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In order to draw a photorealistic surface, Bidirectional Texture Function (BTF), a 

6D texture function which extends Bidirectional Reflectance Distribution Function 
(BRDF) to include the self-shadowing, self-occlusion and inter-reflection effects, has 
been used frequently in recent years. Its main drawback is its massive data size. To solve 
this, the Spatial Bidirectional Reflectance Function (SBRDF) techniques compress BTFs 
into reflectance model parameters. However, SBRDF cannot produce the self-shadowing 
and self-occlusion effects in real-world surface geometry. This work is aimed to this 
drawback. We investigate how self-shadowing and self-occlusion affect the surface ap-
pearance by additional physically-based analysis and rely on two physical phenomena to 
separate self-shadowing and self-occlusion into two independent effects. First, 
self-shadowing is view independent. Second, self-occlusion is independent of lighting 
direction changes. After these analyses, we add self-shadowing and self-occlusion to 
SBRDF to achieve rendering quality that is much closer to the original uncompressed 
BTF data.  
 
Keywords: real-time rendering, GPU, Bidirectional Texture Functions, self-shadows, 
self-occlusion  
 
 

1. INTRODUCTION 
 

In recent years, we have seen continuing improvement of visual realism in computer 
graphics based feature movies and video games. As the visual realism in feature movies 
and video games keeps improving, the importance of advanced surface materials and 
appearance models also increases. Another driving force of advanced surface and ap-
pearance models is the increasing power of modern graphics hardware which supports 
programmable shading stages. Simply scanning the shape of a 3D object and then ap-
plying uniform colors, simple Phong shading model, or static textures to the surfaces no 
longer suffices. 

In addition, good surface appearance models can even hide the deficiency in the geo-
metric shape, especially if advanced texturing techniques such as bump mapping [13], 
displacement mapping, or view-dependent texture mapping [5] is used. Imagine that a 
sphere model with a golf ball texture on it can be easily recognized as a golf ball even 
though we do not explicitly model the geometric shape of each dimple. In fact, using 
view-dependent texturing effects to replace fine geometry should be no surprise if we 
treat those textures as surface light fields [14][9][3] or lumigraph [2][6]. From a different 
point of view, we could also consider advanced surface appearance models such as the 
surface light fields and bidirectional texture functions as a way to avoid the daunting task 
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of modeling the geometric shapes of micro-level or meso-level structures of complex 
materials. 

There are many surface models that are extended from the well-known Bidirectional 
Reflectance Distribution Function (BRDF). If the incident light position is different from 
its exit position, then we have the Bidirectional Surface Scattering Distribution Function 
(BSSRDF). This extension allows BSSRDF to model sub-surface scattering effects of 
translucent materials, such as human skin or a lighting candle [7]. Furthermore, if dif-
ferent surface points contain different BRDFs, then the Spatial Bidirectional Reflectance 
Distribution Function (SBRDF) [11] and the Bidirectional Texture Function (BTF) [4] 
may be applied. The Bidirectional Texture Function (BTF) is a 6D function which de-
scribes the spatially-variant reflectance and the mesostructure effects, such as 
self-shadowing, self-occlusion, and self-reflectance. The 6D function contains two pa-
rameters for surface position, two for viewing direction and the other two for illumina-
tion direction. Therefore, during rendering, we can determine the color from BTF by the 
given surface position, light direction and viewing direction. Because BTF captures the 
self-shadowing, self-occlusion, and self-reflectance effects that are exhibited by the 
mesostructures of complex materials, it can reproduce the surface appearance of 
real-world objects with extremely high fidelity. A drawback of BTF, however, is its re-
quirement of huge storage space since it is a 6D function. Many works have been focus-
ing on the compression of the BTF datasets. A good survey can be found in [12]. Most of 
those works are based on the fitting of analytical BRDF models [11][10] or the matrix 
factorization methods. 

In this paper, we demonstrate a physically-based analysis of BTF model and its ren-
dering in real-time.  In the first part of our work, we present a method to detect the data 
points under self-shadowing by treating them as outliers during the SBRDF [11] fitting 
process. The outliers are first considered as a 6D shadow function and will be reduced 
into a 4D function as described in Section 2.2. 

