
A Thin-Client Approach for Porting OpenGL Applications to
Pocket PC’s

Zhe-Yu Lin Shyh-Haur Ger Yung-Feng Chiu Chun-Fa Chang

Department of Computer Science
National Tsing Hua University

Abstract

The display of a mobile device such as the

pocket PC is usually small, which inspired us to

explore image-based rendering as an alternative

for 3D graphics on mobile devices. However,

developing 3D graphics applications on mobile

devices could be a very different experience

from programming on personal computers, let

alone using image-based rendering. Therefore

we developed an application interface (API) for

porting 3D graphics applications that are already

written in OpenGL [6] to the Pocket PC platform.

It is based on a client-server framework where

the original program still runs on the PC server,

and the Pocket PC acts as a thin client to interact

with the end users. Image-based rendering is

implemented in the client to improve the frame

rates and to cope with the network delay.

1 Introduction

 The user’s demand for 3D graphics on

mobile devices has been increasing. However,

developing 3D graphics applications on mobile

devices such as the Pocket PC’s could be a very

different experience from programming on

personal computers, even with help of graphics

libraries such as miniGL[5] or PocketGL[7].

Furthermore, insufficient processing power of

mobile devices makes it impractical to render

complex 3D models through the traditional

graphics pipeline.

 Let us look at the scenario of developing

computer games with 3D graphics on Pocket

PC’s. Simply porting the traditional 3D

graphics pipeline to Pocket PC’s produces

limited and non-scalable rendering performance

because the rendering time increases almost

linearly with the number of polygons to be

rendered. More importantly, it fails to take

advantage of the smaller display on a typical

Pocket PC. In contrast, the run time of

image-based rendering (IBR) method depends

mainly on the display resolution, which makes it

well suited for Pocket PC’s.

 In this work, we present an application

interface (API) for porting 3D graphics

applications written in OpenGL [6] to the Pocket

PC platform. It is based on a client-server

framework where the original program still runs

on the PC server, and the Pocket PC acts as a

thin client to interact with the end users.

 The main ideas of our work are: we want

to give the users the illusion that they are

running the OpenGL programs on the Pocket PC

when the users interact with the application

program through our pre-compiled client-side

program on the Pocket PC, even though the

OpenGL program is actually running on the PC

server. When the u

updated view is sen

application on the PC

program receives the

new view, and then

buffer to the client. Th

received frame buffe

image-based rendering

Figure 1 shows an ove

framework.

In a sense, our

like a virtual frame bu

the server program, e

bandwidth is abundan

the network bandwid

support such a kind of

Thus, we have to rely

techniques to maintain

the client side.

 In the following

usage of our applicati

implementation, and

several applications us

Depth

Images

Updated

Camera

Server (PC)
1.Render an output image via

OpenGL.
2.Convert the rendered images

to depth images.
3.Transfer the depth images to

the Pocket PC.
4.Receive the updated camera.
5.Start over again from 1.

Client (Pocket PC)
1.User’s change of view is

received.
2.Warp the depth images

according to the new view.
3.If necessary, send the current

view to the server and request
new depth images.

4.Check whether new depth
images have been received
from the server.

5.Start over again from 1.
Figure 1: Overview of our client-server framework.
ser’s view changes, the

t back to the OpenGL

 server. The server-side

view change, renders the

sends the updated frame

e client program uses the

r as the input to the

 to display the final output.

rview of the client-server

client-side program acts

ffer (or a video player) for

specially if the network

t. However, in practice,

th is not sufficient to

frame-by-frame playback.

on image-based rendering

 interactive frame rates at

sections, we describe the

on interface, details of its

the results of porting

ing our API.

2. Usage of the API Functions

We design our application interface such that a

developer can convert an existing OpenGL

application into a Pocket PC application with as

few changes as possible. Our application

interface communicates with an OpenGL

application mainly through the following data

structures:

1. The frame buffer: The OpenGL

application still performs the

rendering as usual. The rendered

images in the frame buffer

(including the color and depth

buffers) are then converted to depth

images and sent to the Pocket PC for

3D warping [3].

2. The camera setup: Since the user

will be interacting with the client

program on the Pocket PC, the

OpenGL application needs to be

modified to receive the camera setup

from our API functions.

3. The UI-related commands: Similar

to the cases in camera setup, the

OpenGL application needs to invoke

our API to receive the UI commands

form the user.

