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Abstract

Silhouette is a key feature that distinguishes displacement mapping from normal mapping. However the silhouette
rendering in the GPU implementation of displacement mapping (which is often called inversed displacement
mapping) is tricky. Previous approaches rely mostly on construction of additional extruding prism-like geometry,
which slows down the rendering significantly. In this paper, we proposed a method for solving the silhouette
rendering problem in inverse displace mapping without using any extruding prism-like geometry. At each step of
intersection finding, we continuously bends the viewing ray according to the current local tangent space associated
with the surface. Thus, it allows mapping a displacement map onto an arbitrary curved surface with more accurate
silhouette. While our method is simple, it offers surprisingly good results over Curved Relief Map (CRM) [OP05]
in many difficult or degenerated cases.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picutre/image Generation]: Display algorithms
I.3.7 [Three-Dimensional Graphics an Realism]: Color, shading, shadowing, and texture

1. Introduction

Over the past years, we have seen an impressive improve-
ment in graphics hardware, especially on the capabilities of
graphics processing units (GPUs). Among many hardware
features, the most prominent improvement is the realization
of programmable shaders for real-time rendering. Instead of
relying on the raw power of geometry processing, we now
have an alternative of improving the visual realism of sur-
face details through advanced texturing techniques.

Bump mapping [Bli78] provides more realistic look by
adjusting per-pixel normal. However it captures only the
shading effect caused by surface normal of the rasteriza-
tion point. The other important visual effects such as self-
occlusion, self-shadow and silhouette are not performed.
Displacement mapping [CCC87] provides a more effective
representation for surface details with a displacement map.
Points on a surface are moved along their normals by the
amount specified by the displacement map. All the features
that bump mapping fails to capture are naturally supported
by displacement mapping. However, it requires altering the

geometry during shading. Even with today’s graphics hard-
ware, this is still an expensive operation.

Inverse displacement mapping [PHL91] is a class of map-
ping methods which attempt to render those effects offered
by displacement mapping, such as motion parallax, self-
occlusion, self-shadowing and silhouette, without actually
perturbing the geometry of the surface. These methods have
several advantages: they require lower amount of memory;
they do not need to change the original geometry; and most
importantly, they are performed in image space and can be
efficiently implemented using fragment shaders on current
GPUs. Recent progresses of inverse displacement mapping
take advantage of the programmability and parallel nature of
modern graphics hardware to render surface details in real
time. The key question these methods attempt to answer is
how to effectively search for the closest intersection to the
surface defined by the displacement map along a given view-
ing ray. A compromise between convergence speed and ren-
dering quality is often made by these methods. Another im-
portant problem that inverse displacement mapping has to
deal with is how to render object’s silhouette correctly.
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Most inverse displacement mapping methods focus on flat
surfaces, thus ignoring the subtle problem of silhouette ren-
dering. Although solutions do exist to tackle the silhouette
problems, they mostly rely on construction of additional ex-
truding prism-like geometry, which slows down the render-
ing significantly. A solution without the use of prism remains
elusive.

This paper proposes an extensions to existing inverse dis-
placement mapping methods, called normal-based curved
silhouette (NCS). It renders more accurate silhouette for in-
verse displacement mapping, especially when mapping to a
curved surface. It differs from curved relief mapping [OP05]
by offering a more accurate and robust representation of the
surface curvature.

The main contribution of this paper is a novel method to
render object’s silhouette on arbitrary surface, which does
not require the construction of additional prism-like geome-
try [HEGD04] [JMW07] and is more robust and accurate
than previous methods. In the next section, we do a thorough
survey on available real-time inverse displacement mapping
methods.

2. Background and Related Work

The basic idea of real-time inverse displacement mapping is
shown in Figure 1(a). Given a height field h(s) and a viewing
vector V , assume that V intersects the surface to be mapped
at the point P with the texture coordinate s. (Note that, as
most inverse displacement mapping methods, we assume
that the surface to be mapped is at the top.) Bump mapping
assumes that the real intersection is exactly at the texture
coordinate and performs shading at P. However, the real in-
tersection should be I with texture coordinate t. Hence, the
color of P should be calculated according to the shading at-
tributes associated with t instead of s.