In the second part of our work, we use two phenomena to separate self-shadowing 
and self- occlusion into two independent effects. First, when the self-shadowing occurs 
is often a view independent problem (Figure 5). Second, the surface point we look at is 
independent of lighting direction changes (Figure 8). We use the first phenomenon to 
reduce the dimension of 6D shadow function into 4D and use the second phenomenon to 
analyze the self-occlusion effect. 

Finally, we use SBRDF parameters with additional self-shadowing and self-occlusion 
representations to represent the original BTF efficiently. And we also apply this repre-
sentation onto programmable graphics hardware. So a complex mesostructure surface 
can be rendered and relighted in real time. 

 

2. PRECOMPUTATION OF SURFACE GEOMETRY EFFECTS 

Geometric effects can influence function fitting of a reflectance model significantly. 
For example, we use the Lafortune reflectance model which consists of several cosine 
lobes for function fitting. Fewer specular lobes of a reflectance model may be used if the 
geometry effect can be separated from the fitting data.  
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Figure 1 The framework of my preprocess system 

 
The geometry effects can be roughly divided into self-shadowing, self-occlusion, and 

inter-reflection parts. However, determining when they occur in the surface is very dif-
ficult. Inter-reflection exists all the time, and detect self-occlusion automatically is still 
an open problem in computer vision.  
  SBRDF is a 6D function which stores all values at different views, lights and surface 
points. In this section, we propose a method to separate self-shadowing and 
self-occlusion into independent effects by physical phenomenon. This physically-based 
analysis will reduce the 6D shadow function into two 4D functions. One of the 4D func-
tions is a shadow map, and the other is a viewing shift map which does not change with 
the lighting. Figure 1 shows the framework of our preprocessing system. 

The iterative SBRDF refinement method is introduced in section 2.1. Why and how 
to analyze self-shadow effect are explained in section 2.2 and self-occlusion in section 
2.3. 

 

2.1 Iterative SBRDF Refinement 
 

Lafortune el al. [8] proposed a reflectance model that uses several cosine lobes to 
represent the surface appearance. As done in [11], we first fit the BTF data into spa-
tially-varying BRDF (SBRDF) using the Lafortune model. This section will describe 
how to find the outliers (data affected by self-shadowing and self-occlusion). 

It is reasonable to assume that self-occlusion is the material property when we de-
tect the self- shadowing only. Although detecting self-shadowing correctly is also diffi-
cult, it can be approximated by using the following observation. 

A reflectance model can represent a BRDF which changes rather regularly as shown 
in Figure 2(b). However, self-shadowing makes BRDF exhibit discontinuity as shown in 
Figure 2(a). So the shadow can be detected by comparing the color difference between 
the original pixel-wise BTF data and the BRDF reconstructed from the reflectance model. 
The data will be decided as shadow if its fitting error is above a threshold (i.e., Er-
ror(x,Li,Vi) < thresholderror where Li and Vi denote the lighting and viewing directions) 
and it is in a dark region (i.e., BTF(x,Li,Vi) < thresholdBTF). The Error function is defined 
as follows: 
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After this step, the shadow data will be discarded from the original pixel-wise 

BRDF and we can iteratively refit the remainders to get more accurate parameters. In our 
experiment, we set both thresholderror and thresholdBTF to be 0.3 and repeat this process 
three times for each pixel. Figure 3 show the results before and after the refinement, and 
Figure 3(c) is the approximate shadow map and the gray level is the shadow level which 
is the ratio of real data (BTF) to our refined SBRDF data. Shadow level is determined as 
follow: 

 

 
After this processing, the BTF reconstruction function will be: 
 
     BTF(x,L,V) = SBRDF(x,L,V) × ShadowMap(x,L,V) 
 
and Figure 3(c) shows the difference between the original pixel-wise BRDF and the 
SBRDF multiplied by shadow map. Compare Figure 4 (b) and Figure 4 (c), the 
self-shadowing effect can be perceived after applying the approximate shadow map.  

