
Enhancing 3D Graphics on Mobile Devices by Image-
Based Rendering

Chun-Fa Chang and Shyh-Haur Ger

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan, R.O.C.
chunfa@cs.nthu.edu.tw

Abstract. Compared to a personal computer, mobile devices typically have
weaker processing power, less memory capacity, and lower resolution of display.
While the former two factors are clearly disadvantages for 3D graphics applica-
tions running on mobile devices, the display factor could be turned into an advan-
tage instead. However the traditional 3D graphics pipeline cannot take advantage
of the smaller display because its run time depends mostly on the number of poly-
gons to be rendered. In contrast, the run time of image-based rendering methods
depends mainly on the display resolution. Therefore it is well suited for mobile
devices. Furthermore, we may use the network connection to build a client-server
framework, which allows us to integrate with non-image-based rendering pro-
grams. We present our system framework and the experiment results on Pock-
etPC® based devices in this work.

1. Introduction

With the recent advances in processing power and memory capacity, small portable
or handheld devices have emerged as a popular computing platform. Nowadays,
typical handheld devices are capable of supporting graphical user interface, audio and
video playback, and wireless communication. These new capabilities also open up
new areas of applications for handheld devices.

However, rendering three-dimensional (3D) graphics on handheld devices is still
considered a formidable task. Because of the vast computational power that is re-
quired by 3D graphics applications, even a desktop personal computer or workstation
often replies on dedicated hardware and architecture design (such as Intel AGP inter-
face) for 3D graphics to achieve real-time performance. Currently those dedicated
hardware supports are still lacking in handheld or mobile devices.

There are actually several implementations of the traditional polygon-based 3D
graphics pipeline on mobile devices today. Two examples are the miniGL [6] on
Palm OS platform and Pocket GL [8] on Microsoft PocketPC platform. They are
both subsets of the popular OpenGL API [7]. Currently their performances are still
limited. The performance of Pocket GL is considerably faster than miniGL, mostly
due to the fact that the PocketPC devices have more processing power than the Palm

devices. Even so, the polygon counts of 3D models that Pocket GL can display at in-
teractive rates are still limited.

This reveals a fundamental issue of the polygon-based 3D graphics pipeline: its
rendering time increases linearly with the number of polygons that enter the pipe-
line. Although we may expect future generations of mobile devices to be equipped
with more processing powers, there will also be more complex models with higher
polygon counts to be rendered.

In this paper we explore an alternative approach, image-based rendering, to
achieve the 3D graphics capability on mobile devices. Unlike the polygon-based 3D
graphics pipeline, the rendering time of image-based rendering depends on the
screen resolution of the output images rather than the complexity of the input mod-
els. This offers a potential advantage for mobile devices that typically have small
display areas.

We also present a client-server framework for mobile devices that we equipped
with networking capability, e.g., via the IEEE 802.11b based wireless network. Us-
ing our framework, a 3D graphics programs (which do not need to use image-based
rendering) running on a desktop computer may be integrated with our system to in-
teract with users on mobile devices. This can simplify the process of developing 3D
graphics software on mobile devices and offer a way to offload part of the 3D ren-
dering task to the server.

2. The 3D Warping Algorithm

Fig. 1. An example of input depth images. Left: the color components. Right: the depth compo-
nents.

The image-based rendering technique that we use in our work is McMillan’s 3D
warping method [4][5]. The inputs to 3D warping are depth images, which are 2D
color images containing depth information at each pixel. Each depth image also
contains a viewing matrix (3×4 as described in [5]) that describes the camera or
viewing setup. Figure 1 shows an example where the image on the left shows the

color components of the depth image and the image on the right shows the depth
components in grayscales.

Compared to the traditional 3D graphics pipeline, 3D warping demands much less
computing power. The core of the 3D warping algorithm is the following warping
equation:

),(),(
111

111

111

111
22 lkjviu

hgfveu
lkjviu
dcbvau

vu
δ
δ

δ
δ

+++
+++

+++
+++

=
(1)

The warping equation calculates the coordinates (u2, v2) on output image for each
input pixel at (u1, v1). The variable δ1 is the depth information (or the disparity) of
the input pixel. The variables a through l are controlled by the viewing matrices of
the input and output images. They are recomputed only when the view of either the
input or the output image changes. Therefore they remain constant across pixels of
the same output image.

Because the warping equation is computed once for each pixel, the time complex-
ity of 3D warping is O(n2) where n represents the image resolution in horizontal or
vertical direction. It is independent of the scene complexity that is usually measured
by the number of polygons in the scene. Although the image resolution refers to the
input image here, it is actually more closely related to the output image as demon-
strated at [1]. This is good news for the small screen sizes of typical mobile devices.
Furthermore, the warping equation is easy to compute as it involves only 20 arithme-
tic operations1.