The basic procedure of inverse displacement mapping is
[POC05] : (1) transform the viewing direction V to the tan-
gent space associated with the current fragment with texture
coordinate s (defined by tangent, normal, and bi-normal vec-
tors), (2) find the intersection I of V and the surface defined
by the displacement map h, and (3) compute shading of the
fragment using the attributes associated with I.

Inverse displacement mapping methods mainly differ in
the ways to find the intersection I. There are basically two
types of methods, root finding and space leaping. The former
requires no preprocessing but is more prone to aliasing arti-
facts, especially from grazing angles. The later often needs
preprocessing but tends to find more accurate intersections.

Parallax mapping (PM) adds an offset to s which
is linearly proportional to the height specified by the
map [KTI∗01] as shown in Figure 1(b). This, of course, is
an very rough approximation. It only works well for low-
frequency bump maps. It often breaks for steep bump maps

or when viewed from a shallow viewing angle. Walsh added
a heuristics to alleviate artifacts for shallow views to some
degree [Wal03].

Instead of using heuristics to find intersection, both par-
allax occlusion mapping (POM) [BT04] [Tat06] and steep
parallax mapping [MM05] use linear search to find a more
accurate intersection. Though effective, the step size δ has
to be selected carefully. A smaller step size leads to more
accurate result but at the expense of longer convergence
time. On contrary, larger step size is faster but might lead
to errors. The final intersection is found by intersecting the
viewing ray and a linear approximation of the displacement
map(Figure 1(c)).

Relief mapping (RM) proposed to employ binary search
to speed up intersection finding [POC05]. However, pure
binary search may miss the closest intersection and lead to
errors when the viewing ray intersects the surface more than
once. Hence, RM used a combination of linear and binary
search to make a good tradeoff between guaranteed accu-
racy and convergence speed (Figure 1(d)). As pointed by
Tatarchuk [Tat06], this approach could lead to visual arti-
facts due to sampling aliasing at grazing angles. Such arti-
facts could be relieved by applying some depth bias. This
bias however flattens the surface features towards the hori-
zon.

Interval mapping (IM) replaces the binary search of RM
with a root finding algorithm to speed up the convergence
[RSP06] (Figure 1(e)). These root finding methods, how-
ever, all face two fundamental problems. First, it is necessary
to carefully determine a step size for different displacement
maps. Second, there is an accuracy problem due to the dis-
continuity in the first derivatives.

The second category of approaches, space leaping, tries
to find more accurate intersections by building a conserva-
tive bounding volume for empty space. Instead of march-
ing slowly, the bounding volume allows quickly skipping
through empty space while maintaining sufficient accuracy.
These methods differs mainly on the types of bounding vol-
umes. This set of techniques almost guarantee artifact free
even when zoomed in or viewed at grazing angles. For the
same visual quality, they are often faster than techniques of
the first category. They, however, often require preprocessing
to calculate the bounding volumes. Baboud et al. used a pre-
computed safety radius texture such that a viewing ray could
walk along until a binary search can be safely run [BD06]
(Figure 1(f)). One disadvantage for this is that it requires a
long preprocessing by sampling lots of rays. In addition, to
find the intersection, a binary search is still required.

Distance mapping (DM) uses a 3D texture to store the
shortest distance from any 3D-point of the empty space to
the surface specified by the displacement map [Don05]. It
is equivalent to use a sphere as the bounding volume for
the empty space around any point within the volume (Fig-
ure 1(g)). The results are very accurate. However, it uses
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Figure 1: Summary of existing inverse displacement mapping methods.

an order of magnitude more memory than standard 2D tex-
tures. Other more general precomputation-based approaches
such as view-dependent displacement mapping [WWT∗03]
and generalized displacement mapping [WTL∗04] can be
used for inverse displacement mapping as well. However,
they face the same problem of large memory consumption.