 

   

   
(a)              (b)              (c) 

Figure 2 The original pixel-wise BRDF vs. SBRDF reconstructed BRDF and its error. The 
two rows show them at two different pixel locations. (a) is the original pixel-wise BRDF, 
(b) is the SBRDF, (c) is the error between the original and SBRDF where darker levels 
represent larger errors. 
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(a)              (b)              (c) 

Figure 3 Original pixel-wise BRDF vs. refined SBRDF reconstructed BRDF and its error. 
The two rows show them at two different pixel locations. (a) is original pixel-wise BRDF, 
(b) is refined SBRDF, and (c) is the error between them where darker levels represent lar-
ger errors 

 

   

   
(a)              (b)              (c) 

Figure 4 The original BTF image vs. SBRDF reconstructed surface. (a) is the original [1], 
(b) is the SBRDF, (c) is the result of refined SBRDF multiplied by shadow map.  
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Figure 5 Shadow regions are view independent, meaning they do not vary 
with the viewing position when the lighting is fixed.  

 
Shifted                 Hidden Surface 

  
(a)                       (b) 

Figure 6 Occlusion results in error of applying top view shadow to other 
views. (a) is P occluded by Q, and (b) is Q is a invisible point at top view. 

 
2.2 Shadow Analysis 
 

In Section 2.1, we present a method to generate the approximate shadow map, but 
there is still a problem, that is, those shadow maps are too irregular to find an effective 
representation. The reason why shadow map is irregular is that surface geometry effects 
such as self-shadowing and self-occlusion can affect each other in a rather complex man-
ner, so the whole shadow maps can only be represented as a 6D function. In our observa-
tion there is a lot of redundant data in the 6D representation, and it is possible to reduce 
the 6D function down to 4D if there is no occlusion effect. Take Figure 5 for an example. 
When the lighting direction is fixed, P is always in the shadow side and Q is always in 
the bright side no matter how the viewing direction could be changed if there is no 
self-occlusion. In other words, without self-occlusion, the shadow regions will not 
change with the viewing direction. So we only need to store the surface shadow regions 
once for each lighting direction regardless of the viewing direction. The representative 
view we choose is the Top View because it is the symmetrical center of all sampled 
viewing directions, and the Top View Shadow (TVS) is called the shadow regions. After 
this step, the dimensionality of shadow function is reduced from a 6D function Shad-
owMap(x,L,V) to a 4D function TopViewShadowMap(x,L) and BTF reconstruction func-
tion can be modified as follow: 
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(a)                  (b)                 (c) 

   
(d)                  (e)                 (f) 

Figure 7 The original pixel-wise BRDF vs. STVS (SBRDF multiplied by 
Top View Shadow). (a) is the original pixel-wise BRDF, (b) is STVS re-
constructed result, (c) is top view shadow, (d) is the error between them, 
and (e) is the error by 6D shadow function where darker levels represent 
large errors. (f) shows where the sample point is on original surface. 

 
BTF(x,L,V)≒STVS(x,L,V) 

        ＝SBTDF(x,L,V) × TopviewShadowMap(x,L), 
 

and Figure 7 shows the STVS reconstructed result, and STVS is the acronym of SBRDF 
multiplied by TVS. The error of STVS in Figure 7(d) and SBRDF multiplied by 6D 
shadow function in Figure 7(e) are almost the same. So using 4D shadow function TVS 
to approximate 6D shadow function is enough for lots of viewing directions. However, 
the more we lower the viewing direction toward the surface the more occlusion occurs. It 
can be seen that Figure 7(d) shows larger error than Figure 7(e) at lower viewing direc-
tion. Take Figure 6(a) for an example. P is in the shadow region at Vtop, but is occluded 
by Q at Vtarget and Q is in the bright region. If TVS is applied to Vtarget, Q will use P’s 
shadow level and make a critical error. The other larger error will occurr as Figure 6(b). 
It shows that Q is a invisible surface at Vtop but not at Vtarget. Such this case the shadow 
map will be very different from TVS as shown in Figure 7(f). 
 
2.3 Occlusion Analysis 
 

In this section, we focus on self-occlusion of BTF. By the similar analysis, there is a 
simple property of self-occlusion. The property is that the surface point we look at is 
independent of lighting direction changes as shown in Figure 8. According to this prop-
erty, we can discard the lighting effect and only analyze when the occlusion effect occurs 
for each view direction. In the other words, the self-occlusion effect can be represented 
by a 4D function.  
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Figure 8 Surface point we look at is independent of lighting di-

rection changes. 
 
The occlusion effect can be separated into two cases. One is shifted, and the other is 

hidden surface as shown in Figure 6. The shifted effect is shown in Figure 6(a). P is oc-
cluded by Q at Vtarget, but Q is still a visible point at Vtop. For this case, we only need a 
texture shift to move P to the correct point Q. The other case is hidden surface as shown 
in Figure 6(b). For this case, we cannot find the relative texture shift between Vtop and 
Vtarget. So It need additional process to deal with it. 