The developer is expected to make the

following changes to the original OpenGL

application program to use our API functions:

1. Initialization and termination of the

network.

2. Registration of callback functions.

3. Adding API function calls to receive

the updated viewing setup and the

other user interface commands such

as those from pull-down menus.

4. Adding API function calls to send the

rendered images at the frame buffer

to the client.

The items 3 and 4 listed above are

necessary because the user now interacts with

the client program on the Pocket PC, not directly

with the application on the server.

Currently, our system is also capable of

automatically creating layered depth images

(LDI) from a given viewpoint. We achieve this

by shifting the camera to multiple nearby

viewpoints and slightly rotating the viewing

angles. However, the developer of an OpenGL

application does not need to handle the details of

creating an LDI from multiple rendering. All

the developer has to do is to provide a display

callback function, which is typically very similar

to the GLUT display callback. Our application

interface will then invoke the display callback

function multiple times with the varied

viewpoints to generate the LDI automatically.

To sum it up, a modified OpenGL

application may look like the following (where

the API-related modifications are shown in

boldface):

main(){
 [OpenGL setup]
 API_init_net();

API_reg_display_callback(

display_callback);

API_reg_idle_callback(

idle_callback);

MainLoop();
API_close_net();

} /* main() */

display_callback(){
 [OpenGL rendering]
 glFlush();
} /* display_callback() */

idle_callback(){
 switch(event){
 [cases for other events]
 case NET_RECEIVE_CAM:

 API_receive_cam();

API_depth_img_gen();

API_send_image();

 case NET_RECEIVE_UI_CMD:

API_receive_UI_cmd();

[actions for GUI command]
 }
} /* idle_callback() */

3. Implementation of the API

Our application interface may be divided into

three categories: the server functions, the

network functions, and the thin client. The

server functions are responsible for converting

the OpenGL frame buffers into depth images.

The network functions handle the

communication between the server and the client.

The thin client interacts with the users and

displays the output images by image-based

rendering. (Please see the appendix for a list of

the API functions.)

3.1 The Server Functions
One of the server functions converts the

OpenGL color and depth buffers into a depth

image. Its task is relatively straightforward,

except the part of converting the Z values in the

depth buffer into the depth values in the depth

image. The depth values stored in a depth

image represent the distance to the camera and

are proportional to the distance between the

camera and the projection plane. Therefore,

they are linear in the object space.

Unfortunately, the Z values stored in the

OpenGL depth buffer are more closely related to

the distance to the near clipping plane, and are

not linear in the object space. For example, if

an object has the depth of Z along the z-axis in

the eye space, the near plane distance is n and

the far plane distance is f, then its depth value at

the OpenGL depth buffer will be:

nf
f

Z
nZZ

−
⋅

−
=′

To convert it to a linear depth value in the

depth image, we use the following equation:

⋅
−⋅′−

=′′
)(nfZf

fZ

which eventually becomes Z/n.

3.2 The Network Functions
We implement the network functions between

the server and the client using the Microsoft

WinSock interface, via IEEE 802.11b based

wireless network. The data that are sent on the

wireless network are those that are already

described in Section 2. As the user’s view

changes, the client sends the camera information

back to the server. When the server receives the

view change through a call to the network

functions, the application program renders a new

image, calls a server function (listed in Section

3.1) to convert the frames buffers into a depth

image or Layered depth image, then calls

another network function to send the depth

image to the client.

3.3 The Thin Client
Our application interface includes a thin client

program that actually interacts with the users and

produces the displayed images. Therefore, the

developer does not need to learn the details of

programming in the Pocket PC environment.

The provided thin client program handles the

typical user input on the touch screen and the

buttons. However, if a developer is familiar

with the programming environment of the

Pocket PC and would like to write a different

client program, our thin client program provides

a good example to start with.

The input to our client program is the

depth image (or layered depth image) that it

receives from the server. The client program

then produces output images from the depth

image using McMillan’s 3D warping method [4].

To improve the performance, the floating-point

arithmetic is implemented in fixed-point

numbers, and the Game API [2] is used for pixel

drawing. For more details about the

implementation of the client program, please see

our previous work in [1].

4

F

im

v

th

a

im

e

Figure 2: Our system at work. (Left) The user is changing his/her view on the Pocket PC.

(Right) The server program has updated its view accordingly and the newly generated depth

image is used on the client.

Figure 3: Two OpenGL programs running on the Pocket PC. (Left) The Dragon (Right)

An NVIDIA shader demo.