Though effective for self-occlusion, shadows and inter-
penetrations, most methods do not handle object’s silhouette
correctly, especially when applying to non-planar surfaces.
Oliveira et al. [OP05] proposed Curved Relief Mapping
(CRM) to address this issue. This method, however, requires
a preprocessing stage to find a piecewise-quadric approxi-
mation for the surface to be mapped. Hirche et al. [HEGD04]
and Dachsbacher et al. [DT07] tackled the silhouette prob-
lem by extruding each triangle of the base mesh along the
normal directions to form a prism. The use of prisms how-
ever inevitably produces larger number of triangles and com-
plicates the intersection process. Jeschke et al. [JMW07]
proposed more accurate prism representations for smooth
and curved shell maps. However, the increased accuracy
comes at the price of slower performance. While the silhou-
ette problem can be solved by using additional prism geom-
etry, a solution with no prism remains elusive.

3. Prism-Free Silhouette Rendering Methods

Curved Relief Mapping(CRM) [OP05] approximates the
surface curvature using a piecewise-quadratic approxima-
tion. While this approach works well in most cases, it could
break in some special situations such as the case shown in
Figure 2. In this section, we present Normal-Based Curved
Silhouette (NCS) to render object’s silhouette more accu-
rately than CRM though imposing some constraints on sur-
face parameterization.

Curved relief mapping Normal-based curved silhouette

Figure 2: Comparisons between curved relief mapping and
normal-based curved silhouette. Circled areas show render-
ing artifacts using CRM.

CRM pre-computes curvatures of the base mesh. Instead
of using pre-computed curvatures, we use the tangent space
associated with each vertex to describe the local shape of
the base mesh. Such a tangent space is defined with vertex’s
normal, tangent and bi-normal vectors. The advantage of us-
ing these vectors is that they have often been included in the
base mesh.

The basic idea of our algorithm is as follows. As shown
in Figure 3, the viewing ray is straight in the object space,
but curved in the texture space. If we bend the viewing
ray according to the tangent space of the current fragment
when marching along the viewing ray, we essentially obtain
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Object Space Tangent Space

Figure 3: The basic idea of our rendering method. The
colors show the mapping between object space and tangent
space. We update the surface local information (green, blue,
yellow and red parts) for each step of intersection finding
process. A straight viewing ray in the object space becomes
curved in the texture space.

(a) Normal map (b) Tangent map

Figure 4: Normal and tangent maps for a torus model.

a piecewise linear approximation of the curved viewing ray
in the texture space. Thus, if the bent ray hits the displace-
ment map, it is shaded. Otherwise, it should be discarded.
However, to achieve this, we need to obtain the local tan-
gent space for any fragment, not just for vertices. In the next
section, we explain how to generate tangent space maps and
how to use those maps.

3.1. Tangent Space Map Generation

The tangent space attributes of a surface point include the
tangent �T , normal �N and bi-normal vectors �B,and two scal-
ing factors Stangent and Sbinormal to handle the variation in
triangle sizes. (Without those scaling factors, texture swim-
ming artifacts may appear.) To answer the tangent space
query, , we render the normal map (Nmap) and the tangent
map (Tmap), including their scaling factors, for the base
mesh. With these maps, for a given texture coordinate (u,v)
of the current fragment, we can look up the textures for
the associated tangent space attributes by Nmap(u,v) and
Tmap(u,v). Algorithm 1 presents the method for rendering
normal and tangent maps. Figure 4 shows the normal and
tangent maps for a torus. Note that this method assumes that
the texture coordinate is parameterized continuously over
the base mesh. In addition, tiling of the displacement maps
needs to be handled with extra care.

Algorithm 1 Normal/tangent map rendering. Given a
base mesh M, render normal map N and tangent map T.

1: procedure RENDERINGNTMAPS(TriangleMesh M)
2: set up the rendering targets to normal map N and tangent

map T;
3: for each triangle t of M with vertex normals N1, N2, N3,

vertex tangents T1, T2, T3, and texture coordinates
(u1,v1), (u2,v2), (u3,v3) do

4: form a triangle t′ with vertices (u1,v1,0), (u2,v2,0),
(u3,v3,0);

5: render t′ with vertex colors N1,N2,N3, Sbinormal to
texture N;

6: render t′ with vertex colors T1,T2,T3, Stangent to texture
T;

7: end for
8: end procedure

Algorithm 2 Rendering pass. Given a displacement map H,
normal and tangent maps, N and T, of the base mesh, render a frag-
ment. tP0 is the texture coordinate from resterizer. o�V is the viewing

direction vector in object space. [S]i and [TBN]imean the scaling
factors and the tangent space at ith iteration. δ is the default step
size, which could be enlarged by a constant c (See Section 5).

