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In this paper, we present an empirical approach for rendering realistic 
watercolor effects in real-time. While watercolor being a versatile media, 
several characteristics of its effects have been categorized in the past. We 
describe an approach to recreate these effects using the Kubelka-Munk 
compositing model and the Sobel filter. Using modern per-pixel shading 
hardware, we present a method to render these effects in an interactive frame-
rate. 
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1. Introduction 

While non-photorealistic rendering (NPR) is a relatively new field, many different 
approaches for variant styles have been proposed through the past decade. With 
increasing computational power and improving graphics hardware architecture, a 
number of approaches on implementing those effects in real-time has been proposed. 
So far, the real-time automation scene of the NPR field mainly focuses on simulating 
stroke-based effects, such as pencil hatching [14], pen-and-ink [15], engraving [6] etc. 
Medium that requires extensive cell-to-cell interaction of pigments, such as 
watercolor, is difficult to render in real-time realistically. 

 
In this paper, we followed the work of Curtis et al. [2], which characterizes several 

defining effect of watercolor. We propose a system that can render these effects in 
real-time, with the assistance of per-pixel shading hardware. We also demonstrate the 
use of Sobel filter for simulating edge darkening and granulation characteristics of 
watercolor. 

1.1. Related Work 

The pioneering work of Small [1] used a Connection Machine to simulate 
watercolor. Curtis et al. [2] used a similar approach, which used an improved physical 
simulation model to achieve more realistic effects. Their method, while looks realistic 
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and physically sound, requires too much computation to achieve an interactive frame-
rate.  Inspired by the work of Lake et al. [5], we use a “color-band” approach instead 
of simulating fluid and pigment interaction for each frame. Such color-band is defined 
by using a simplified Lit-sphere [4] interface. We use a pigment-blending model 
based on the Kubelka-Munk [3] (KM) model to simulate the composition of different 
pigments. 

 
One of the most obvious effects of watercolor is edge darkening, i.e. a dark deposit 

at the edge of a wet-on-dry stroke. Intuitively, recreating this effect as a post-process 
is similar to the silhouette-finding problem. While silhouette sketching is a well-
understood field [9, 13], conventional methods focus on finding the silhouette of a 
geometric model. Instead we use the Sobel filter [18] to find the edge of every painted 
region efficiently. The work of Nienhaus et al. [8] describes a possibility to use 2D 
image processing process to enhance result in real-time, and we implement our Sobel 
filter in a similar approach. 

 
Recently some commercial applications and games used the Kuwahara filter [16] 

to create a watercolor style NPR. While this technique is fast, it failed to recreate the 
rich appearance of watercolor paintings, which depends on the KM model. 

1.2. Organization 

The rest of this paper is organized as follows. The next section reviews the 
characteristics of watercolor, as described by Curtis et al., and provides an overview 
of our approach. In section 3 we describe the system details of our implementation. 
We present the results and performance evaluation in Section 4. 

2. Overview 

Curtis et al. categorized several distinctive effects of watercolor: edge darkening, 
backruns, granulation, flow effects and glazing. Since our implementation is an 
automated system for creating artistic imagery, there are a few assumptions on when 
and where to apply such effects. 

2.1. Watercolor Effects 

Edge darkening is the key effect that most artists rely upon, and one of the most 
defining characteristics of watercolor. It is created when the pigment migrates from 
the interior of a wet region towards its edges as the paint begins to dry, leaving a dark 
deposit at the edge. We treat the entire painted area as the wet region, and add the 
darken edge by applying the Sobel filter. 

 
Granulation of pigment creates a grainy texture concentrated on the peaks and 

valleys in the paper. The amount of granulation varies from paper to paper. We 
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simulate the granulation effect by specifying a granulation constant for each kind of 
pigment, and use the paper texture and the Sobel filter to emphasize this effect. 
 

Backrun is the effect when water is added to a wet painted area, carrying pigment 
along outwards, leaving a darkened, branched shape. Flow effect is observed when 
wet paint is applied on wet paper. The wet surface allows the pigment to spread 
freely, leaving a soft branching pattern. Color glazing is the process of adding thin 
layers of watercolor, causing pigments to be mixed optically.  