. Results

igure 2 shows our system at work. The left

age shows that the user is changing her or his

iew on the Pocket PC. The right image shows

at the server program has updated its view

ccordingly and the newly generated depth

age is used on the client.

Figure 3 show the results of porting two

xisting OpenGL applications using our

application interface. As described in Section 2,

porting them to the Pocket PC requires only

minor changes to the original OpenGL program.
The two applications are:

1. The Dragon: This is an application

program that renders a dragon model,

which contains 871,414 triangles.

2. An NVIDIA shader demo: This is a

vertex shader demo program that

demonstrates the refraction effect.

In our experiments, we obtain the

performance of about 5 frames per second for

both applications on a 206MHz StrongArm

processor based system (Compaq iPAQ H3870).

The time to transmit a depth image from the

server to the client ranges from half a second to

two seconds. We use the IEEE 802.11b based

wireless network equipments, all located within

our laboratory.

5. Conclusions and Future Work

In this work, we demonstrate that image-based

rendering provides an alternative approach to 3D

graphics on a Pocket PC. Image-based

rendering is appealing because its rendering cost

is proportional to the resolution of the output

image, which is usually low in mobile handheld

devices. We also show that porting an existing

OpenGL application to Pocket PC may be

simplified by using our application interface.

 A limitation of our method is that it does

not work well with moving objects in the

OpenGL application program. Although our

client program can interactively display the new

images when the view changes, the objects do

not move in the object space until the next depth

image from the server arrives. In the future, we

plan to add a traditional polygon-based graphics

pipeline to the client program in order to process

the moving objects. As long as the scene

contains only a small portion of moving objects,

the benefit of using an image-based rendering

approach may still be preserved.

Acknowledgement

This work is supported by NSC Grant

91-2213-E-007-032.

References

1. Chun-Fa Chang and Shyh-Haur Ger.

“Enhancing 3D Graphics on Mobile Devices by

Image-Based Rendering”. In Proceedings of

2002 IEEE Pacific-Rim Conference on

Multimedia (PCM 2002).

2. The Game API website:

http://www.pocketpcdn.com/sections/gapi.

html

3. Leonard McMillan and Gary Bishop. “Plenoptic

Modeling: An image-based rendering system”.

In SIGGRAPH 95 Conference Proceedings,

pages 39–46, August 1995.

4. Leonard McMillan. An Image-Based Approach

to Three-Dimensional Computer Graphics.

Ph.D. Dissertation. Technical Report 97-013,

University of North Carolina at Chapel Hill,

Department of Computer Science, 1997.

5. MiniGL by Digital Sandbox, Inc. The miniGL

website: http://www.dsbox.com/minigl.html

6. OpenGL website: http://www.opengl.org

7. PocketGL website:

http://www.sundialsoft.freeserve.co.uk/pgl.

htm

8. Jonathan Shade, Steven Gortler, Li-wei He and

Richard Szeliski. “Layered Depth images”. In

SIGGRAPH 98 Conference Proceedings, pages

231–242, July 1998.

9. Lee Westover. SPLATTING: A Parallel,

Feed-Forward Volume Rendering Algorithm.

Ph.D. Dissertation. Technical Report 91-029,

University of North Carolina at Chapel Hill.

1991.

http://www.pocketpcdn.com/sections/gapi.html
http://www.pocketpcdn.com/sections/gapi.html
http://www.dsbox.com/minigl.html
http://www.opengl.org/
http://www.sundialsoft.freeserve.co.uk/pgl.htm
http://www.sundialsoft.freeserve.co.uk/pgl.htm

Appendix: List of API Functions

API_init_net(socket, port);

/* initialize the wireless network and bind the

socket to the selected port , return 0 to mean

failure */

API_close_net(socket);

/* release the socket and close the wireless

network */

API_reg_display_callback(

display_callback());

/* register the display callback function */

API_reg_idle_callback(

idle_callback());

/* register the idle callback function */

API_receive_cam();

/* change the camera parameters (eye position,

look-at and up vectors) */

API_depth_img_gen();

/* generate the depth image or layered depth

image from color and depth buffers according

to the new camera settings */

API_receive_UI_cmd();

/* invoke actions (model selection , exit, etc,.) to

the UI commands from the user */

API_send_image(socket,buffer,

count);

/* send “count” bytes from the buffer to the

socket */

	A Thin-Client Approach for Porting OpenGL Applications to

