Chapter 1

Introduction

The Blue Moon Rendering Tools (BMRT) are a collection of programs that render
3-D scene models.

BMRT uses some APIs that are very similar to those described in the published
RenderMan Interface Specification. However, BMRT is not associated with Pixar,
and no claims are made that BMRT is in any way a compatible replacement for Ren-
derMan. Those who want a licensed implementaion of RenderMan should contact
Pixar directly.

Despite these technical /legal terms, you may find that most applications, scene
files, and shaders written to conform to the RenderMan Interface can also use BMRT
without modification.

This document is intended for the reader who is familiar with the concepts of
computer graphics and already is fluent in both the RenderMan procedural inter-
face and the RIB archival format (due to BMRT’s similarities to that published
specification). For more detailed information about the RenderMan standard, we
recommend Advanced RenderMan: Creating CGI for Motion Pictures by Anthony
Apodaca and Larry Gritz, The RenderMan Companion by Steve Upstill, or the offi-
cial RenderMan Interface Specification, available from Pixar. All of these texts are
fully detailed and clearly written, and no attempt will be made here to duplicate
the information in these references.

The parts of BMRT you’ll most likely use are outlined below:

rgl A previewer for RIB files which runs on top of OpenGL. Primitives display as
lines or Gouraud-shaded polygons.

rendrib A high quality renderer which uses some of the latest techniques of radios-
ity and ray tracing to produce near photorealistic images.

sle A compiler for shaders, allowing you to write your own procedures for defining
the appearance of surfaces, lights, displacements, volume attenuation, and
pixel operations.

mkmip A program to pre-process texture, shadow, and environment map files for
more efficient access during rendering.

col orspheres. c

/*
SA
cc -n32 -1../include col orspheres.c -L../lib -Iribout -o col orspheres
Li nux:
cc -1../include colorspheres.c -L../lib -Iribout -0 col orspheres
W n32:
cl /1..\include /c col orspheres.c
link col orspheres.obj ..\lib\libribout.lib /out:col orspheres. exe
*/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i nclude <ri.h>

#def i ne NFRAMES 100
#defi ne NSPHERES 4
#def i ne FRAMEROT 15. Of

voi d
Col or Spheres(int n, float s)
{

int x, vy, z;
Rt Col or col or;

if(n <=0) {
return;
Ri AttributeBegin();

Ri Transl ate(-0.5f, -0.5f, -0.5f
Ri Scal e(1.0f/n, 1.0f/n, 1.0f/n);

for (x =0; x <n
for (y =0; y <n; y++) {
for (z =0; z < n; z++) {

color[0] = ((float) x+1) / ((float) n);
color[1] = ((float) y+1) / ((float) n);
color[2] = ((float) z+1) / ((float) n);

Ri Col or (col or);

Ri Tr ansf or nBegi n() ;

Ri Transl at e(x+. 5f, y+.5f, z+.5f);

Ri Scal e(s, s, s);

Ri Sphere(0.5f, -0.5f, 0.5f, 360.0f, Rl _NULL);
Ri Tr ansf or nEnd() ;

}
Ri AttributeEnd();

return ;

int main(int argC, char** argV)

Rtint frane;

float scale;

char fil enane[64];

char* renderer = Rl _NULL;

Page 1

col orspheres. c
if (argC!=2) {
fprintf(stderr,
"USAGE: % ribFile|rgl|rendrib\n\n",
_ argV[0]);
exit (-1);

renderer = argV[1];
[* if the variable renderer is "rgl" or "rendrib", RiBegin() wll

attenpt to start up that renderer and pipe its output directly to
that renderer. Since RiDisplay is set to put its output to the

franebuffer, that renderer will attenpt to open the franebuffer
and render directly toit. |If the variable renderer is set to
some other value, RiBegin() will open that as a file and put the

RIB conmands in it.
*/

Ri Begi n(renderer);

for (franme = 0; franme <= NFRAMES; frane++) ({
sprintf(filenane, "col orSpheres. %03d.tif"

Ri FraneBegi n(frane);

, franme);

Ri Proj ection("perspective", R _NULL);
Ri Transl ate(0.0f, 0.0f, 1.5f);
Ri Rot at e(40.0f, -1.0f, 1.0f, 0.0f);

Ri Di spl ay(filenane, R _FRAMEBUFFER, Rl _RGBA, Rl _NULL);
Ri Format ((Rt1nt)256, (RtInt)192, -1.0f);
Ri Shadi ngRat e(1. 0);
Ri Wor | dBegi n() ;
Ri Li ght Source("distantlight", R _NULL);
Ri Sides((RtInt)1);
scale = (float) (NFRAVES- (franme-1)) / (fl oat) NFRAMES;
Ri Rot at e(FRAMEROT*frane, 0.0f, 0.0f, 1.0f);
Ri Surface("plastic", RI_NULL);
Col or Spher es(NSPHERES, scal e);