In subsection 2.3.1, we represented a method, called vote-based optical flow, to 
recognize if a surface point at Vtarget is a shifted point or a hidden surface point. In sub-
section 2.3.2, we represent a method to refine the distinguished result more correctly. In 
subsection 2.3.3, we present the additional process to deal with hidden surface points.  
 
2.3.1 Vote-based Optical Flow 
 

Optical flow is a method which finds the motion between two similar pictures. But 
it does not work well when applied to any two images in BTF data. It is because that the 
color of two images with different view direction and the same lighting direction may 
change significantly, so two images are not enough. 

As we mention that when the view setting is fixed, the surface point we look at will 
not be changed no matter where the light is located. In the ideal case, every image pair 
with different views and the same lighting direction should have the same occlusion shift 
and hidden surface map. 

According to this assumption, all the images with the same view direction can be 
considered as a group and to replace the role of the two 2D images in the original optical 
flow algorithm with the corresponding two image sets. Then the new result of the two 
image sets is several optical flow results. These several optical flow results can vote a 
best occlusion shift map from all occlusion shift maps and determine whether the pixels 
are hidden surface points or not by all hidden surface maps. The condition to determine 
that a pixel x is a hidden surface point is that HiddenRatio(x) >Thresholdhidden. Hidden-
Ratio(x) is defined as follow. 
 

HiddenRatio(x)＝avg(HiddenMap(x)) 
 
If x is not a hidden surface point, then the motion vector of x should be calculated. The 
method of how to vote its motion vector is as follow. VotedOcclusionShift(x) is a func-
tion to query the motion vector of point x. It is decided by majority from motion vectors 
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of all sample lighting pairs between two views. And this is why we call it vote-based 
optical flow. 

Figure 9 shows vote-based optical flow results. The hidden surface map is detected at 
the fillisters of the brick as Figure 9(d) as we expect. But the detected result as Figure 9(e) 
is not well enough. There are some parts like the four upstairs squares on the surface in 
Figure 9(a)(b). They should not be the hidden surface but we consider them as hidden 
one after the threshold determined. So we want to correct those parts by a refinement 
process which will be introduced in the next subsection. 

 
 

   
 (a)                  (b)                 (c) 

  
 (d)                  (e) 

Figure 9 Vote-based optical flow result. (a) is the top view image, (b) is the 
target view image, (c) is the motion vector field after voted, (d) is hidden 
surface map ratio where darker levels represent low hidden probability, (e) is 
determined hidden surface map which threshold is 0.7, and white parts are 
detected hidden surface. 

 
 
 

 
Figure 10 Illustration of searching the most similar reconstructed point 
(green points) to replace hidden surface point (red point), orange window is 
the searching region. 
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2.3.2 Refinement of Hidden Surface Map 
 
The idea of the refinement process is very simple. The method is to minimize the 

color difference between the reconstructed point color and the hidden point color. The 
reconstructed color is generated by the function STVS which is defined in section 2.2. 
The distance function is as follow: 
 

 
If this error is below the threshold, then this hidden surface point can be elevated to a 
non-hidden one and its motion vector will direct to the reconstructed surface. 

The reconstructed point is searched in a window relative to the hidden surface point 
as shown in Figure 10. The hidden surface point is replaced by the green point which has 
the minimum distance, distancemin. In our experiment, the window size is 256×256.  

As of the threshold for elevating a hidden surface point to non-hidden one, instead 
of determining by the user himself, we present a reasonable and automatic system. As the 
result of vote-based optical flow, we distinguish hidden surface points and non-hidden 
ones roughly. We assume the non-hidden parts that the vote-based optical flow found are 
correct. So, we can find the distances of all non-hidden surface points at the target view 
by the distance function which is defined in subsection 2.3.2, and the threshold will be 
the average distance of them as follow: 

 
threshold = average(distance(x, Vtarget)), x is all non-hidden surface points 

 
If a hidden surface point matches some reconstructed surface point where the distancemin 
is lower than the threshold, then it means that this hidden surface point can match a sur-
face point which has more similar behaviors than non-hidden surface points. 

