
Abstract
 For studying the phenomenon of fluid dynamics, Computational

Fluid Dynamics (CFD) has been developed for twenty years. CFD

bases on different numerical scheme to solve the no-linear partial

differential equations. In this study, the finite volume and structured

grid are adopted. Methods of the Roe scheme, preconditioning and

dual time stepping matching the DPLR are simultaneously applied to

solve the Navier-Stokes equations. The non-reflection boundary

condition method is used to handle the open boundary situation to

prevent the reflection waves from the boundary and the immersed

boundary method is applied to treat the reaction force from the

inserted complex moving geometry in the fluid. In order to reduce the

computational time, the parallel computation device of CPU and GPU

are used and compared in this study.

The Simulation of Transient Process of Gas Discharge by Multi-GPU with CUDA Platform

Governing equations
 The governing equation of continuity, momentum, energy and ideal

gas equations are listed as follows:

Wu-Shung Fu, Wei-Hsiang Wang, Kun-Rong Huang

1 2 3

1 2 3

U F F F
S

t x x x

1 2 3()TU u u u e

1 1 1

2 2 2

3 3 3

()

j

j j j

j j jj

j j j

j j i ij

u

u u P

u u PF

u u P

e P u q u

()S F X P RT
where

and

The source term S denotes the

reaction force on the immersed

boundary Ω.

1,2,3i

Immersed boundary method
 In order to set the solid region in the fluid domain and retain the

mesh in structure grid, the immersed boundary proposed by Peskin

and refined by Mittal et al. are used. The mass conservation error of

the structured and unstructured are 7.79×10-3% (better) and -0.44%

and the difference of the mesh are shown in Figure 1.

Figure 1. The results of the flow pass a cylinder (Re = 100),

structured (up) and unstructured grid (down).

Comparison of OpenMP and CUDA
 The OpenMP and CUDA are used to boost the computation

and test in our previous study. The model of this study is three

dimensional and the data of each finite volume are saved in a

3D array. The data in the 3D array can be read and moved

easily by CPU in host but the procedure is much more

complicated in the device by GPU. In order to simplify the

process, the 3D array is transformed to 1D array and copied to

device memory. The same project is handled by OpenMP and

CUDA and the results are shown in figure 2. It shows that the

speed up of the GPU is obviously higher than CPU with

OpenMP method even the array needs to be converted to 1D

and the coding needs more parallel optimization.

Figure 2. Comparison of

computing efficiency

Optimization and Multi-GPU
 The GPU loading of the original program is about 55%, it

means that the project can be modified with more parallel

optimization. The key point of increasing the speed is to reduce

the data transfer between the host and device, and always keep

the calculation loop in the device. Figure 3 shows the parallel

percentage and the speed up results (3.75×104 mesh numbers).

The program is improved from 54% parallel percentage to 92%

and the comparison based on the OpenMP method with the

Intel Core i7 X980. In former, only the solving scheme loop are

handled by GPU (54%) while the latter put the boundary

conditions loop into device(59%), and reduce the data transfer

between the host and device (72%), and finally applying the

Reduction method to parallelize the residual loop and reduce

the frequency of data output (92%).

0

2

4

6

8

10

12

14

50 60 70 80 90 100

S
p

ee
d

 u
p

Parallel Portion (%)

GTX Titan

GTX 560

0

1

2

3

4

5

6

7

Nvidia

Tesla

C1060

Intel

Core i5

(4core) Intel

Q6600

(4core)

S
p

ee
d

 s
ca

li
n

g

Figure 3. Comparison of speed

up versus parallel percentage

with different device

Results
 Utilizing the CUDA platform to reduce the computational time

is efficient and economic, the calculation with OpenMP (i7 X980)

method requires approximately a month to finish, while CUDA

(GTX Titan) costs 2.5 days to make the same computation and

the results are shown in figure 5. The most powerful feature of

multi-GPU by CUDA platform is that the compute capability of

super computing of individualization could be realize.

Single

Double
0

1

2

3

GTX 760
GTX 770

GTX Titan

1 1.22 1.55

1.76
2.24

2.93

S
p

ee
d

 s
ca

li
n

g

Figure 4. Comparison of computing efficiency in single

and double GPU (2.2×106 mesh numbers)

Figure 5. The results of the gas discharge into outside region

(1.62×106 mesh numbers)

 In order to increase the calculation speed and device memory,

the multi-GPU technology are applied. The model is separated

into several parts. Depending on the number of grids in host and

the additional interfaces need to be defined and is written and

read by another grid. Although using multi-GPU can improve the

computational speed, the treatment of the interface will reduce

the calculation speed due to data transform between different

devices. Therefore, reducing the area of the interface is the better

way to keep high efficiency. The results of multi-GPU are shown

in figure 4. It reveals that the multi-GPU model exactly increase

the speed of calculation than a single GPU .

Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC

