
- Move *candidate-maintenance-and-test* paradigm to a new paradigm without candidate maintenance

#### **Any Question?**

| Seq ID. | Sequence                        |
|---------|---------------------------------|
| 0       | $\langle (af)(d)(e)(a) \rangle$ |
| 1       | $\langle (e)(a)(b) \rangle$     |
| 2       | $\langle (e)(abf)(bde) \rangle$ |
| 3       | <(e)(b)(a)(bd)>                 |

#### My Questions...

![](_page_43_Picture_3.jpeg)

| Seq ID. | Sequence                        |
|---------|---------------------------------|
| 0       | $\langle (af)(d)(e)(a) \rangle$ |
| 1       | $\langle (e)(a)(b) \rangle$     |
| 2       | $\langle (e)(abf)(bde) \rangle$ |
| 3       | <pre>(e)(b)(a)(bd)&gt;</pre>    |

#### 

#### My Questions...

### My Questions...

![](_page_45_Picture_3.jpeg)

- BIDE
  - How to efficiently compute or maintain  $MP_i/SMP_i$ ?
  - Does it easily adapt BIDE to sequences of itemsets?

### My Questions...

![](_page_46_Picture_3.jpeg)

- BIDE
  - How to efficiently compute or maintain  $MP_i/SMP_i$ ?
  - Does it easily adapt BIDE to sequences of itemsets?
- What is the difference between Closed Frequent Sequences and Non-trivial Repeating Patterns?