 
We treat the backrun, flow effect and glazing as a universal effect. We simulate 

these effects by using a “color-band” approach. The color-band is a one-dimensional 
texture, which is created by mixing different amount of pigments in user-specified 
position. The color-band is then mapped onto the geometry using Lake et al.’s cartoon 
shading [5]. Additional flow effect is simulated in real-time using pixel-shader 
hardware. 

2.2. Approach 

Our system is divided into two phases: Color-band specifying and watercolor 
shader. The color-band specifying phase lets the user create a color-band for each 
object in the scene, using an isotropic lit-sphere interface [4]. The lit-sphere interface 
is set on top of a watercolor simulation engine, created using Curtis et al.’s water-
flowing model [2]. In this stage, the flowing effect, backrunning and glazing are 
simulated as the user literally paints in the lit-sphere interface. 

 
The watercolor shader is the main phase in our automated system. Using per-pixel 

shading hardware, we simulate edge darkening, granulation, paper texture and further 
flowing effects using shader programs. Details of the hardware-shader are discussed 
in section 3. A diagram is shown in Figure 1 to illustrate the various stages in our 
system. 

2.2.1. Color-band Specifying 
As mentioned in section 1, we use the Kubelka-Munk (KM) model [3] to perform 

the optical mixing of pigments. Each pigment is assigned a set of absorption 
coefficients and scattering coefficients, and a granulation constant. We use the KM 
model to compute the resulting color in RGB space. 
 

User can choose from a range of pigments in the pigment library, and the mixture 
amount of each pigment. The pigment is then applied to the lit-sphere via a virtual 
paintbrush, and the flowing and mixing of different pigments is simulated.  Flowing 
effect is isotropic since the paper texture is not simulated in this stage. 

 
After the user finished painting on the lit-sphere, a one-dimensional color-band 

will be calculated by sampling an arbitrary angle along the sphere’s radius. Along 
with the resulting color in RGB, a granulation variable is also stored in the color-band 
as the alpha value. The granulation variable defines how visible the granulation effect 
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will be.  It is the sum of the granulation constant for each pigment multiplied by the 
intensity (‘thickness”) of said pigment in each cell. 

 

 
Fig. 1. System Diagram 

3. System Details 

The automatic rendering system takes the original 3D geometric models as the 
input, and apply the watercolor stylization to the 3D scene using vertex and fragment 
shaders. 

 
The shaders we used are written in the NVIDIA Cg language [7]. Two shader 

scripts are used in generating our watercolor effect. First we take the 3D objects and 
the color-band to generate a color-map and a granulation-map using a vertex shader 
script. Then we process the color-map using a fragment shader. The shader takes the 
color-map and a paper-texture as the inputs. It combines them with a Sobel edge map, 
which is generated by the shader, to create various watercolor effects. 

3.1 Vertex Shader 

This part is similar to Lake et al.’s cartoon shading [5]. We return the result of the 
Phong shading function as a texture coordinate.  
TexCoord0 = (Diffuse*(N∙L) + Specular*(N∙H)); 

Where N is the normal vector, L is the light vector and H is the halfway vector 
between the eye vector and light vector. Diffuse and Specular are the amount of 
diffuse and specular reflection. In our experiment both are set to 1. 

 
The script is run twice: first pass takes the RGB element of the color-band as the 

input, and returns a color-map. Second pass takes the alpha value of the color-band 
(which stores the granulation variable) as the input, and returns a granulation-map.  
Both maps are created using OpenGL’s render-to-texture capability, and used as the 
input for the fragment shader. 
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3.2 Fragment Shader 

In this stage, we take the color-map, granulation-map and the paper texture as 
input. This shader processes the color-map and returns a watercolor styled image, 
which is our final result. The paper texture is a 2D texture and is treated as a height 
field. It can be specified by the user or generated using Worley’s cellular texturing 
process [17].  

 
When wet watercolor paint is applied on dry paper, there is a wobbling effect along 

the edge of the stroke, due to the raggedness of the paper. We simulate this effect first 
by distorting the color-map using the paper-texture.  
colormap_coord = coord+((tex2D(paper_map,coord)-M/2)*D) 

Where coord is the current texture coordinate, M is the mean luminance of the 
paper texture, D is the amount of distortion. In our experiment M=0.8, D=0.0125. 

