GPON 984.3 Section 12-14 Reporter: 王依盈 94.10.26

Outline

- Security
- Forward Error Correction
- OMCI Transport Mechanism

Security

- Basic Threat Model
- Encryption System
- Key exchange and switch-over
- Forward Error Correction
- OMCI Transport mechanism

Basic Threat Model

- PON is highly directional
- Any ONU cannot observe the upstream traffic from the other ONUs on the PON
- Downstream data is broadcast to all ONUs
 - Eavesdropping threat: A malicious user wants to re-program his ONU such that he could listen to all the downstream data
 - Other exotic threats are not considered practically

Encryption system

- Advanced Encryption Standard (AES)
 - 128, 192, and 256 byte keys work with16-byte blocks of data
- Counter mode: a synchronized crypto-counter that is common to the OLT and all ONUs
 - Counter is 46 bits –upper 30 bits as inter-frame counter, lower 16 bits as intra-frame counter
 - Intra-frame counter is reset to 0 at the beginning of downstream frame, and is incremented every 4 bytes
 - Inter-frame counter is the same as the super-frame counter, ONU implements a synchronized counter in case of error

Encryption system (con't)

- In the case of ATM data: 48 bytes = 16 bytes * 3 (blocks)
- In the case of GEM fragments: the port-id header is not encrypted, the last data block (1-16 bytes in length) is also OK
- Generation of cipher-text
 - The cipher generates a stream of 16-byte pseudo-random cipher blocks
 - XOR with input text

The relationship between cipher block sequence and crypto-counter sequence

Key Exchange

- Initiate by the OLT sending *key_request_msg* in the PLOAM channel (divided into 2 pieces and sent 3 times)
- ONU responds by generating, storing, and sending the key
- All ONU transmissions of a particular key have the same value of Key_index
- Key_index is incremented for each key that the ONU generates upon request from OLT

Switch over

- Once OLT receives the key, it stores the key in the shadow_key_reg
- OLT chooses a frame number to be the first frame to use the new key
- OLT tells ONU the super-frame number of this frame using Key_switching_time msg (sent 3 times)
- At the beginning of the chosen frame, ONU will copy its shadow_key_reg into the active_key_reg, so OLT and ONU begin using the new key at precisely the same frame

Security

- Forward Error Correction
 - Reed-Solomon (Block based FEC)
 - Downstream FEC
 - Upstream FEC
 - Last Codeword
 - FEC synch and control
- OMCI Transport mechanism

Forward Error Correction

- Used by the transport layer in communication system
- Based on transmitting data in encoded format
- Encoding redundancy can decrease BER
- FEC results in an increased link budget, so higher bit rate and longer distance can be supported

Reed-Solomon

- RS is a block based code
- It takes a data block of constant size and adds extra 'redundant' bits at the end
- Detail is specified in ITU-T Rec. J.81
- RS(255,239)
 - Codeword is 255 bytes long, consists of 239 data bytes followed by 16 parity bytes
- Not efficient for very high BER

Downstream FEC

- The codeword begins with the framing section (PCBd), which is the first byte
- The next codeword will start after the 255th byte and will be repeated every 255 bytes
- When FEC is used, less bandwidth is available for user data

D/S FEC code synchronization

Frame sync at ONU

The Psync field of the PCBd remains unchanged during the encoding process

Codeword sync

 Once frame sync is achieved, codeword sync is also achieved

D/S FEC On/Off control

- The D/S FEC function can be activated/ deactivated at the OLT by operation system
 FEC indication bit is located in the IDENT field
- FEC detection at ONU receiver
 - Default value is off.
 - Four consecutive On/Off indication bits will change the FEC status at ONU

Upstream FEC

The Preamble and Delimiter fields of the PLOu are not included in the first codeword

U/S frame with FEC

Last codeword

- Pad extra zeros at the end of the last codeword
- Calculate parity bytes
- Remove the '0' pad bytes and transmit the codeword
- While receiving, OLT will reinsert the extra '0' bytes before decode it
- Following the decoding process, the extra bits are once again removed

ONT TX				_		
Original window:	ONT OH	Data bytes	Data bytes	Data bytes	Data bytes	
Window before encoder:	ONT OH	Data bytes	Data bytes	Data bytes	Data bytes	'0' Pad
encoded Window:	ONT OH	Data bytes	Data bytes	Data by	/tes	Parity Parity Parity Parity Parity
Tx ONT window:	ONT OH	Data bytes	Data bytes	Data by	/tes	Partity Partity
OLT RX						
Rx window at OLT:	ONT OH	Data bytes	Data bytes	Data by	/tes	Parity Parity Parity
Window before decoder:	ONT OH	Data bytes	Data bytes	Data by	/tes	Parity Parity Parity Parity
Decoded window:	ONT OH	Data bytes	Data bytes	Data bytes	Data bytes	'0' Pad
Output window:	ONT OH	Data bytes	Data bytes	Data bytes	Data bytes	

U/S FEC code synchronization

Transmission sync

- The preamble and delimiter fields are received unchanged at the OLT
- Codeword sync is not needed

Framing-word error

 Up to three or four errored bits are allowed in the delimiter (framing) word, if the delimiter is 16 or 20 bits long, respectively

U/S FEC On/Off control

- The U/S FEC function of the ONU can be activated/deactivated by the operation system via the OLT
 - OLT sets the ONU FEC status using the UseFEC bit in the FLAGS field
- FEC detection at OLT
 - Same as D/S
- For all special ONU-activation transmissions, no FEC will be applied

- Security
- Forward Error Correction
- OMCI Transport Mechanism

OMCI Transport Mechanism

- ONU Management and Control Interface
- Basic framework is given in ITU-T Rec.
 G.983.2
- OMCI operates on a dedicated bidirectional virtual channel between the management station and the ONU
- The management station can be the OLT itself or other network element

OMCI Transport Mechanism (2)

- Two transport modes: ATM and GEM
- OLT and ONU may support both or either one
- The OMCI primitive data units are 48bytes in length
 - ATM mode: datagrams are carried in the ATM cell payloads
 - GEM mode: payloads are encapsulated with a GEM header

OMCI Transport Mechanism (3)

- OMCI adapter at the ONU is responsible for
 - In the D/S: filtering and de-encapsulation either cells or frames
 - In the U/S: encapsulating the PDUs
- OMCI adapter at the control station is responsible for
 - In the D/S: encapsulating the PDUs from control logic to ONU
 - In the U/S: filtering and de-encapsulation cells and frames