1: procedure RENDERINGPASS(tP0, o�V , H, N, T )
2: for i = 0 to num_step do
3: ([TBN]i, [S]i)← SetData(T, N, tPi);
4: tPi+1← t Pi + c · δ · [S]i · [TBN]i ·o�V ;
5: if (tPi+1).z < 0 then
6: DiscardFragment(); return ;
7: else if (tPi+1).z > H((tPi+1).xy) then
8: FindIntersection(); return ;
9: end if

10: end for
11: end procedure

One may argue that it is not necessary to render the nor-
mal and tangent maps into textures, since they may be inter-
polated from the vertices during the rasterization step. The
main problem with such a strategy is that the viewing ray
may go beyond the texture volume of the currently shaded
triangle, where the interpolation no longer works.

3.2. Normal-Based Curved Silhouette Rendering

During rendering, for each step, we obtain the tangent space
of the current fragment by looking up the normal and tangent
maps and bend the viewing ray accordingly. If the ray runs
away from the texture volume, the fragment is discarded.
If there is an intersection, the exact intersection is found.
Otherwise, the process continues. When the loop exceeds a
pre-defined number of steps, the fragment is discarded since
it does not have any intersection. Algorithm 2 presents the
process.

Although the idea of representing the tangent space in
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(a) (b) (c)

Figure 5: Trace of the viewing ray for the traced pixel (a). (b) shows the trace in the texture volume and (c) shows a perspective
view of the texture volume.

textures is simple, it offers surprisingly good results over
CRM in many difficult or degenerated cases and better per-
formance than prism-based methods. Figure 2 shows such
examples. (Note that the rendering views are slightly differ-
ent because the renderings for CRM are obtained using the
CRM program available from the author’s webpage.) In the
circled areas of Figure 2, CRM causes some viewing rays
(that hit the base mesh at grazing angles) to follow the sur-
face curvature toward the back-facing side of the torus and
miss the actual intersection with the torus at a farther front-
facing triangle. Our proposed method avoids such a problem
because it follows the surface curvature more accurately by
looking up the normal and tangent maps (Algorithm 2 line
3) at each traversal step. Figure 5 shows an example of the
trace of the viewing ray in the texture volume. Figure 5(a)
shows the location of the traced pixel in the rendered image.
Figure 5(b) shows the trace of the viewing ray in the texture
volume. Figure 5(c) shows a perspective view of the texture
volume.

4. Results and Performance

Methods Frame-rate #tri. height map res.
CRM [OP05] > 999 538 512 × 512
Our method 350 538 512 × 512
Tetra shell [HEGD04] *51 602 128 × 128
Smooth shell [JMW07] 18 602 128 × 128

Table 1: Comparison of rendering speed. All renderings are in

the same 640 by 480 resolution. * The frame rate in [HEGD04] is
obtained from the comparison reported in [JMW07]. The first two
are performed on NVIDIA Geforce 8800GTS/320MB. The last two

are on two NVIDIA Geforce 8800GTX running in SLI mode.

We implemented our algorithms as Cg shaders with fp40
profile. Our experiments were performed on an Intel Pen-
tium4 3.0GHz machine with NVIDIA Geforce 8800GTS
with 320MB video memory. Figure 2 shows our methods

Figure 6: This figure shows the frame rate for our method,
ground-truth at different times of texture tiling. The reso-
lution of both the screen and the height map are 512 by
512, and the base model has 528 triangles. The triangles of
ground truth models are generated at the texture resolution
and show on the horizontal axis.

produce correct silhouettes in cases that are known to be
problematic for Curved Relief Mapping (which is, to our
knowledge, the only other prism-free inverse displacement
mapping method). Figure 8 shows more rendering results
using our methods. Although the base meshes in the typi-
cal applications of displacement mapping are relatively sim-
ple, we performed a test using the Venus model as our
base mesh. Its purpose is to show our methods can han-
dle complex base mesh as well. The Venus model contains
524K triangles and is parameterized using the geometry im-
ages [GGH03]. Figure 9 shows its rendering results. Fig-
ure 10 demonstrates the results for a complex scene consist-
ing of multiple displacement-mapped objects.