When there is only a single input image, the output image is likely to exhibit the
occlusion (or exposure) artifact, which is caused by revealing parts of the 3D scene
that are occluded in the input image. To avoid such a problem, the input data format
may be extended in a fashion that is similar to the Layered Depth Image [11] or Lay-
ered Depth Cube [3]. We implement the Layered Depth Image in our system. How-
ever, in order to simplify the discussion, we describe our work as if regular single-
layered depth images were used (except when we present the results).

3. System Framework

First, we describe the stand-alone (non-networked) version of our system, which
consists of two parts: a model constructor and an interactive warper. Their roles are
described in Sections 3.1 and 3.2. Then we describe in Section 3.3 how it is ex-
tended to a client-server framework when network connection is available.

1 Note that the two denominators in the warping equation are the same.

3.1. Model Constructor

Usually the 3D models to be displayed are initially provided by the users as a set of
polygons. The job of the model constructor is to convert those 3D models into
depth images that are amicable to 3D warping. The model constructor can be con-
sidered as a preprocessing step. Therefore it may run on desktop computers rather
than on mobile devices. There are many ways to construct the depth images from 3D
polygons. In this paper, we modify the POV-RAY ray-tracing program [9] to build
the depth images. An alternative is to render the 3D models in OpenGL [7], then
combine the resulting frame buffer and depth buffer into a depth image.

The file format of our depth images is simply a concatenation of the image size,
the viewing matrix, the color components, and the depth components. No data com-
pression is currently used.

3.2. Interactive Warper

The actual 3D warper runs on mobile devices to accept user input and display the
new views interactively. It is an implementation of the 3D warping algorithm that
were described in Section 2.

If we traverse the pixels of an input depth image in a particular order, then we can
guarantee that the pixels are warped to the output image in back-to-front order. This
technique is called the occlusion compatible order by McMillan in [5], and is im-
plemented in our system. Its implementation also means that we do not need the Z-
Buffer for hidden surface removal.

The warping equation involves floating-point arithmetic. However most mobile
devices do not have floating-point units in their processors. Therefore we use fixed-
point number representations in our warping equation, which results in about 350%
speedup. (The frame rate improves from about 1.7 frame/second to about 6.0
frame/second in one of our tests.)

When an input pixel is warped to the output image, we simply copy its color to the
new output pixel. This could produce gaps between neighboring pixels such as those
shown in Figure 2. We can avoid those artifacts by drawing each pixel as a circle
that is slightly larger than a pixel, or by using the splatting techniques described in
[13] or [10]. However splatting is not currently implemented in our system. We
plan to support it in the future using a look-up table method similar to [11].

3.3. Extension to a Client-Server Framework

In Sections 3.1 and 3.2, we have described the stand-alone (non-networked) version
of our system. Once the input depth images are constructed, they are loaded to the
mobile devices and become static. However this is no longer the case if the net-
working capability is available on the mobile devices.

When the mobile devices are equipped with networking capability, we can build a
client-server framework, where the client is the interactive 3D warper running on

mobile devices and the server is a dynamic model constructor running on a more
powerful computer such as a desktop workstation. In this framework, the user’s
interactions with the client are periodically sent to the server via the network. Then
the server updates the depth image based on user’s current view and transmits the
new depth image to the client. The features of this client-server framework are:
1. The client can hide the network latency by performing 3D warping to update the

display at interactive rates. Even when the network is down and the server fails to
update the input depth image, the client can still work in stand-alone mode.

2. The server may take advantage of the specialized 3D graphics hardware on the
desktop workstations.

3. Most importantly, the client-server framework makes it possible to modify an ex-
isting 3D graphics program (on desktop computers) to display its results and in-
teract with users on mobile devices.

4. Results

For the stand-alone version, we modify the POV-RAY program to produce depth im-
ages for our 3D warper. The depth images are generated on desktop computers and
then downloaded to mobile devices where the 3D warper resides. We build and test
our 3D warper on Microsoft PocketPC® -based mobile devices, such as the Compaq
iPaq H3800 series Pocket PC.

The output images may be displayed via either the GDI functions or the Game API
[2] of Windows CE. We opt for the Game API because we found that the GDI func-
tions incur too much operating system overhead.

Figure 2 shows results of the 3D warper using the input model that is shown in
Figure 1. The original 3D model contains more than 37,000 primitives, which would
be too complicated to be rendered interactively on current mobile devices using the
traditional 3D graphics pipeline. However our system is able to render it at the
speed of 5.9 to 6.2 frames per second on a 206MHz StrongArm processor based
system.