So it is perfectly reasonable to be considered a non-hidden surface point. In the con-
trary, if distancemin is above the threshold, it can be determined as a hidden surface point 
confidently. Figure 11 show the result of the refinement process. The four elevated 
squares on the surface are all determined as non-hidden surface parts after the refinement 
process. Table 1 demonstrates the refinement process can reduce a lot of the hidden sur-
face points. 
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(a)                  (b)                  (c) 

  
(d)                  (e) 

Figure 11 After hidden surface map refinement. And hidden surface maps at 
different depressive angle. (a) is before refinement process, (b) is after re-
finement process (c) is 30°, (d) is 45°,(e) is 60°,and horizontal angle is 0° 

 
Before Refinement After Refinement 

 Non-hidden 
Surface Points 

Hidden Surface 
Points 

Non-hidden Sur-
face Points 

Hidden Surface 
Points 

IM
PA

L
L

A
 

209542 122234 274269 57507 

Table 1 The number of hidden surface points and non-hidden surface points before and after the 
hidden surface map refinement. Test cases’ resolutions are 64 x 64 and number of simple view 
directions is 81, so total surface points are 64 x 64 x 81= 331776 
 
2.3.3 Hidden Surface Points Clustering 

 
Each non-hidden surface point can be represented as STVS(x, L, V) which is men-

tioned in section 2.2, but all hidden surface points cannot. So those points need another 
representation. The most intuitive and simplest representation method is to store them all 
and extract them while rendering. But as shown in Table 1, the number of hidden points 
is about one-sixth of whole BTF size, it is impossible to do so. Fortunately, the surface 
or BTF is consisted of similar patches that mean hidden points are also similar, so in-
stead of saving them all, we save some presentational points which is chosen by using a 
clustering approach. 

The clustering method we choose is k-means cluster. K-means is one of the simplest 
unsupervised learning algorithms that solve the well known clustering problem. The pro-
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cedure follows a simple and easy way to classify a given data set through a certain num-
ber of clusters (assume k clusters) fixed a priori. The main idea is to define k centroids, 
one for each cluster. These centroids should be placed in a clever way because of differ-
ent location causes different result. So, a better choice is to place them as far away as 
possible from each other. The next step is to take each point belonging to a given data set 
and associate it to the nearest centroid. When no point is pending, the first step is com-
pleted and an early grouping is done. At this point we need to re-calculate k new cen-
troids as barycenters of the clusters resulting from the previous step. After we have these 
k new centroids, a new binding has to be done between the same data set points and the 
nearest new centroid. The same iteration continues until it converges. Finally, we can use 
these k centroids or k data points which are closest to individual centroids to represent 
whole data set. 

The total number of centroids k we choose is 1984 (this will be explained in sec-
tion 3.1). Because the number of hidden surface points is different at different view as 
shown in Figure 11, and so are their behaviors, we apply k-means cluster to each view 
and the centroids k’ of each view is shared from k according to the proportion of their 
hidden surface points ratio. So the final reconstruction method is as follow: 

 

 

3. RENDERING 

 
All the work mentioned in previous sections is to make an efficient representation 

of BTF for real-time rendering. In this section, we will discuss how it works in real-time 
rendering systems with programmable graphics processors (GPU). 

 
3.1 Converting Data to Texture 

In recent years, Graphics processors(GPU) have showed how powerful they are by 
their parallel arithmetic ability. In order to use GPU, the fitting results must be converted 
to the textures which GPUs support. These fitting results include SBRDF parameters, top 
view shadow maps, occlusion shifted maps, hidden surface maps, and cluster centers. 

SBRDF parameters can be converted to the texture form easily, because the sample 
surface is a rectangle of a two-to-the-power size. So each SBRDF parameters can be 
stored into 32-bit floating-point textures, where the texture size equals the surface reso-
lution. All SBRDF parameters contain a diffuse parameter dρ , four parameters Cx, Cy, Cz 
for each specular lobe, and three for RGB colors Cx, Cy, Cz, n. The modern GPUs can 
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handle four channel floating texture at once, so we can store Cx, Cy, Cz,σd in one 128-bit 
texture and use another one for each specular lobe. In our experiment, we use three 
specular lobs, so there are four 128-bit textures to express the SBRDF parameters. 

Next a 32-bit texture which contain four channels is used to store the top view 
shadow maps, occlusion shifted maps, hidden surface maps, and cluster centers. 