The rendering speed of our methods is about 1/3 of
the Curved Relief Mapping. The slow-down is caused
by more texture memory accesses. However our ren-
dering speed is significantly faster than prism-based ap-
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proaches [HEGD04] [JMW07]. Table 1 summarizes the
frame rates of various methods, all rendered at the same 640
by 480 resolution. Both the Curved Relief Mapping (CRM)
and our method are measured on our machine with NVIDIA
Geforce 8800GTS/320MB. The other frame rates were re-
ported in [JMW07], which used two NVIDIA Geforce
8800GTX graphics boards in SLI mode.

Since the modern GPUs possess huge raw geometry pro-
cessing power, it is interesting to compare the performance
of our method to the alternative of using more geometry to
replace the displacement maps. We could form the "ground
truth" models by generating a new mesh vertex for each
texel on the displacement mapped surface. Figure 6 shows
the speed comparison of our methods versus the rendering
using the ground truth models. We used a base mesh that
contains 528 triangles and a 512 by 512 displacement map.
The horizontal axis represents the number of displacement
map tiling. With multiple tiling of the displacement map, the
number of triangles in the corresponding ground truth model
increases as well. Figure 6 clearly shows that the ground
truth models quickly used up the GPU’s geometry process-
ing power, while the inverse displacement mapping offers
much better scalability in surface detail.

Recently, real-time tessellation has been demonstrated on
some newest generations of GPUs [Tat08]. When the GPU-
based tessellation is applied to the displacement mapping, it
could produce up to six times of speedup over the ground
truth models. However the tessellated data still have to go
through the vertex shaders and the remaining GPU pipeline.
So our methods can still offer a better scalability.

5. Discussion

A potential problem in our methods is that the ray surface
intersection test might terminate prematurely in some ex-
treme cases if the step length (i.e. c · δ in Algorithm 2 line
4) is not selected properly. This problem does not exist on a
flat surface, because it is easy to determine the length of the
viewing ray within the texture volume. Thus it is straight-
forward to divide that length l by the number of steps n and
set the step length to be l/n. However, on arbitrary surfaces,
the viewing ray becomes an unpredictable curve in texture
space. Therefore, it is hard to guarantee that the viewing path
is completely traced after all iterations. We call this the early
termination problem if the trace of the viewing ray still stays
within the texture volume after all iterations. We handle the
early termination problem by adding a constant c to enlarge
the step length in Algorithm 2 (line 4). Figure 7 shows the
effects of using different choices of constant c. Note that the
tangent approximation error becomes visible when the step
length is set too large. We choose the constant c = 2.5 and
use it throughout the results in this paper.

Figure 7: This figure shows the early termination problems
under different setting of constant c in Algorithm 2. The con-
stant c is set to 1.0, 1.1, 1.5, 2.0, 3.0, and 10.0 respectively.
Early termination occurs in red pixels.

Figure 9: Rendering of a complex model, Venus, with
roughly 524K triangles. We obtained a continuous param-
eterization using geometry image and applied the stone dis-
placement map over the base mesh. (a) The rendering. (b)
The base mesh for the circled region. (c) The red pixels are
carved by our algorithm. (d) Rendering with correct silhou-
ette.

6. Conclusions and Future Work

We have presented an extension towards more accurate sil-
houette for real-time inverse displacement mapping on arbi-
trary surface. Our methods do not require the construction
of additional prism-like geometry and is more robust than
Curved Relief Mapping (CRM). In the comparison with the
ground truth models, our methods also demonstrate better
scalability in the increase of surface detail. A possible im-
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Figure 8: Renderings of our method for various meshes on several displacement maps.

provement for the future work is to use a better strategy for
selecting the step length. It would also be interesting to ex-
plore the possibility of applying inverse displacement map-
ping to more general texture parameterizations.
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