
Chapter 1

Introduction

The Blue Moon Rendering Tools (BMRT) are a collection of programs that render
3-D scene models.

BMRT uses some APIs that are very similar to those described in the published
RenderMan Interface Specification. However, BMRT is not associated with Pixar,
and no claims are made that BMRT is in any way a compatible replacement for Ren-
derMan. Those who want a licensed implementaion of RenderMan should contact
Pixar directly.

Despite these technical/legal terms, you may find that most applications, scene
files, and shaders written to conform to the RenderMan Interface can also use BMRT
without modification.

This document is intended for the reader who is familiar with the concepts of
computer graphics and already is fluent in both the RenderMan procedural inter-
face and the RIB archival format (due to BMRT’s similarities to that published
specification). For more detailed information about the RenderMan standard, we
recommend Advanced RenderMan: Creating CGI for Motion Pictures by Anthony
Apodaca and Larry Gritz, The RenderMan Companion by Steve Upstill, or the offi-
cial RenderMan Interface Specification, available from Pixar. All of these texts are
fully detailed and clearly written, and no attempt will be made here to duplicate
the information in these references.

The parts of BMRT you’ll most likely use are outlined below:

rgl A previewer for RIB files which runs on top of OpenGL. Primitives display as
lines or Gouraud-shaded polygons.

rendrib A high quality renderer which uses some of the latest techniques of radios-
ity and ray tracing to produce near photorealistic images.

slc A compiler for shaders, allowing you to write your own procedures for defining
the appearance of surfaces, lights, displacements, volume attenuation, and
pixel operations.

mkmip A program to pre-process texture, shadow, and environment map files for
more efficient access during rendering.

3

colorspheres.c
/*
 SGI:
 cc -n32 -I../include colorspheres.c -L../lib -lribout -o colorspheres

 Linux:
 cc -I../include colorspheres.c -L../lib -lribout -o colorspheres

 Win32:
 cl /I..\include /c colorspheres.c
 link colorspheres.obj ..\lib\libribout.lib /out:colorspheres.exe
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ri.h>

#define NFRAMES 100
#define NSPHERES 4
#define FRAMEROT 15.0f

void
ColorSpheres(int n, float s)
{
 int x, y, z;
 RtColor color;

 if(n <= 0) {
 return;
 }

 RiAttributeBegin();

 RiTranslate(-0.5f, -0.5f, -0.5f);
 RiScale(1.0f/n, 1.0f/n, 1.0f/n);

 for (x = 0; x < n; x++) {
 for (y = 0; y < n; y++) {
 for (z = 0; z < n; z++) {
 color[0] = ((float) x+1) / ((float) n);
 color[1] = ((float) y+1) / ((float) n);
 color[2] = ((float) z+1) / ((float) n);

 RiColor(color);
 RiTransformBegin();
 RiTranslate(x+.5f, y+.5f, z+.5f);
 RiScale(s, s, s);
 RiSphere(0.5f, -0.5f, 0.5f, 360.0f, RI_NULL);
 RiTransformEnd();
 }
 }
 }

 RiAttributeEnd();

 return ;
}

int main(int argC, char** argV)
{
 RtInt frame;
 float scale;
 char filename[64];
 char* renderer = RI_NULL;

Page 1

colorspheres.c
 if (argC != 2) {
 fprintf(stderr,
 "USAGE: %s ribFile|rgl|rendrib\n\n",
 argV[0]);
 exit (-1);
 }

 renderer = argV[1];

 /* if the variable renderer is "rgl" or "rendrib", RiBegin() will
 attempt to start up that renderer and pipe its output directly to
 that renderer. Since RiDisplay is set to put its output to the
 framebuffer, that renderer will attempt to open the framebuffer
 and render directly to it. If the variable renderer is set to
 some other value, RiBegin() will open that as a file and put the
 RIB commands in it.
 */

 RiBegin(renderer);

 for (frame = 0; frame <= NFRAMES; frame++) {
 sprintf(filename, "colorSpheres.%03d.tif", frame);
 RiFrameBegin(frame);

 RiProjection("perspective", RI_NULL);
 RiTranslate(0.0f, 0.0f, 1.5f);
 RiRotate(40.0f, -1.0f, 1.0f, 0.0f);

 RiDisplay(filename, RI_FRAMEBUFFER, RI_RGBA, RI_NULL);
 RiFormat((RtInt)256, (RtInt)192, -1.0f);
 RiShadingRate(1.0);

 RiWorldBegin();

 RiLightSource("distantlight", RI_NULL);

 RiSides((RtInt)1);

 scale = (float)(NFRAMES-(frame-1)) / (float)NFRAMES;
 RiRotate(FRAMEROT*frame, 0.0f, 0.0f, 1.0f);
 RiSurface("plastic", RI_NULL);
 ColorSpheres(NSPHERES, scale);
 RiWorldEnd();
 RiFrameEnd();
 }

 RiEnd();

 return 1;
}

Page 2