First, because the number of top view shadow maps is related to the number of BTF 
lighting direction samples, and the texture size of each shadow map is equal to the sam-
ple surface resolution in our experiment. So we can put them from top to low and left to 
right to the texture by their sample lighting direction in the order of counter clockwise 
horizontal angle and increasing depressive angle like Figure 12(a). For shadow maps is 
used one 8-bit channel to store it.  

Second, for each sample view direction, there is a corresponding hidden surface 
map and an occlusion shifted map. Hidden surface map is a Boolean texture which 
represents whether the surface point at this view direction is hidden or not. It can be 
stored in one 8-bit channel. As for occlusion shifted map, It is stored in two 8-bit chan-
nels. If the surface point is non-hidden, one of these two channels stores the x shift and 
the other stores the y shift. If the surface point is hidden, we use these two channels to 
encode the cluster center index in our implementation. So in our experiment, the maxi-
mum number of cluster center index is 256 × 256 = 65536. Fortunately, the number of 
sample lighting direction and sample viewing direction is just the same, so those maps  
can be put into texture just like top view shadow map as shown in Figure 12 (b). 

Because the texture size which GPU supports is 2 to the power, there may have 
some unused texture spaces.  Figure 12 (b) show the unused area as black. In order to 
achieve maximum utility of this texture, we use these free spaces to store the cluster cen-
ters. In our experiment, the resolution of the sample surface is 64 x 64 and number of 
sampling directions is 81. The texture which is used to store these data is 1024 × 512. 
So 80 maps take up 1024 × 320 texture spaces. The remainder texture spaces are 1024 
× 192. The cluster center is a 1 × 81 vector, so the number of cluster centers which can 
be filled in is (1024 × floor(192/81)) = 2048. In this case, because there is one 
shadow/occlusion shifted/hidden surface map, the valid space for cluster should take off 
the space which used by that map. So the maximum number of center should be 2048 - 
64 = 1984. 

 
 
 
 
 
 

(a)                          (b)  

 
     (c) 

Figure 12 Put top view shadow maps, occlusion shifted maps, hidden 
surface maps, and cluster centers into a four channel 32-bit texture. 
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4. RESULTS AND COMPARISON 

 
Our experiments are performed on a PC containing a 2.8GHz Pentium4 CPU and an 

nVidia GeForce 6600 graphics card. The output image size is 300×300.  We achieve 
real time rendering of the BTF data at above 24 frames per second (FPS) and the com-
pression ratios are shown in Table 2. 

Figure 13 and Figure 14 show the rendering results. Compared with the original BTF 
(Figure 13 (a)), our rendering results (Figure 13 (d)) present more surface detail than both 
SBRDF and STVS. Those textures can also be applied to any 3D model which only has 
rough geometry to represent more complex mesostructure, relighting, and render them in 
real-time. Figure 14 is the results of applying our method on several 3D models with dif-
ferent lighting and viewing directions.  
 

 BTF SBRDF STVS Our method 

Storage Size (MB) 80.621 0.596 1.008 2.58 

Compression Ratio 0% 99.26% 98.75% 96.80% 

Table 2 Compression ratio of all methods in this paper. 

 

 (a) 

 (b) 

 (c) 

 (d) 
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Figure 13 Rendering results and comparisons. (a) is rendered by origi-
nal BTF. (b) is by SBRDF. (c) is STVS, (d) is our final method. 

 
 

Figure 14 the results of applying our method to several 3D models at different lighting directions. 

 

5. CONCLUSION AND FUTURE WORK 

 
In this paper we present a physically-based analysis of BTF data. This analysis is 

based on the traditional SBRDF method first represented by McAllister [11]. We find 
that the traditional SBRDF cannot represent the self-shadowing and self-occlusion ef-
fects very well because they assume each sample points on the surface has an individual 
BRDF and fit it into a reflectance model. As we know that all reflectance models are 
smooth curve functions. Both self-shadowing and self- occlusion will make the shape of 
BRDF vary sharply, so they cannot be reconstructed very well by SBRDF.  

One possible future improvement is to find the outliers more correctly. Currently, 
we only use the color differenc to find them. And the occlusion effects can be detected 
by different methods to find a more efficient and reliable shifted maps and hidden sur-
face maps and to make the rendering result more appealing. 
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