

## Chapter Overview

- Welcome to Assembly Language
- Virtual Machine Concept
- Data Representation
- Boolean Operations


# Virtual Machine Concept 

- Virtual Machines
- Specific Machine Levels


## Virtual Machines

- Tanenbaum: Virtual machine concept
- Programming Language analogy:
- Each computer has a native machine language (language LO) that runs directly on its hardware
- A more human-friendly language is usually constructed above machine language, called Language L1
- Programs written in L1 can run two different ways:
- Interpretetation - L0 program interprets and executes L1 instructions one by one
- Translation - L1 program is completely translated into an L0 program, which then runs on the computer hardware


## Specific Machine Levels

| High-Level Language | Level 5 |
| :---: | :---: |
| Assembly Language | Leve14 |
| Operating System | Leve13 |
| Instruction Set <br> Architecture | Leve12 |
| Microarchitecture |  |

## High-Level Language

- Level 5
- Application-oriented languages
- Programs compile into assembly language (Level 4)


## Assembly Language

- Level 4
- Instruction mnemonics that have a one-toone correspondence to machine language
- Calls functions written at the operating system level (Level 3)
- Programs are translated into machine language (Level 2)


## Operating System

- Level 3
- Provides services to Level 4 programs
- Programs translated and run at the instruction set architecture level (Level 2)


## Instruction Set Architecture

- Level 2
- Also known as conventional machine language
- Executed by Level 1 program (microarchitecture, Level 1)


## Microarchitecture

- Level 1
- Interprets conventional machine instructions (Level 2)
- Executed by digital hardware (Level 0)


## Digital Logic

- Level 0
- CPU, constructed from digital logic gates
- System bus
- Memory


## Data Representation

- Binary Numbers
- Translating between binary and decimal
- Binary Addition
- Integer Storage Sizes
- Hexadecimal Integers
- Translating between decimal and hexadecimal
- Hexadecimal subtraction
- Signed Integers
- Binary subtraction
- Character Storage


## Binary Numbers

- Digits are 1 and 0
- 1 = true
- $0=$ false
- MSB - most significant bit
- LSB - least significant bit
- Bit numbering: | MSB |
| :--- |
| 1011001010011100 |
| 15 |


## Binary Numbers

- Each digit (bit) is either 1 or 0
- Each bit represents a power of 2:

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \hline 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
\hline
\end{array}
$$

Table 1-3 Binary Bit Position Values.

Every binary number is a sum of powers of 2

| $\mathbf{2}^{\text {n }}$ | Decimal Value | $\mathbf{2}^{\text {n }}$ | Decimal Value |
| :---: | :---: | :---: | :---: |
| $2^{0}$ | 1 | $2^{8}$ | 256 |
| $2^{1}$ | 2 | $2^{9}$ | 512 |
| $2^{2}$ | 4 | $2^{10}$ | 1024 |
| $2^{3}$ | 8 | $2^{11}$ | 2048 |
| $2^{4}$ | 16 | $2^{12}$ | 4096 |
| $2^{5}$ | 32 | $2^{13}$ | 8192 |
| $2^{6}$ | 64 | $2^{14}$ | 16384 |
| $2^{7}$ | 128 | $2^{15}$ | 32768 |

## Translating Binary to Decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:
$d e c=\left(D_{n-1} \times 2^{n-1}\right)+\left(D_{n-2} \times 2^{n-2}\right)+\ldots+\left(D_{1} \times \mathbf{2}^{1}\right)+\left(D_{0} \times \mathbf{2}^{\mathbf{0}}\right)$
$\mathrm{D}=$ binary digit
binary $00001001=$ decimal 9 :

$$
\left(1 \times 2^{3}\right)+\left(1 \times 2^{0}\right)=9
$$

## Translating Unsigned Decimal to Binary

- Repeatedly divide the decimal integer by 2 . Each remainder is a binary digit in the translated value:

| Division | Quotient | Remainder |  |
| :---: | :---: | :---: | :---: |
| $37 / 2$ | 18 |  | 1 |
| $18 / 2$ | 9 |  | 0 |
| $9 / 2$ | 4 |  | 1 |
| $4 / 2$ | 2 |  | 0 |
| $2 / 2$ | 1 |  | 0 |
| $1 / 2$ | 0 |  | 1 |

$$
37=100101
$$

## Binary Addition

- Starting with the LSB, add each pair of digits, include the carry if present.