 
Then we need to refine the image for processing with the Sobel filter. As 

mentioned in section 2, we use the Sobel filter to create the edge-darkening and 
granulation effects. Therefore we subtract an amount of paper-texture from the 
original color. The amount of subtraction depends on the granulation-map. The 
higher the granulation value, the more we subtract from the original color. We call the 
result in this stage a Sobel color-map. 
Sobel_colormap = org_color –  

(tex2D(paper_map, coord)*tex2D(gran_map, coord)*G) 

Where org_color is the original color in color_map distorted by the paper texture. 
G is the weight of granulation effect. In our experiment G=0.5. The Sobel filter 
detects the discontinuities of the Sobel color-map. We intentionally create 
discontinuities where granulation value is high. When the Sobel filter is applied on 
the Sobel color-map, the resulting edge map will help us create the edge-darkening 
and granulation effects simultaneously.  

 
After processing the Sobel color-map with the Sobel filter (code of which is 

included in Appendix), finally we put all the results together. 
out_color = (1-W) + org_color*W – paper_map*P – 

sobel_edge_map*S 

The result is a weighed sum of the original color (after distortion), the paper color, 
and the Sobel edge map, weighted W, P and S respectively. In our experiment, we set 
W = 0.6, P = 0.1, S = 0.3. 

4. Results and Discussion 

We used three sample scenes as our example, shown in Figure 2 and 3. In the 
“Teapot” scene, we can see that by using the KM model, we can create rich 
watercolor-style mixing of colors. In the “Bamboos” scene, we can see that even with 
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a simple light-to-dark color-band, our shader can still produce stylish results similar to 
hand-drawn paintings. 
 

 
Fig. 2. (Left) Fruit and Vase, 7880 polygons. Notice the different amount of granulation in 
different paints. (Right) Bamboos, 11080 polygons. Notice how the 2D texture distortion 
creates the wobbling effect. 

 
Fig. 3. Teapot, 4096 polygons.  

4.1 Performance  

We have tested our application on a Pentium 4 3.0GHz machine with an NVIDIA 
GeForce 5900FX graphics board. All scenes run at about 20 frames-per-second in 
resolution of 512*512 pixels. The performance depends more on the rendering 
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resolution than the number of polygons, since the fragment shader must perform its 
operation for every pixel.  

4.2 Conclusions and Future Work 

We have introduced a relatively simple approach to render realistic watercolor 
effects in real-time. We demonstrated by using a combination of color-band shading 
and the effective use of Sobel filter and 2D scene distortion, we can give the scene a 
stylish appearance. 

 
For now the flowing effect is simulated only by the color-band and texture 

distortion. In the future we will try to create a more realistic effect using texture splats 
[11]. 
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Appendix  – Sobel filter implemented by fragment shader 

#define SOBEL_COLOR ORG_COLOR-(tex2D(paper_map, 
coord)*tex2D(gran_map, coord)*G) 

float2 coord = tCoords; 
coord.x = tCoords.x-offset; coord.y = tCoords.y-offset; 
float3 color00 = SOBEL_COLOR; 
coord.x = tCoords.x; coord.y = tCoords.y-offset;  
float3 color01 = SOBEL_COLOR; 
coord.x = tCoords.x+offset; coord.y = tCoords.y-offset;  
float3 color02 = SOBEL_COLOR; 
coord.x = tCoords.x-offset; coord.y = tCoords.y;  
float3 color10 = SOBEL_COLOR; 
coord.x = tCoords.x; coord.y = tCoords.y;  
float3 color11 = SOBEL_COLOR; 
coord.x = tCoords.x+offset; coord.y = tCoords.y;  
float3 color12 = SOBEL_COLOR; 
coord.x = tCoords.x-offset; coord.y = tCoords.y+offset;  
float3 color20 = SOBEL_COLOR; 
coord.x = tCoords.x; coord.y = tCoords.y+offset;  
float3 color21 = SOBEL_COLOR; 
coord.x = tCoords.x+offset; coord.y = tCoords.y+offset;  
float3 color22 = SOBEL_COLOR; 
float3 Sobel_x = (-1)*color00+(-2)*color01+(-1)*color02 
 +(1)*color20 + (2)*color21 + (1)*color22; 
float3 Sobel_y = (-1)*color00+(-2)*color10+(-1)*color20 
 +(1)*color02 + (2)*color12 + (1)*color22; 
float3 Sobel_edge_map = abs(Sobel_x)+abs(Sobel_y); 

Where offset is the size of a cell in the Sobel filter, which is 1/(color_map.width). 


