
5th ACM SIGMM International Workshop on Multimedia

Information Retrieval

Efficient K-NN Search in Polyphonic Music Databases Using a Lower Bounding Mechanism
Ning-Han Liu, Yi-Hung Wu, Arbee L.P. Chen

Department of Computer Science, National Tsing Hua University

Hsinchu, Taiwan 300, R.O.C

ABSTRACT
Querying polyphonic music from a large data collection is an
interesting and challenging topic. Recently, researchers attempt
to provide efficient techniques for content-based retrieval in
polyphonic music databases where queries can also be
polyphonic. However, most of the techniques do not perform
the approximate matching well. In this paper, we present a
novel method to efficiently retrieve k music works that contain
segments most similar to the user query based on the edit
distance. A list-based index structure is first constructed using
the feature of the polyphony. A set of candidate approximate
answers is then generated for the user query. A lower bounding
mechanism is proposed to prune these candidates such that the
k answers can be obtained efficiently. The efficiency of the
proposed method is evaluated by real data set and synthetic data
set, reporting significant improvement over existing approaches
in the response time yielded.

Representation

Generation of Candidates (approximate answers)
λ Step1: For each event in the query, find the events with

similarity degrees above the threshold.

λ Step2: A candidate is generated from concatenating the
events, each from a distinct group, e.g., aba, aaa, abb, etc.

λ Step3: Evaluate the initial value of the lower bound (LB)
distance for each candidate.

Candidate array
λ Storing the deletion costs of the unmatched symbols

λ Initial LB distance = deletion costs + replacement costs

New Approach for Approximate String Matching

1D-List
λ Indexing: Each node in the linked list keeps a pair of

information (i,j), which indicates the j-th event of the i-th

music in the database.
λ Query processing: Every pair of nodes in two adjacent

linked lists is checked to build two kinds of links.

Query: xxya

λ Solid links indicate a segment in a music work that

exactly matches a part of Query.
λ Dotted links indicate a segment in a music work that

approximately matches a part of Query (i.e. insertion
costs).

Event pattern and MNI
λ While traversing the 1D-list, we can collect the

event-patterns and their intervals.

λ Interval is the minimum number of insertions.

Example

Adjustment of affected cells for an event-pattern

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 2 1 1 1

∑
=

+=
9

1
),(11),(

i
iqiq aacostSSLB 11

5

Affected cells

Event-pattern cell

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 2 5

Termination
The query processing terminates when none of the LB distances
is less than the maximum edit distance of the k possible
answers
CONCLUSION
This paper provides a novel approach to support approximate search in
the polyphonic music databases. In this approach, the candidate
approximate answers for a query are generated, followed by the
computation of the LB distances for efficient K-NN search. According
to the experiment results, this approach performs better than the
previous works using real data and synthetic data.The main
contribution of this paper is to provide an efficient K-NN search
method for the polyphonic music. Unlike the traditional methods
which use a predefined distance measure when taking account of the
efficiency, our approach provides a lower bounding mechanism to
efficiently derive the answers, given a flexibly defined distance
measure.

Data 1: a x x x b b y y a
Data 2: b b b x x x y a

a

1,1

1,9

b

1,5

1,6

2,1

2,2

2,3

x

1,2

1,3

1,4

2,4

2,5

2,6

y

1,7

1,8

2,7

Query: a b a

aba(0)
aaa(0.4)
abb(0.4)
bba(0.4)
aab(0.8)
baa(0.8)
bbb(0.8)
_ba(1)
a_a(1)
ab_(1)
bab(1.2)
_aa(1.4)
bb_(1.4)
aa_(1.4)
_bb(1.4)
a_b(1.4)
b_a(1.4)
b_b(1.8)
ba_(1.8)
_ab(1.8)
b(2)
a_ _(2)
_ _a(2)
_ _b(2.4)
b_ _(2.4)
a(2.4)

a b

1,5

1,6

2,1

2,2

2,3

a

1,1

2,8

Start End

(a) (b)

(c)

(d)

aaa(0.4)
bbb(0.8)
a_a(1)
_aa(1.4)
bb_(1.4)
aa_(1.4)
_bb(1.4)
b_b(1.8)
b(2)
a_ _(2)
_ _a(2)
_ _b(2.4)
b_ _(2.4)
a(2.4)
a_b(3.4)
abb(3.4)
aab(3.8)
ab_(4)
_ab(4.8)

a

Start

a a

End

bbb(0.8)
bb_(1.4)
_bb(1.4)
b_b(1.8)
b(2)
a_ _(2)
_ _a(2)
_ _b(2.4)
b__(2.4)
a(2.4)
a_b(3.4)
abb(3.4)
ab_(4)
_ab(4.8)

Start End

b

1,5

1,6

2,1

2,2

2,3

b

1,5

1,6

2,1

2,2

2,3

b

1,5

1,6

2,1

2,2

2,3

(e)

(f)

(g) (h)

(i)
Event-pattern Interval

ab

ba

3

infinite

Event-pattern Interval

ab

ba

3

infinite

aa infinite

Candidates Candidates Candidates

2,8

1,1

1,9

2,8

1,1

1,9

2,8

1,1

1,9

2,8

1,1

1,9

2,8

Suppose gap constraint=2

x

1,2

1,3

1,4

2,4

2,5

2,6

y

1,7

1,8

2,7

1,1

1,9

2,8

ax

1,2

1,3

1,4

2,4

2,5

2,6

Start End

Event-Pattern

ab

bc

abc

Interval

1

1

3

Data1: acb Data2: addbec

cd infinite

1:1

a

2:1

b c

1:3

2:4

1:2

2:6

2:2

2:3

d

Start End

1

2 1

Candidate: abcd

abcd infinite

Sq=aq1 aq2 x aq3 x aq4 x x aq5 x x aq6 x aq7 x aq8 x aq9 (query)

S1=a11 a12 a13 a14 a15 a16 a17 a18 a19 (candidate)

a11 a12 a13 a14 a15 a16 a17 a18 a19

0 1 1 2 2 1 1 1

∑
=

+=
9

1
),(9),(

i
i1qiq aacostSSLB 1

∑ ∑
= =

+=
n

i

n

i
iqiiq aaCLSSLB

0 1
),()(),(11 cost

a b

Query: aba

a
b a b

abcd
One dimension string

