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How to mine closed frequent itemsets?

• CHARM [Zaki: sdm02, kdd03]

– IT-tree

– Pruning!
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3. t(X)⊃ t(Y)→c(X)≠c(Y), but c(Y)=c(X∪ Y)
4. Otherwise→c(X)≠c(Y)≠c(X∪ Y) P.4



Closed Frequent Sequence Mining

How to mine closed frequent itemsets?

• CHARM [Zaki: sdm02, kdd03]

– IT-tree

– Pruning!

P.4

1. t(X)=t(Y)→c(X)=c(Y)=c(X∪ Y)
2. t(X)⊂ t(Y)→c(X)≠c(Y), but c(X)=c(X∪ Y)
3. t(X)⊃ t(Y)→c(X)≠c(Y), but c(Y)=c(X∪ Y)
4. Otherwise→c(X)≠c(Y)≠c(X∪ Y) P.4



Closed Frequent Sequence Mining

How to mine closed frequent itemsets?

• CHARM [Zaki: sdm02, kdd03]

– IT-tree

– Pruning!

P.4

1. t(X)=t(Y)→c(X)=c(Y)=c(X∪ Y)
2. t(X)⊂ t(Y)→c(X)≠c(Y), but c(X)=c(X∪ Y)
3. t(X)⊃ t(Y)→c(X)≠c(Y), but c(Y)=c(X∪ Y)
4. Otherwise→c(X)≠c(Y)≠c(X∪ Y) P.4



Closed Frequent Sequence Mining

How to mine closed frequent itemsets?

• CHARM [Zaki: sdm02, kdd03]

– IT-tree

– Pruning!

P.4

1. t(X)=t(Y)→c(X)=c(Y)=c(X∪ Y)
2. t(X)⊂ t(Y)→c(X)≠c(Y), but c(X)=c(X∪ Y)
3. t(X)⊃ t(Y)→c(X)≠c(Y), but c(Y)=c(X∪ Y)
4. Otherwise→c(X)≠c(Y)≠c(X∪ Y) P.4



Closed Frequent Sequence Mining

How to mine closed frequent itemsets?

• CHARM [Zaki: sdm02, kdd03]

– IT-tree

– Pruning!

P.4

1. t(X)=t(Y)→c(X)=c(Y)=c(X∪ Y)
2. t(X)⊂ t(Y)→c(X)≠c(Y), but c(X)=c(X∪ Y)
3. t(X)⊃ t(Y)→c(X)≠c(Y), but c(Y)=c(X∪ Y)
4. Otherwise→c(X)≠c(Y)≠c(X∪ Y) P.4



Closed Frequent Sequence Mining

How to mine closed frequent itemsets?

• CHARM [Zaki: sdm02, kdd03]

– IT-tree

– Pruning!

P.4

1. t(X)=t(Y)→c(X)=c(Y)=c(X∪ Y)
2. t(X)⊂ t(Y)→c(X)≠c(Y), but c(X)=c(X∪ Y)
3. t(X)⊃ t(Y)→c(X)≠c(Y), but c(Y)=c(X∪ Y)
4. Otherwise→c(X)≠c(Y)≠c(X∪ Y) P.4



Closed Frequent Sequence Mining

How to mine closed frequent itemsets?

• CHARM [Zaki: sdm02, kdd03]

– IT-tree

– Pruning!

P.4

1. t(X)=t(Y)→c(X)=c(Y)=c(X∪ Y)
2. t(X)⊂ t(Y)→c(X)≠c(Y), but c(X)=c(X∪ Y)
3. t(X)⊃ t(Y)→c(X)≠c(Y), but c(Y)=c(X∪ Y)
4. Otherwise→c(X)≠c(Y)≠c(X∪ Y) P.4



Closed Frequent Sequence Mining

• CloSpan [Yang&Han: sdm03]

– Lexicographic sequence tree

– Pruning!
• Common Prefix

• Partial Order

• Early Termination by Equivalence

What is a Closed Frequent Sequence?

P.5P.5



Closed Frequent Sequence Mining

• CloSpan [Yang&Han: sdm03]

– Lexicographic sequence tree

– Pruning!
• Common Prefix

• Partial Order

• Early Termination by Equivalence

What is a Closed Frequent Sequence?

P.5P.5



Closed Frequent Sequence Mining

• CloSpan [Yang&Han: sdm03]

– Lexicographic sequence tree

– Pruning!
• Common Prefix

• Partial Order

• Early Termination by Equivalence

What is a Closed Frequent Sequence?

P.5P.5



Closed Frequent Sequence Mining

• CloSpan [Yang&Han: sdm03]

– Lexicographic sequence tree

– Pruning!
• Common Prefix

• Partial Order

• Early Termination by Equivalence

What is a Closed Frequent Sequence?

P.5P.5



Closed Frequent Sequence Mining

How to mine closed frequent sequences?

• Stage 1: Generate candidate sequences

– PrefixSpan + Pruning! ⇒ Prefix sequence lattice

• Stage 2: Eliminate non-close sequences

– Hashing: size, s-id sum
• Support equality

• Subsumption check

P.6



Closed Frequent Sequence Mining

How to mine closed frequent sequences?

• Stage 1: Generate candidate sequences

– PrefixSpan + Pruning! ⇒ Prefix sequence lattice

• Stage 2: Eliminate non-close sequences

– Hashing: size, s-id sum
• Support equality

• Subsumption check

P.6P.6



Closed Frequent Sequence Mining

How to mine closed frequent sequences?

• Stage 1: Generate candidate sequences

– PrefixSpan + Pruning! ⇒ Prefix sequence lattice

• Stage 2: Eliminate non-close sequences

– Hashing: size, s-id sum
• Support equality

• Subsumption check

P.6P.6P.6



Closed Frequent Sequence Mining

How well does CloSpan perform?

• D10C10T2.5N10S6I2.5

P.7



Closed Frequent Sequence Mining

How well does CloSpan perform?

• D10C10T2.5N10S6I2.5

P.7

S6I2.5

P.7



Closed Frequent Sequence Mining
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without candidate maintenance?

• BIDE

– BI-Directional Extension
• Forward extension events
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• No BE
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• BackScan
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• BIDE/CloSpan significantly outperforms 
PrefixSpan/SPADE when support threshold is low

• BIDE consumes much less memory and can be an 
order of magnitude faster than CloSpan

• BIDE has linear scalability in terms of data size

• BackScan and ScanSkip techniques are very 
effective in enhancing the performance
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Conclusion Remarks
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• Closed Frequent has the same expressive power as 
All Frequent, but provides more compact results 
and likely better efficiency.

• Integrated optimization techniques for database 
projection, search space pruning, and pattern-
closure checking are required.

• Move candidate-maintenance-and-test paradigm to 
a new paradigm without candidate maintenance
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