We also implement the layered depth images in our work. Figure 3 shows how
the layered depth images reduce the occlusion artifacts.

For the networked (client-server) version, we modify an OpenGL program to con-
tinuously generate depth images from the frame buffer (including the depth buffer).
The OpenGL program acts as our server and communicates with the client program
on an iPaq Pocket PC via IEEE 802.11b based wireless network. Whenever a depth
image is ready, the server sends it to the client and queries the client for the current
user’s view, which is used to generate the next depth image. The client simply uses
the most recently received depth image as the input data and performs 3D warping to
update the display at interactive rates, regardless how fast the input depth image can
be updated. Figure 4 shows the results. The image on the left shows the user
changes his/her view on the Pocket PC. The image on the right shows that the server
program has updated its view accordingly and the newly generated depth image is
now used on the client.

Fig. 2. Output images (in 240×180 resolution) of the 3D warper for two different user’s views.
The input model is described in Figure 1.

Fig. 3. Using layered depth images can reduce the occlusion artifacts. The image on the left is
produced with a regular single-layered depth image. The image on the right is produced with a
layered depth image that combines images from four different views.

Fig. 4. The networked version of our system at work. The image on the left shows that the user
is changing his/her view on the Pocket PC. The image on the right shows that the server program
has updated its view accordingly and the newly generated depth image is used on the client.

5. Conclusions and Future Work

We have presented an alternative approach to accomplish 3D rendering on mobile
devices. It takes advantage of the smaller display areas of mobile devices and is ca-
pable of rendering complex 3D models because its performance does not degrade
for 3D models with large polygon counts.

This work also represents the first step in our ongoing effort to build a client-
server 3D rendering framework for mobile devices in networked environment. In
the future, we hope to release a library that will requires only minimal effort to port
any existing 3D rendering program such as those written in OpenGL or DirectX to
interact with users on mobile devices, without the users noticing that most of the
rendering is actually done on a remote server.

6. Acknowledgement

We would like to thank Professor Shi-Nine Yang for pointing out some interesting
3D graphics applications on mobile devices. Thanks also to Zhe-Yu Lin and Yi-Kai
Chuang for various help in programming. This work is supported by R.O.C. DOE
Grant 89-E-FA04-1-4 (Program for Promoting Academic Excellence of Universi-
ties) and NSC Grant 91-2213-E-007-032.

References

1. Chun-Fa Chang, Gary Bishop and Anselmo Lastra. “LDI Tree: A Hierarchical Representation
for Image-Based Rendering”. In SIGGRAPH 1999 Conference Proceedings, pages 291–
298, August 1999.

2. The Game API website: http://www.pocketpcdn.com/sections/gapi.html
3. Dani Lischinski and Ari Rappoport. “Image-Based Rendering for Non-Diffuse Synthetic

Scenes”. Rendering Techniques ‘98 (Proc. 9th Eurographics Workshop on Rendering),
June 29–July 1, 1998.

4. Leonard McMillan and Gary Bishop. “Plenoptic Modeling: An image-based rendering sys-
tem”. In SIGGRAPH 95 Conference Proceedings, pages 39–46, August 1995.

5. Leonard McMillan. An Image-Based Approach to Three-Dimensional Computer Graphics.
Ph.D. Dissertation. Technical Report 97-013, University of North Carolina at Chapel Hill, De-
partment of Computer Science, 1997.

6. MiniGL by Digital Sandbox, Inc. The miniGL website: http://www.dsbox.com/minigl.html
7. OpenGL website: http://www.opengl.org
8. PocketGL website: http://www.sundialsoft.freeserve.co.uk/pgl.htm
9. POV-RAY website: http://www.povray.org
10. Szymon Rusinkiewicz and Marc Levoy. “QSplat: A Multiresoluton Point Rendering System

for Large Meshes”. In SIGGRAPH 2000 Conference Proceedings, pages 343–352, July
2000.

11. Jonathan Shade, Steven Gortler, Li-wei He and Richard Szeliski. “Layered Depth images”. In
SIGGRAPH 98 Conference Proceedings, pages 231–242, July 1998.

12. S. Teller and C. Sequin. “Visibility Preprocessing for Interactive Walkthroughs” In
SIGGRAPH 91 Conference Proceedings, pages 61–70, July 1991.

13. Lee Westover. SPLATTING: A Parallel, Feed-Forward Volume Rendering Algorithm.
Ph.D. Dissertation. Technical Report 91-029, University of North Carolina at Chapel Hill.
1991.