## Integer Storage Sizes



Table 1-4 Ranges of Unsigned Integers.

| Storage Type | Range (low-high) | Powers of 2 |
| :--- | :--- | :--- |
| Unsigned byte | 0 to 255 | 0 to $\left(2^{8}-1\right)$ |
| Unsigned word | 0 to 65,535 | 0 to $\left(2^{16}-1\right)$ |
| Unsigned doubleword | 0 to $4,294,967,295$ | 0 to $\left(2^{32}-1\right)$ |
| Unsigned quadword | 0 to $18,446,744,073,709,551,615$ | 0 to $\left(2^{64}-1\right)$ |

Practice: What is the largest unsigned integer that may be stored in 20 bits?

## Hexadecimal Integers

All values in memory are stored in binary. Because long binary numbers are hard to read, we use hexadecimal representation.
Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

| Binary | Decimal | Hexadecimal | Binary | Decimal | Hexadecimal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0 | 0 | 1000 | 8 | 8 |
| 0001 | 1 | 1 | 1001 | 9 | 9 |
| 0010 | 2 | 2 | 1010 | 10 | A |
| 0011 | 3 | 3 | 1011 | 11 | B |
| 0100 | 4 | 4 | 1100 | 12 | C |
| 0101 | 5 | 5 | 1101 | 13 | D |
| 0110 | 6 | 6 | 1110 | 14 | E |
| 0111 | 7 | 7 | 1111 | 15 | F |

## Translating Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits.
- Example: Translate the binary integer 000101101010011110010100 to hexadecimal:

| 1 | 6 | A | 7 | 9 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0001 | 0110 | 1010 | 0111 | 1001 | 0100 |

## Converting Hexadecimal to Decimal

- Multiply each digit by its corresponding power of 16 :

$$
\operatorname{dec}=\left(D_{3} \times 16^{3}\right)+\left(D_{2} \times 16^{2}\right)+\left(D_{1} \times 16^{1}\right)+\left(D_{0} \times 16^{0}\right)
$$

- Hex 1234 equals $\left(1 \times 16^{3}\right)+\left(2 \times 16^{2}\right)+\left(3 \times 16^{1}\right)+\left(4 \times 16^{0}\right)$, or decimal 4,660.
- Hex 3BA4 equals $\left(3 \times 16^{3}\right)+\left(11 * 16^{2}\right)+\left(10 \times 16^{1}\right)+\left(4 \times 16^{0}\right)$, or decimal 15,268.


## Signed Integers

- The highest bit indicates the sign. $1=$ negative, $0=$ positive


If the highest digit of a hexadecmal integer is $>7$, the value is negative. Examples: 8A, C5, A2, 9D

## Forming the Two's Complement

- Negative numbers are stored in two's complement notation
- Additive Inverse of any binary integer
- Steps:
- Complement (reverse) each bit
- Add 1

| Starting value | 00000001 |
| :--- | ---: |
| Step 1: reverse the bits | 11111110 |
| Step 2: add 1 to the value from Step 1 | 11111110 <br> +00000001 |
| Sum: two's complement representation | 11111111 |

Note that $00000001+1111111=00000000$

## Binary Subtraction

- When subtracting $A-B$, convert $B$ to its two's complement
- Add A to (-B)


Practice: Subtract 0101 from 1001.

## Learn How To Do the Following:

- Form the two's complement of a hexadecimal integer
- Convert signed binary to decimal
- Convert signed decimal to binary
- Convert signed decimal to hexadecimal
- Convert signed hexadecimal to decimal


## Ranges of Signed Integers

The highest bit is reserved for the sign. This limits the range:

| Storage Type | Range (low-high) | Powers of 2 |
| :--- | :--- | :--- |
| Signed byte | -128 to +127 | $-2^{7}$ to $\left(2^{7}-1\right)$ |
| Signed word | $-32,768$ to $+32,767$ | $-2^{15}$ to $\left(2^{15}-1\right)$ |
| Signed doubleword | $-2,147,483,648$ to $2,147,483,647$ | $-2^{31}$ to $\left(2^{31}-1\right)$ |
| Signed quadword | $-9,223,372,036,854,775,808$ <br>  <br> $+9,223,372,036,854,775,807$ | $-2^{63}$ to $\left(2^{63}-1\right)$ |

Practice: What is the largest positive value that may be stored in 20 bits?

## Character Storage

- Character sets
- Standard ASCII (0-127)
- Extended ASCII (0 - 255)
- ANSI (0 - 255)
- Unicode (0-65,535)
- Null-terminated String
- Array of characters followed by a null byte
- Using the ASCII table
- back inside cover of book


## Numeric Data Representation

- pure binary
- can be calculated directly
- ASCII binary
- string of digits: "01010101"
- ASCII decimal
- string of digits: "65"
- ASCII hexadecimal
- string of digits: "9C"