R Wor | dEnd() ;
Ri FranmeEnd() ;

}
Ri End();

return 1;

Page 2

light source

E@view point

surface
dPav

Figure 14.1 Surface position, normal, and parametric derivatives

Surface position and change

The point value P represents the position of the point being
shaded in world space, and Ng is the geometric normal vec-
tor, perpendicular to the surface, at that point. The shading
normal vector N is by default equal to Ng, but may be different
for shading purposes. If a displacement shader changes the
surface normal, it usually works on N and leaves Ng alone.

Parameter space

The floating-point values u and v give the position of the cur-
rent point on the current surface in parameter space. The
points dPdu and dPdv are parametric derivatives, giving the
derivative of surface position P with respect to u and v, respec-
tively. The surface normal Ng is defined to be the cross-prod-
uct of these two vectors. u and v always range between exactly
0 and 1 on all surfaces except polygons.

Figure 14.1 illustrates P, Ng, dPdu and dPdv. The normal vec-
tor Ngis the cross product of dPdu and dPdv by definition.

Texture space

The floating-point values s and ¢ give the texture-space coordi-
nates of the current point on the surface. They may be used to

Data 293

Table 14.2 lists each predefined global variable available to sur-
face shaders, together with its data type, storage class and a
summary of its meaning. Different sets of global variables are
available to other shader types. They appear in Table 14.3.

Type | Name | Storage Class | Purpose

color Cs varying/uniform | Surface color (input)

color Os varying/uniform | Surface opacity (input)

point P varying Surface position

point dPdu varying Change in position with u

point dPdv varying Change in position with v

point N varying Surface shading normal

point Ng varying/uniform | Surface geometric normal

float uyv varying Surface parameters

float dudv | varying/uniform | Change in 1,0 across element

float st varying Surface texture coordinates

color L varying/uniform | Direction from surface to light source

color cl varying/uniform | Light color

point 1 varying Direction of ray impinging on
surface point (often from camera)

color Ci varying Color of light from surface (output)

color Oi varying Opacity of surface (output)

point E uniform Position of the camera

Table 14.2 Global Variables Available to Surface Shaders

Surface color and transparency

Cs and Os represent the current surface color and opacity, re-
spectively, as declared in RiColor() and RiOpacity() and bound
to the surface being shaded when it was created.

Cs and Os are used as filter values. The color of reflected light
from a surface with surface color Cs under incident light with
color Cl is often taken to be C/ *Cs. In other words, each com-
ponent of Cs scales the corresponding component of the in-
coming light according to the absorption of the surface. Os
has the same effect on light passing through the surface. Nor-
mally, every component of Cs and Os lies in the range [0,1].

292 Chapter 14: The RenderMan Shading Language II: Description

Geometric Functions

The shading language defines a variety of functions for geo-
metric calculations. These are summarized in Table 15.2 and
discussed below.

Return ; :

Type Declaration Meaning
float xcomp(P) return x component of point P
float ycomp(P) return y component of point P
float zcomp(P) return z component of point P

float
float
float
point
point
point

point

point

float

point

setxcomp(P, v)
setycomp(P, v)
setzcomp(P, v)
length(V)
distance(P1,P2)
area(P)

normalize(V)

faceforward(V, 1)

reflect(l, N)

refract(l,N,eta)

fresnel(1, N, eta, Kr,

set x component of point P to float v
set y component of point P to float v
set z component of point P to float v

return the Euclidean length of point V
return the Euclidean length of (P1-P2)
return the surface element area at P, in
pixels

return V/length(V) for point V

return V flipped to point opposite |

return reflection of incident ray I about
normalized vector N

return incident ray | refracted through
surface with normal N and index of re-
fraction float eta

Kt[,R, T])

return reflectance coefficient float Kr,
transmittance coefficient float Kt reflect-
ed ray R, and refracted ray T, given inci-
dent ray I, surface normal N and relative
index of refraction float eta

transform([fromspace,] tospace, P)

depth(P)

transform the point P from the coordi-
nate system named by string fromspace to
the coordinate space named by tospace

return depth of point P in camera space,
normalized between 0 at the near clip-
ping plane and 1 at the far one

calculatenormal(P) return the normal to a surface at point P

Table 15.2 Geometric Shading Functions

Geometric Functions

325

